① 黑體是什麼
黑體(black body),是一個理想化的物體,它能夠吸收外來的全部電磁輻射,並且不會有任何的反射與透射。換句話說,黑體對於任何波長的電磁波的吸收系數為1,透射系數為0。
物理學家以此作為熱輻射研究的標准物體。它能夠完全吸收外來的全部電磁輻射,並且不會有任何的反射與透射,這種物體就是絕對黑體,簡稱黑體。
黑體不一定是黑色的(例如太陽在某種情況下就可以看做黑體),即使它沒辦法反射任何的電磁波,它也可以放出電磁波來,而這些電磁波的波長和能量則全取決於黑體的溫度,不因其他因素而改變。
當然,黑體在700K以下時看起來是黑色的,但那也只是因為在700K之下的黑體所放出來的輻射能量很小且輻射波長在可見光范圍之外。若黑體的溫度高過上述的溫度的話,黑體則不會再是黑色的了,它會開始變成紅色,並且隨著溫度的升高,而分別有橘色、黃色、白色等顏色出現,即黑體吸收和放出電磁波的過程遵循了光譜,其分布為普朗克分布(或稱為黑體軌跡)。黑體輻射實際上就是黑體的熱輻射。在黑體的光譜中,由於高溫引起高頻率即短波長,因此較高溫度的黑體靠近光譜結尾的藍色區域而較低溫度的黑體靠近紅色區域。
在室溫下,黑體輻射的能量集中在長波電磁輻射和遠紅外波段;當黑體溫度到幾百攝氏度之後,黑體開始發出可見光。以鋼材為例根據溫度的升高過程,分別變為紅色,橙色,黃色,當溫度超過1300攝氏度時開始發白色 [1] 和藍色。當黑體變為白色的時候,它同時會放出大量的紫外線。
黑體一詞是在1862年由基爾霍夫所命名並引入熱力學內,黑體所輻射出來的光線則稱做黑體輻射。黑體單位表面積的輻射功率P與其溫度的四次方成正比,即:
P= σ 式中σ稱為斯特藩-玻爾茲曼常數,又稱為斯特藩常數。
黑體的放射過程引發物理學家對量子場內的熱平衡狀態的興趣。在經典物理中,所有熱平衡的傅里葉模型都遵循能量均分定理。當物理學家使用經典物理解釋黑體時,不可避免的發生了「紫外災難」,即用於計算黑體輻射強度的瑞利-金斯定律在輻射頻率趨向於無窮大時計算結果也趨向於無窮大。由於黑體可以用於檢驗熱平衡的性質,因為它放出的輻射遵循熱力學散射,歷史上對黑體的研究成為了量子物理開始的契機。
② 在20世紀,物理學研究領域有「兩朵烏雲」,指的是什麼
英國著名物理學家威廉.湯姆生(即開爾文男爵)發表了新年祝詞中的話。
第一朵烏雲出現在光的波動理論上,」「第二朵烏雲出現在關於能量均分的麥克斯韋-玻爾茲曼理論上
第一朵詳細:牛頓在發現了萬有引力之後,碰上了難題:在宇宙真空中,引力由什麼介質傳播呢?為了求得完整的解決,牛頓復活了亞里士多德的「以太」說,認為「以太」是宇宙真空中引力的傳播介質。後來,物理學家又發展了「以太」說,認為「以太」也是光波的傳播介質。光和引力一樣,是由「以太」傳播的。他們還假定整個宇宙空間都充滿了「以太」,「以太」是一種由非常小的彈性球組成的稀薄的、感覺不到的媒介。19世紀時,麥克斯韋電磁理論也把傳播光和電磁波的介質說成是一種沒有重量,可以絕對滲透的「以太」。「以太」既具有電磁的性質,又是電磁作用的傳遞者,又具有機械力學的性質,它是絕對靜止的參考系,一切運動都相對於它進行。這樣,電磁理論因牛頓力學取得協調一致。「以太」是光、電、磁的共同載體的概念為人們所普遍接受,形成了一門「以太學」。
邁克耳遜一莫雷實驗使科學家處於左右為難的境地。他們或者須放棄曾經說明電磁及光的許多現象的以太理論。如果他們不敢放棄以太,那麼,他們必須放棄比「以太學」更古老的哥白尼的地動說。經典物理學在這個著名實驗面前,真是一籌莫展。
第二朵詳細:
黑體輻射與「紫外災難」
在同樣的溫度下,不同物體的發光亮度和顏色(波長)不同。顏色深的物體吸收輻射的本領比較強,比如煤炭對電磁波的吸收率可達到80%左右。所謂「黑體」是指能夠全部吸收外來的輻射而毫無任何反射和透射,吸收率是100%的理想物體。真正的黑體並不存在,但是,一個表面開有一個小孔的空腔,則可以看作是一個近似的黑體。因為通過小孔進入空腔的輻射,在腔里經過多次反射和吸收以後,不會再從小孔透出。
19世紀末,盧梅爾(1860-1925)等人的著名實驗―黑體輻射實驗,發現黑體輻射的能量不是連續的,它按波長的分布僅與黑體的溫度有關。從經典物理學的角度看來,這個實驗的結果是不可思議的。
怎樣解釋黑體輻射實驗的結果呢?當時,人們都從經典物理學出發尋找實驗的規律。前提和出發點不正確,最後都導致了失敗的結果。例如,德國物理學家維恩建立起黑體輻射能量按波長分布的公式,但這個公式只在波長比較短、溫度比較低的時候才和實驗事實符合。英國物理學家瑞利和物理學家、天文學家金斯認為能量是一種連續變化的物理量,建立起在波長比較長、溫度比較高的時候和實驗事實比較符合的黑體輻射公式。但是,從瑞利——金斯公式推出,在短波區(紫外光區)隨著波長的變短,輻射強度可以無止境地增加,這和實驗數據相差十萬八千里,是根本不可能的。所以這個失敗被埃倫菲斯特稱為「紫外災難」。它的失敗無可懷疑地表明經典物理學理論在黑體輻射問題上的失敗,所以這也是整個經典物理學的「災難」。
③ 物理學中的黑體輻射是指什麼黑體又是什麼物質
物體具有電磁波輻射、反射、吸收等的性質,物體輻射的電磁波根據物體特性和溫度有一定的譜具體分布,被稱之為熱輻射。為了在不依賴物體物性的基礎上研究熱輻射規律,物理學家們定義了黑體,即一種理想的物體來進行研究熱輻射。黑體指完全吸收任何波長的輻射,沒有任何反射的物體,包括一切條件下的外來輻射。黑體輻射則是指在一定溫度和波長中放射量最大的輻射,一般是由理想放射物所放射的。
除了黑體,還有一種灰體物質,也叫做選擇性輻射體。黑體輻射的相關理論有基爾霍夫輻射定律,是一種在熱平衡下的物體輻射和吸收能量之比與物性無關,與溫度和波長有直接關系的定律,它對我們研究黑體有顯著的作用。
④ 如何理解經典物理學「天空中飄浮著兩朵烏雲」
在19世紀末期,物理學家認為現有的經典物理學已經完全可以解決所有的物理現象,而只有兩個物理現象無法進行解釋,認為解決了這兩個物理問題後,物理學將走到盡頭。所以認為這兩個問題,就是漂浮在天空中的兩朵烏雲,解決了這兩朵烏雲,物理的天空就再無遮攔和秘密。
1、 第一朵烏雲——邁克耳遜-莫雷實驗與「以太」說破滅
這朵烏雲對經典物理學中的波的傳播需要介質這一定理提出了挑戰,它的存在讓經典物理學不那麼完美,當時的科學界將經典物理學奉為真理,認為所有的物理現象都可以由經典物理學進行解釋,所以認為這是一片烏雲。這朵烏雲引出了光的波粒二象性。
2、 第二朵烏雲——黑體輻射與「紫外災難」
這朵烏雲對經典物理學的連續性提出了挑戰,經典物理學認為能量,波這些物理量是連續存在的,這朵烏雲的背後是普朗克常量。
(4)物理學中所指的黑體能夠吸收全部的什麼擴展閱讀:
1、光波為什麼能在真空中傳播?它的傳播介質是什麼?物理學家給光找了個傳播介質——「以太」。
但是,肯定了「以太」的存在,新的問題又產生了:地球以每秒30公里的速度繞太陽運動,就必須會遇到每秒30公里的「以太風」迎面吹來,同時,它也必須對光的傳播產生影響。這個問題的產生,引起人們去探討「以太風」存在與否。
邁克耳遜-莫雷實驗結果證明,不論地球運動的方向同光的射向一致或相反,測出的光速都相同,在地球同設想的「以太」之間沒有相對運動。因而,根本找不到「以太」或「絕對靜止的空間」。
2、在同樣的溫度下,不同物體的發光亮度和顏色(波長)不同。顏色深的物體吸收輻射的本領比較強,比如煤炭對電磁波的吸收率可達到80%左右。所謂「黑體」是指能夠全部吸收外來的輻射而毫無任何反射和透射,吸收率是100%的理想物體。真正的黑體並不存在。但是,一個表面開有一個小孔的空腔,則可以看作是一個近似的黑體。因為通過小孔進入空腔的輻射,在腔里經過多次反射和吸收以後,不會再從小孔透出。
19世紀末,盧梅爾(1860-1925)等人的著名實驗―黑體輻射實驗,發現黑體輻射的能量不是連續的,它按波長的分布僅與黑體的溫度有關。從經典物理學的角度看來,這個實驗的結果是不可思議的。
⑤ 物理學中黑體的定義是什麼
黑體是能夠吸收電磁波的物體。只吸收電磁波,而不發射電磁波的物體叫做絕對黑體。實際上絕對黑體是不存在的。
⑥ 求黑體輻射理論的詳細介紹
任何物體都具有不斷輻射、吸收、發射電磁波的本領。輻射出去的電磁波在各個波段是不同的,也就是具有一定的譜分布。這種譜分布與物體本身的特性及其溫度有關,因而被稱之為熱輻射。為了研究不依賴於物質具體物性的熱輻射規律,物理學家們定義了一種理想物體——黑體(black body),以此作為熱輻射研究的標准物體。
所謂黑體是指入射的電磁波全部被吸收,既沒有反射,也沒有透射( 當然黑體仍然要向外輻射)。顯然自然界不存在真正的黑體,但許多地物是較好的黑體近似( 在某些波段上)。
基爾霍夫輻射定律(Kirchhoff),在熱平衡狀態的物體所輻射的能量與吸收的能量之比與物體本身物性無關,只與波長和溫度有關。按照基爾霍夫輻射定律,在一定溫度下,黑體必然是輻射本領最大的物體,可叫作完全輻射體。
普朗克輻射定律(Planck)則給出了黑體輻射的具體譜分布,在一定溫度下,單位面積的黑體在單位時間、單位立體角內和單位波長間隔內輻射出的能量為
B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1
B(λ,T)—黑體的光譜輻射亮度(W,m-2 ,Sr-1 ,μm-1 )
λ—輻射波長(μm)
T—黑體絕對溫度(K、T=t+273k)
C—光速(2.998×108 m·s-1 )
h—普朗克常數, 6.626×10-34 J·S
K—波爾茲曼常數(Bolfzmann), 1.380×10-23 J·K-1 基本物理常數
由圖2.2可以看出:
①在一定溫度下,黑體的譜輻射亮度存在一個極值,這個極值的位置與溫度有關, 這就是維恩位移定律(Wien)
λm T=2.898×103 (μm·K)
λm —最大黑體譜輻射亮度處的波長(μm)
T—黑體的絕對溫度(K)
根據維恩定律,我們可以估算,當T~6000K時,λm ~0.48μm(綠色)。這就是太陽輻射中大致的最大譜輻射亮度處。
當T~300K, λm~9.6μm,這就是地球物體輻射中大致最大譜輻射亮度處。
②在任一波長處,高溫黑體的譜輻射亮度絕對大於低溫黑體的譜輻射亮度,不論這個波長是否是光譜最大輻射亮度處。
如果把B(λ,T)對所有的波長積分,同時也對各個輻射方向積分,那麼可得到斯特番—波耳茲曼定律(Stefan-Boltzmann),絕對溫度為T的黑體單位面積在單位時間內向空間各方向輻射出的總能量為B(T)
B(T)=δT4 (W·m-2 )
δ為Stefan-Boltzmann常數, 等於5.67×10-8 W·m-2 ·K-4
但現實世界不存在這種理想的黑體,那麼用什麼來刻畫這種差異呢?對任一波長, 定義發射率為該波長的一個微小波長間隔內, 真實物體的輻射能量與同溫下的黑體的輻射能量之比。顯然發射率為介於0與1之間的正數,一般發射率依賴於物質特性、 環境因素及觀測條件。如果發射率與波長無關,那麼可把物體叫作灰體(grey body), 否則叫選擇性輻射體。
⑦ 黑體為什麼會是完全輻射體它不是能吸收任何電磁波嗎是不是它吸收的電磁波又全部都輻射出去了高手指
黑體確實是輻射的完美吸收體,但它有一定的容納量,一旦達到平衡便發射和吸收相等的能量,因此它既是完美德吸收體又是完美的發射體。黑體基本可以吸收全部輻射,但室溫下黑體輻射所發射的是紅外線,而非全部形式的射線。
⑧ 既然黑體能吸收一切電磁波,那怎麼會向外輻射電磁波研究黑體輻射又有什麼意義
黑體
任何物體都具有不斷輻射、吸收、發射電磁波的本領。輻射出去的電磁波在各個波段是不同的,也就是具有一定的譜分布。這種譜分布與物體本身的特性及其溫度有關,因而被稱之為熱輻射。為了研究不依賴於物質具體物性的熱輻射規律,物理學家們定義了一種理想物體——黑體(black body),以此作為熱輻射研究的標准物體。
所謂黑體是指入射的電磁波全部被吸收,既沒有反射,也沒有透射( 當然黑體仍然要向外輻射)。顯然自然界不存在真正的黑體,但許多地物是較好的黑體近似( 在某些波段上)。
但現實世界不存在這種理想的黑體,那麼用什麼來刻畫這種差異呢?對任一波長, 定義發射率為該波長的一個微小波長間隔內, 真實物體的輻射能量與同溫下的黑體的輻射能量之比。顯然發射率為介於0與1之間的正數,一般發射率依賴於物質特性、 環境因素及觀測條件。如果發射率與波長無關,那麼可把物體叫作灰體(grey body), 否則叫選擇性輻射體。
黑體的模型
黑體的吸收率α=1,這意味著黑體能夠全部吸收各種波長的輻射能。盡管在自然界並不存在黑體,但用人工的方法可以製造出十分接近於黑體的模型。黑體模型的原理如下:取工程材料(它的吸收率必然小於黑體的吸收率)製造一個球殼形的空腔,使空腔壁面保持均勻的溫度,並在空腔上開一個小孔。射入小孔的輻射在空腔內要經過多次的吸收和反射,而每經歷一次吸收,輻射能就按照內壁吸收率的大小被減弱一次,最終能離開小孔的能量是微乎其微的,可以認為所投入的輻射完全在空腔內部被吸收。所以,就輻射特性而言,小孔具有黑體表面一樣的性質。值得指出的是,小孔面積占空腔內壁總面積的比值越小,小孔就月接近黑體。若這個比值小於0.6%,當內壁吸收率為60%時,計算表明,小孔的吸收率可達99.6%。應用這種原理建立的黑體模型,在黑體輻射的實驗研究以及為實際物體提供輻射的比較標准等方面都十分有用。
⑨ 物理學史上的兩朵烏雲是什麼
1、第一朵烏雲:邁克耳遜-莫雷實驗與「以太」說破滅
人們知道,水波的傳播要有水做媒介,聲波的傳播要有空氣做媒介,它們離開了介質都不能傳播。太陽光穿過真空傳到地球上,幾十億光年以外的星系發出的光,也穿過宇宙空間傳到地球上。光波為什麼能在真空中傳播?它的傳播介質是什麼?物理學家給光找了個傳播介質——「以太」。
最早提出「以太」的是古希臘哲學家亞里士多德。亞里士多德認為下界為火、水、土、氣四元素組成;上界加第五元素,「以太」。牛頓在發現了萬有引力之後,碰上了難題:在宇宙真空中,引力由什麼介質傳播呢?
為了求得完整的解決,牛頓復活了亞里士多德的「以太」說,認為「以太」是宇宙真空中引力的傳播介質。後來,物理學家又發展了「以太」說,認為「以太」也是光波的傳播介質。光和引力一樣,是由「以太」傳播的。
他們還假定整個宇宙空間都充滿了「以太」,「以太」是一種由非常小的彈性球組成的稀薄的、感覺不到的媒介。19世紀時,麥克斯韋電磁理論也把傳播光和電磁波的介質說成是一種沒有重量,可以絕對滲透的「以太」。
「以太」既具有電磁的性質,又是電磁作用的傳遞者,又具有機械力學的性質,它是絕對靜止的參考系,一切運動都相對於它進行。這樣,電磁理論因牛頓力學取得協調一致。「以太」是光、電、磁的共同載體的概念為人們所普遍接受,形成了一門「以太學」。
但是,肯定了「以太」的存在,新的問題又產生了:地球以每秒30公里的速度繞太陽運動,就必須會遇到每秒30公里的「以太風」迎面吹來,同時,它也必須對光的傳播產生影響。這個問題的產生,引起人們去探討「以太風」存在與否。
為了觀測「以太風」是否存在,1887年,邁克耳遜(1852-1931)與美國化學家、物理學家莫雷(1838-1923)合作,在克利夫蘭進行了一個著名的實驗:「邁克耳遜-莫雷實驗」,即「以太漂移」實驗。
實驗結果證明,不論地球運動的方向同光的射向一致或相反,測出的光速都相同,在地球同設想的「以太」之間沒有相對運動。因而,根本找不到「以太」或「絕對靜止的空間」。由於這個實驗在理論上簡單易懂,方法上精確可靠,所以,實驗結果否定「以太」之存在是毋庸置疑的。
邁克耳遜一莫雷實驗使科學家處於左右為難的境地。他們或者須放棄曾經說明電磁及光的許多現象的以太理論。如果他們不敢放棄以太,那麼,他們必須放棄比「以太學」更古老的哥白尼的地動說。經典物理學在這個著名實驗面前,真是一籌莫展。
2、第二朵烏雲:黑體輻射與「紫外災難」
在同樣的溫度下,不同物體的發光亮度和顏色(波長)不同。顏色深的物體吸收輻射的本領比較強,比如煤炭對電磁波的吸收率可達到80%左右。所謂「黑體」是指能夠全部吸收外來的輻射而毫無任何反射和透射,吸收率是100%的理想物體。
真正的黑體並不存在,但是,一個表面開有一個小孔的空腔,則可以看作是一個近似的黑體。因為通過小孔進入空腔的輻射,在腔里經過多次反射和吸收以後,不會再從小孔透出。
19世紀末,盧梅爾(1860-1925)等人的著名實驗―黑體輻射實驗,發現黑體輻射的能量不是連續的,它按波長的分布僅與黑體的溫度有關。從經典物理學的角度看來,這個實驗的結果是不可思議的。
怎樣解釋黑體輻射實驗的結果呢?當時,人們都從經典物理學出發尋找實驗的規律。前提和出發點不正確,最後都導致了失敗的結果。
例如,德國物理學家維恩建立起黑體輻射能量按波長分布的公式,但這個公式只在波長比較短、溫度比較低的時候才和實驗事實符合。英國物理學家瑞利和物理學家、天文學家金斯認為能量是一種連續變化的物理量,建立起在波長比較長、溫度比較高的時候和實驗事實比較符合的黑體輻射公式。
但是,從瑞利——金斯公式推出,在短波區(紫外光區)隨著波長的變短,輻射強度可以無止境地增加,這和實驗數據相差十萬八千里,是根本不可能的。所以這個失敗被埃倫菲斯特稱為「紫外災難」。它的失敗無可懷疑地表明經典物理學理論在黑體輻射問題上的失敗,所以這也是整個經典物理學的「災難」。
歷史背景
在1900年4月27日,開爾文勛爵在英國皇家研究所做了一篇名為《在熱和光動力理論上空的十九世紀烏雲》的發言,演講中開爾文聲稱:動力學理論認為熱和光都是運動的方式,現在這一理論的優美和明晰,正被兩朵烏雲籠罩著。— 開爾文勛爵,在熱和光動力理論上空的十九世紀烏雲。
開爾文所言的兩朵烏雲分別是指邁克耳孫-莫雷實驗測量的零結果和黑體輻射理論出現的問題。出自對牛頓理論的高度信任,開爾文也相信這兩個問題會被最終掃清,發言中他針對這兩個問題提出了自己的解決方案。
對於波動說中為何光以外的其他物質不會和「膠狀」以太發生相互作用的問題,開爾文提出假設以太是可伸縮的,從而邁克耳孫-莫雷實驗不能完全否定以太的自由運動。
而對於黑體輻射的問題,開爾文認為麥克斯韋、玻爾茲曼和瑞利等人對能量均分定理永遠成立的維護是不必要的,「解決問題最簡單的途徑就是否定這一結論」。
開爾文對這兩個問題的在意程度反映了當時物理學界對物理學理論體系的普遍憂慮,但他很有可能沒有想到的是,這兩朵烏雲給物理學帶來的是一場突如其來的風暴,這場風暴顛覆了舊理論體系的框架,分別導致了二十世紀物理學的兩大理論體系:相對論和量子力學的誕生。
⑩ 詳細說說黑體問題(輻射)是指什麼
任何物體都具有不斷輻射、吸收、發射電磁波的本領。輻射出去的電磁波在各個波段是不同的,也就是具有一定的譜分布。這種譜分布與物體本身的特性及其溫度有關,因而被稱之為熱輻射。為了研究不依賴於物質具體物性的熱輻射規律,物理學家們定義了一種理想物體——黑體(black
body),以此作為熱輻射研究的標准物體。
所謂黑體是指入射的電磁波全部被吸收,既沒有反射,也沒有透射(
當然黑體仍然要向外輻射)。黑洞也許就是理想的黑體.
基爾霍夫輻射定律(Kirchhoff),在熱平衡狀態的物體所輻射的能量與吸收的能量之比與物體本身物性無關,只與波長和溫度有關。按照基爾霍夫輻射定律,在一定溫度下,黑體必然是輻射本領最大的物體,可叫作完全輻射體。
普朗克輻射定律(Planck)則給出了黑體輻射的具體譜分布,在一定溫度下,單位面積的黑體在單位時間、單位立體角內和單位波長間隔內輻射出的能量為
B(λ,T)=2hc2
/λ5
·1/exp(hc/λRT)-1
B(λ,T)—黑體的光譜輻射亮度(W,m-2
,Sr-1
,μm-1
)
黑體光譜輻射出射度M(λ,T)與波長、熱力學溫度之間關系的公式:
M=c1/[λ^5(exp(c2/λT)-1)],其中c1=2πhc^2,c2=hc/k.
黑體能量密度公...
任何物體都具有不斷輻射、吸收、發射電磁波的本領。輻射出去的電磁波在各個波段是不同的,也就是具有一定的譜分布。這種譜分布與物體本身的特性及其溫度有關,因而被稱之為熱輻射。為了研究不依賴於物質具體物性的熱輻射規律,物理學家們定義了一種理想物體——黑體(black
body),以此作為熱輻射研究的標准物體。
所謂黑體是指入射的電磁波全部被吸收,既沒有反射,也沒有透射(
當然黑體仍然要向外輻射)