❶ 地球科學的研究方法
由於地球科學以龐大的地球作為研究對象,並具有很強的實踐性和應用性,所以它的研究方法與其他自然科學有較大的差異。它既要藉助於數學、物理、化學、生物學及天文學的一些研究方法,同時又有自己的特殊性。
地球科學的研究方法與其研究對象的特點有關,地球作為其研究對象主要有以下特點:
(1)空間的廣泛性與微觀性
地球是一個龐大的物體,其周長超過4×104 km,表面積超過5×108 km2。因此,無論是研究大氣圈、水圈、生物圈以及固體地球,其空間都是十分廣大的。這樣一個巨大的空間及物體本身由不同尺度或規模的空間和物質體所組成。因此,要研究龐大的地球,就必須研究不同尺度或規模的空間及其物質體,特別是要注重研究微觀的空間和物質特徵,如不同學科都要研究其相應對象的化學成分、化學元素的特性等。地質學要研究礦物晶體結構,水文學和海洋學要研究水質點的運動等,氣象學要研究氣體分子的活動等。而且,整個地球系統是一個開放的動力系統,其與宇宙環境(地-月系、太陽系及銀河系等)之間總是不斷地進行著物質、能量的交換;地球系統中各種自然現象、作用過程的發生、發展和演化與其所處的宇宙環境是分不開的。因此,現代地球科學已開始充分重視宇宙環境對地球系統的影響研究;也就是說研究的空間范圍還要超越地球系統,涉及更加宏觀的宇宙環境(圖0-1)。只有把不同尺度的研究結合起來,把宏觀和微觀結合起來,才能獲得正確的和規律性的認識。
(2)整體性(或系統性)與分異性(或差異性、多元性)
整個地球是一個有機的整體,是由不同層次的、具有緊密聯系的子系統組成的統一系統;不僅在空間上地球的內部圈層、外部圈層都表現為連續的整體性,而且地球的各內部圈層之間、內部與外部圈層之間、各外部圈層之間也都是相互作用、相互影響、相互滲透的,某一個圈層或某一個部分的運動與變化,都會不同程度地影響其他部分甚至其他圈層的變化,這也充分表現了它們的有機整體性。然而,地球也是一個非均質體,它的不同的組成部分(或子系統)無論在物質狀態還是運動和演變特點上都具有一定的差異,表現出分異性或多元性。例如,不同地區的地理環境、氣候環境具有明顯的差異,不同地區的水文條件也具有明顯差異。固體地球特別是地殼的不同地區或不同組成部分的差異性更為顯著,如大陸、海洋、山系、平原等。這種差異性不僅表現在空間和物質組成上,也表現在它們的運動、變化與形成、發展上。
(3)時間的漫長性與瞬間性
據科學測算,目前可追溯的地球年齡長達46億年。在這漫長的時間里,地球上曾發生過許多重要的自然事件,諸如海陸變遷、山脈形成、生物進化等。這些事件的發生過程多數是極其緩慢的,往往要經過數百萬年甚至數千萬年才能完成。短暫的人生很難目睹這些事件發生的全過程,而只能觀察到事件完成後留下來的結果以及正在發生的事件的某一階段的情況。但是,有些事件的發生可以在很短的時間內完成。例如,天氣現象往往表現為幾天、幾小時甚至更短的時間,地震、火山爆發等也都發生在極短的時間內。
(4)自然過程的復雜性與有序性
地球演化至今經歷了復雜的過程。其中既有物理變化,也有化學變化;既有地表常溫、常壓狀態下的作用過程,也有地下深處高溫、高壓狀態下的作用過程。此外,各種自然過程還會受地區性條件的影響而具有地區的差異性。所以,自然過程是極其復雜的,而且這種過程由於其漫長性和不可逆性,依靠人類的力量很難完全重塑和再現其過程,因而更增添了地球科學研究工作的艱巨性。但是,這些復雜的自然過程並不是雜亂無章的,它們都具有其發生、發展的條件和過程,都具有一定的規律可循,這也正是地球科學工作者的重要研究任務。
研究對象的特點決定了地球科學具有一些獨特的研究方法,並且隨著科學技術的發展和進步,地球科學的研究方法也會得到不斷的補充和推進。現擇要簡述研究方法如下:
(1)野外調查
空間的廣泛性決定了地球科學工作者首先必須到野外去觀察自然界,把自然界當做天然的實驗室進行研究,而不可能把龐大而復雜的大自然搬到室內來進行研究。野外調查是地球科學工作最基本和最重要的環節,它能獲取所研究對象的第一手資料。例如野外地質調查、水系與水文狀態調查、自然地理調查、土壤調查、資源與環境調查等。只有有針對性地到現場去認真、細致地收集原始資料,才能為正確地解決地球科學問題提供可能。
(2)儀器觀測
儀器觀測是地球科學用來獲取研究對象的定性和定量資料的重要手段,通過儀器觀測可以了解到研究對象的各種物理、化學性質,參量的靜態特徵和動態變化,為科學的分析、推理提供依據。儀器觀測為地球的研究步入科學的軌道提供了條件,例如,16~17世紀氣溫、氣壓、濕度等氣象儀器的發明與創造,使氣象學逐漸發展成為一門完善的學科。現代高精度的常規與高空氣象儀器觀測仍然是氣象學的重要研究基礎。同樣,儀器觀測在水文學、海洋學研究中也佔有特殊重要的位置。儀器觀測對於現代地球物理學、地質學的地球內部研究,對於土壤學的研究特別是對於環境地學中的各種監測與評價,都具有極其重要的作用。在現場進行的儀器觀測也屬於第一手資料,除了科學工作者根據不同的研究目的在現場進行各種觀測外,人們還常常設立各種定點觀測台站,如氣象站、水文站、地震台站、環境監測站等,並通過大量的台站建立觀測網,以便獲得系統的觀測資料。
(3)大地測量
這是地球科學中既古老而又發展迅速的一種重要研究方法,它對推動地球科學的發展起了重要作用。早在古埃及和古中國的時代,人們就藉助於步測及其他一些簡單的測量工具,進行土地規劃、地形與地理制圖、水利與工程建設等。到了近代,隨著測量儀器的進步,逐漸發展成為傳統的大地水準測量和大地三角測量。20世紀中葉發展起來的海洋測深技術(聲吶)對於海洋學的發展和地質學的革命曾起了決定性的作用。近些年發展起來的激光測距、全球定位系統(GPS)又給地球科學帶來了深刻影響。大地測量的方法對於地理學、地質學、海洋學、水文學及土壤學等的研究十分重要。
(4)航空、航天和遙感技術
現代航空、航天和遙感技術極大地推動了地球科學的發展,成為現代地球科學不可缺少或不可忽視的重要研究方法。由於地球的空間廣大,要在短時間內獲取大區域的資料,特別是大區域的動態變化情況,就必須充分利用航空、航天和遙感技術,如衛星雲圖、衛星遙感影像、航空照片等。航空、航天和遙感技術對現代氣象學的發展和進步起了決定性作用,成為其重要支柱。它們也是現代海洋學、地理學的主要研究手段,而且對於現代地質學、土壤學、水文學、環境地學等也發揮著重要作用。
(5)實驗室分析、測試與科學實驗
這是地球科學中各門學科均普遍採用的研究方法,主要是從研究對象中取得所需的各種樣品或標本,然後在實驗室進行分析、測試,以便獲取物質成分、結構、物理與化學性質以及形成歷史等方面的定性和定量資料,並通過科學實驗分析推斷其形成、演變過程和發展趨勢等。隨著科學的發展,地球科學中的實驗科學已有相當的進步。但由於自然過程的影響因素復雜,加之時間的漫長性與空間的廣泛性以及現代實驗技術水平的限制,在地球科學中有時很難進行與自然界一致的真實實驗。因此,地球科學上常採取簡化影響因素,創造一些特定的物理、化學環境,模擬自然現象的成因、過程和發展規律,這種方法稱為模擬實驗。模擬實驗只能是近似的,實驗結果往往與自然過程有一定差距,但它在再造自然現象的過程、驗證和探索地球科學規律方面發揮著重要作用。
(6)歷史比較法
這是地質學最基本的方法論。時間的漫長性決定了地質學必須用歷史的、辯證的方法來進行研究。雖然人類不可能目睹地質事件發生的全過程,但是,可以通過各種地質事件遺留下來的地質現象與結果,利用現今地質作用的規律,反推古代地質事件發生的條件、過程及其特點,這就是所謂的「歷史比較法」(或稱「將今論古」「現實主義原則」)的原理。這一原理是由英國地質學家萊伊爾(C.Lyell,1791~1875年,現代地質學的創立者)在赫頓(J.Hutton,1726~1797年,蘇格蘭地質學家,被譽為現代地質學之父)的均變論學說的基礎上提出來的(圖0-2,圖0-3)。萊伊爾明確指出:「現在是了解過去的鑰匙。」例如,現代珊瑚只生活在溫暖、平靜、水質清潔的淺海環境中,如果在古代形成的岩石中發現有珊瑚化石,便可推斷這些岩石也是在古代溫暖、清潔的淺海環境中形成的(圖0-4);又如,現在的火山噴發能形成一種特殊的岩石——火山岩,如果在一個地區發現有古代火山岩存在,我們就可以推斷當時這一地區曾發生過火山噴發作用,等等。歷史比較法是一種研究地球發展歷史的分析推理方法,它的提出,對現代地質學的發展起到了重要的促進作用。
圖0-2 英國地質學家萊伊爾
(C.Lyell,1791~1875年)
圖0-3 蘇格蘭地質學家赫頓
(J.Hutton,1726~1797年)
圖0-4 生活在溫暖、清潔淺海中的珊瑚
a—現代珊瑚;b—2億多年前的珊瑚化石
這一原理的理論基礎是「均變論」。均變論認為,在漫長的地質歷史過程中,地球的演變總是以漸進的方式持續地進行,無論是過去還是現在,其方式和結果都是一致的。但是,現代地質學的研究證明,均變論的觀點是片面和機械的。地球演變的過程是不可逆的,現在並不是過去的簡單重復,而是既具有相似性,又具有前進性。例如,地質學的多方面研究揭示,在地球演變過程中,地表大氣圈、水圈、生物圈的組成、數量、溫壓以及地球或地殼內部的結構、構造等特徵都在發生不斷的變化,與現代的狀況存在不同程度的差異,這些必然會導致當時發生地質作用的方式與過程具有一系列與今天不同的特點。地球演變的過程也並不總是以漸進、均變的形式進行,而是在均變的過程中存在著一些短暫的、劇烈的激變過程。例如,在岩層中常常發現其物質組成及結構構造發生突然性的變化;在古生物演化中也常常發現大量的生物種屬在短期內突然絕滅的現象,如6500萬年前後恐龍全部迅速絕滅等。所以整個地球的發展過程應是一個漸變—激變—漸變的前進式往復發展過程,這也符合量變—質變—量變的哲學規律。
因此,在運用歷史比較法時,必須用歷史的、辯證的、發展的思想作指導,而不是簡單地、機械地「將今論古」,這樣才能得出正確的結論。地質學的「將今論古」分析方法,實際上對於地球科學中的地球物理學、地球化學、地理學、氣象學、水文學、海洋學、土壤學、環境地學等學科的研究均具有重要的借鑒意義。
(7)綜合分析
自然過程的復雜性和不可逆性決定了地球科學必須採用綜合分析的研究方法。在漫長的地球演化過程中,不同時期、不同方式(物理、化學、生物等)、不同環境(地表、地下、空中等)的自然作用給我們留下的是一幅錯綜復雜的結果圖案。要根據這一圖案恢復和解析自然界發展的過程,就必須利用多學科的原理和方法,結合復雜的影響因素,進行綜合分析。這一點與數學、物理、化學等學科利用單純的推導、實驗等方法進行研究是大不一樣的。例如,在地質學中,由於過程和影響因素很復雜,根據某些個別特徵,利用單學科的原理和方法,往往會得出片面甚至錯誤的結論,這就是在地質學研究中經常碰到的「多解性」或「不確定性」問題。所以,只有在綜合各方面研究的基礎上,才能得出統一的、最合乎實際情況的結論。
(8)計算機技術應用
有人說20世紀後半葉以來,人類社會已步入計算機的時代,計算機技術的應用已給各門自然科學帶來了深刻的影響和革命性的變化。對地球科學也是一樣,例如,在現代氣象學、地理學、地質學、地球物理學、海洋學、環境地學等領域中,計算機技術已發揮出巨大的作用,成為不可缺少的研究手段和方法。而且計算機技術正在向地球科學的各個領域滲透。計算機技術的應用,為解決地球科學的研究對象空間廣闊、觀測處理資料量大、模擬形成演變過程復雜等問題帶來了無限的前景。因此,要想提高地球科學的研究水平,必須充分地重視、加強和進一步開拓計算機技術在地學中的應用。
20世紀末期開始在全球范圍內廣泛興起的「數字地球」(Digital Earth)計劃或「數字地球學」研究正是現代計算機技術、信息科學與地球科學相結合的產物。「數字地球」主要是探討運用現代計算機技術、信息科學對整個地球系統進行全方位的定量化、數字化描述的方法,建立相關的「數字地球」資源平台,並服務於地球科學的研究、應用。因此,「數字地球」實質上是地球系統的一種數字化的表示形式,其基本的理論支撐主要包括相互聯系的兩個方面,即與地球科學有關的理論以及與數字化技術有關的理論。比「數字地球」稍早一些興起的「地理信息系統(GIS)」的成功開發與廣泛應用,可以說為推動「數字地球」的興起與發展奠定了良好的基礎;但「數字地球」將涵蓋地球科學的所有研究分支學科或領域(而不僅僅局限於地理學),其涉及的科學內容與數據量是「地理信息系統」所無法比擬的。1998年1月,美國前副總統戈爾在「開放地理信息系統協議(Open GIS Consortium)」年會上首次提出「數字地球」的概念,認為「數字地球」是指一個以地球坐標為依據的、具有多解析度的海量數據和多維顯示的虛擬系統。數字地球的概念一經提出便立刻引起了世界范圍的廣泛關注,並取得了快速發展。數字地球的研究和實現具有十分廣泛的應用前景,如資源與環境的監測與管理,氣候和各種自然災害的預測、預報與防治,土地利用與各種生產、生活的規劃及一些危機事件的處理等;它還為地球科學的教育和多學科的研究工作提供了極好的資源平台,特別是為地球系統科學的層圈相互作用研究、全球變化研究及人類可持續發展研究創造了有利條件。
地球科學研究的工作方法通常具有下列程序:
(1)資料收集
根據所要研究的課題和所要解決的問題,盡可能詳盡、客觀和系統地收集各種有關的數據、樣品和其他資料。資料的來源包括對研究區詳細的野外調查、儀器觀測和收集、分析已有的各種資料和成果等。
(2)歸納、綜合和推論
對所收集的資料進行加工整理、歸納、綜合,並利用地球科學的研究方法和原理,作出符合客觀實際的推論。
(3)推論的驗證
通過生產實踐或科學實驗來證實或檢驗推論是否正確,並在實踐的過程中不斷地修正錯誤,提高認識,總結規律。
地球科學是一門實踐性很強的科學。人們通過不斷地科學實踐,逐漸形成了若干假說和學說。假說是根據某些客觀現象歸納得出的結論,它有待進一步驗證;而學說則是經過了一定的實踐檢驗、在一定的學術領域中形成的理論或主張。假說和學說對推動地球科學的發展起著重要的作用,它們為探索地球科學的客觀規律指出了方向,對實踐起著一定的指導作用,同時在實踐中不斷得到檢驗、補充和修正,使其日趨完善。當然,有些假說和學說也可能在實踐中被拋棄或否定。
❷ 地球物理勘探的勘探方法
地球物理勘探所給出的是根據物理現象對地質體或地質構造做出解釋推斷的結果,因此,它是間接的勘探方法。此外,用地球物理方法研究或勘查地質體或地質構造 ,是根據測量數據或所觀測的地球物理場求解場源體的問題,是地球物理場的反演的問題,而反演的結果一般是多解的,因此,地球物理勘探存在多解性的問題。為了獲得更准確更有效的解釋結果,一般盡可能通過多種物探方法配合,進行對比研究,同時,要注重與地質調查和地質理論的研究相結合,進行綜合分析判斷。 人類居住的地球,表層是由岩石圈組成的地殼,石油和天然氣就埋藏於地殼的岩石中,埋藏可深達數千米,眼看不到,手摸不著,所以,要找到油氣首先需要搞清地下岩石情況。怎樣才能搞清地下岩石的情況呢?這要從岩石的物理性質談起。岩石物理性質是指岩石的導電性、磁性、密度、地震波傳播等特性,地下岩石情況不同,岩石的物理性質也隨之而變化。各種物理性質都表現為一種或幾種不同的物理現象,如導電性不同的岩石在相同的電壓作用下,具有不同的電流分布;磁性不同的岩石,對同一磁鐵的作用力不同;密度不同的岩石,可以引起重力的差異;振動波在不同岩石中傳播速度不同等。運用現代技術,完全可以記錄到上述物理現象的變化,進而可以了解地下岩石的性質及其分布規律,達到尋找地下油氣的目的。我們把這種以岩石間物理性質差異為基礎,以物理方法為手段的油氣勘探技術,稱為地球物理勘探技術,簡稱物探技術。 古代兵器有刀、槍、劍、戟……,當今的油氣地球物理勘探技術又有哪些呢?
❸ 物探方法的分類
地球物理勘探(簡稱物探)是用物理方法找水、找礦的一種重要的地質勘探手段。它是以地下岩(礦)石間存在物理性質差異為基礎,用物探儀器觀測天然或人工物理場的分布,用以研究地質構造,尋找地下水源和礦產,以及解決其他地質問題的一門學科。不同的岩(礦)石具有不同的物理性質,例如磁鐵礦具有很強的磁性,金屬硫化物礦具有明顯的良導電性和電化學活動性,各類岩(礦)石間都存在密度差異等。這些物理性質的差異能引起天然物理場(如磁場、電場等)或人工物理場的分布差別(稱為物探「異常」)。用物探儀器測得異常,並研究物探異常與被探測對象間的內在聯系,從而能解決一系列找水和地質問題。
由於岩(礦)石物理性質的多樣性,用於地質研究的物探方法很多。根據岩(礦)石的物理性質,可對物探方法進行分類。主要水文物探方法的分類與應用見下表。
主要水文物探方法的分類與應用簡表
續表
續表
對表中幾種主要水文物探方法的實質解釋如下。
(一)電法
電法勘探在水文工程地質調查中應用廣泛,效果良好。電法勘探是利用岩(礦)石間電學性質的差異,觀測和研究人工或天然電磁場的空間和時間分布規律,進行找水、找礦、解決其他地質問題的一類物探方法。岩(礦)石的電學性質主要有導電性(電阻率ρ)、電化學活動性(激發極化特性和自然電位躍變)、介電常數(ε)和導磁性(磁導率μ)。電法具有利用的物性參數多、場源和裝置形式多、觀測要素多以及應用范圍寬等特點。針對不同的地質任務,為適應不同地質條件,電法勘探形成了許多分支和變種。
(二)地震法
地震勘探是以岩石間的彈性差異為基礎,分析地震波在岩石中的傳播規律,用以查明地質構造和解決水文工程地質問題的一種物探方法。地震波由震源點出發向下傳播過程中,遇到有波阻抗差的分界面時產生反射和折射,並傳播到地面。用地震儀按時間序列記錄返回地面接收點的地震波,用計算機計算彈性波在地層中傳播的速度,計算岩層的產狀和埋深,並推斷地質結構。地震勘探在水文工程地質勘查中,主要用來研究地質剖面和構造,確定含水層的分布和岩土物理力學性質等地質問題。地震勘探廣泛用於尋找油、氣和煤田構造。
(三)放射性法
放射性探測是基於岩(礦)石的天然和人工放射性強度,來尋找有用礦產、找水、研究其他地質問題。岩(礦)石或多或少地含有微量的天然放射性元素;岩石中的放射性元素在不同的物理化學條件下經地下水的長期作用,將發生遷移和富集;不同地質體在人工放射線照射下的反應也不同。這些都為放射性測量尋找有用礦產、探測地下水源以及研究其他地質問題提供了物理前提。
(四)地熱法
地熱能由地球內部源源不斷地向地表傳導,形成天然地熱場。地熱探測法以岩石熱傳導性質的差異為基礎,通過測量並研究天然熱場的分布規律,來推斷地質構造和解決水文地質問題。岩石中溫度異常的形成取決於岩石的溫度特性和構造,並在很大程度上與地下水的運移特性有關。充滿於空隙和裂隙中運動著的地下水,能加速地熱能的對流和遷移,從而形成熱異常,地溫測量是一種有效的水文地質調查方法。
(五)磁法
自然界岩石和礦石常常具有不同的磁性,使得電磁場在局部地區產生變化,出現磁異常。利用磁法勘探,發現並研究磁異常,可以尋找有用礦產、推斷地質構造。磁法勘探可以追索圈定賦水花崗岩風化裂隙帶和斷層破碎帶。微磁測量可以尋找擋水岩脈,圈定火成岩體強風化殼的分布范圍。磁法勘探主要用來預測與區域水文工程地質有關的地質構造和深部斷裂。
(六)重力法
重力勘探是以岩(礦)石的密度差異為前提,用高精度重力儀測量地面的重力異常,來調查地質構造和礦產分布。局部地質體的密度與圍岩有差異時,重力分布與區域正常重力分布產生偏差,它與地殼上層構造和有用礦產有關。重力勘探可用於尋找金屬礦產、預測油氣及煤田構造、尋找地熱與地下水。在有利的條件下,高精度重力測量可以推測溶洞的位置。重力勘探主要用來預測與區域水文工程地質有關的地質構造和深部斷裂。
(七)遙感法
遙感技術屬於特高頻電磁法,以攝像方式為主,目前主要應用航空照片(簡稱航片)和衛星圖片(簡稱衛片)進行判釋,信息量豐富、視域廣闊、效率較高。它對水系分布反映清晰,對地貌反映清楚,對岩脈和破碎帶都有清晰的反映。因此,遙感方法適用於圈定山前沖洪積扇並分析河網與古河床的范圍,以及劃定裂隙位置,便於尋找裂隙水。
按照不同測量空間,物探分為地面物探、地下物探、航空物探等。地下物探主要在鑽孔和坑道中觀測。在鑽孔中進行的各種物探測量總稱為地球物理測井,其主要任務是研究井壁周圍岩層的狀態和性質,劃分鑽孔地質剖面和了解地下水的活動規律。
❹ 基本步驟及主要調查方法各有哪些
最基本的工作方法是野外實地勘查和觀測研究,將所獲得的地質信息填繪在地理底圖上按一定格式記錄下來(見地質編錄)。此外,還常採用以下方法:①地球物理勘探,包括重力勘探、磁法勘探、電法勘探、地震勘探、核法勘探
、地溫法勘探以及鑽孔地球物理勘探。②地球化學勘查。③在基岩出露好、地質標志較清楚的地區,還可採用遙感圖象解釋的方法(見遙感地質)。④重砂測量(重砂指由比重較大、物理和化
學性質比較
穩定的礦
物的顆粒所組成的
鬆散集合體),通過重砂分析和綜合整理,發現並圈出礦產機械分散暈,即與礦產密切相關的指示礦物的重砂異常,據此進一步追索原生礦床和砂礦床,是區域地質調查中廣泛使用的一種找礦方法,尤適用於水系發育的地區。
❺ 深部金屬礦的主要地球物理勘探方法有哪些,其優缺點是哪些
方法:重力勘探、電法勘探、地震勘探。
重力勘探
地球物理勘探方法之一。是利用組成地殼的各種岩體、礦體間的密度差異所引起的地表的重力加速度值的變化而進行地質勘探的一種方法。它是以牛頓萬有引力定律為基礎的。只要勘探地質體與其周圍岩體有一定的密度差異,就可以用精密的重力測量儀器(主要為重力儀和扭秤)找出重力異常。然後,結合工作地區的地質和其他物探資料,對重力異常進行定性解釋和定量解釋,便可以推斷覆蓋層以下密度不同的礦體與岩層埋藏情況,進而找出隱伏礦體存在的位置和地質構造情況。
磁法勘探是地球物理勘探方法之一。自然界的岩石和礦石具有不同磁性,可以產生各不相同的磁場,它使地球磁場在局部地區發生變化,出現地磁異常。利用儀器發現和研究這些磁異常,進而尋找磁性礦體和研究地質構造的方法稱為磁法勘探。磁法勘探是常用的地球物理勘探方法之一。它包括地面、航空、海洋磁法勘探及井中磁測等。磁法勘探主要用來尋找和勘探有關礦產(如鐵礦、鉛鋅礦、銅錦礦等);進行地質填圖;研究與油氣有關的地質構造及大地構造等問題。我國建國以來大多數鐵礦區、多金屬礦區及油氣田等都進行了大量的磁法勘探工作,取得了良好的地質效果。磁法勘探也是基本地球物理手段,國家已納入在全國范圍內進行系統測量的計劃,並已基本覆蓋了全國重要地區。
電法勘探
是根據岩石和礦石電學性質(如導電性、電化學活動性、電磁感應特性和介電性,即所謂「電性差異」)來找礦和研究地質構造的一種地球物理勘探方法。它是通過儀器觀測人工的、天然的電場或交變電磁場,分析、解釋這些場的特點和規律達到找礦勘探的目的。電法勘探分為兩大類。研究直流電場的,統稱為直流電法,包括有電阻率法、充電法、自然電場法和直流激發極化法等;研究交變電磁場的,統稱為交流電法,包括有交流激發極化法、電磁法、大地電磁場法、無線電波透視法和微波法等。按工作場所的差別,電法勘探又分為地面電法、坑道和井中電法、航空電法、海洋電法等。
地震勘探
是近代發展變化最快的地球物理方法之一。它的原理是利用人工激發的地震波在彈性不同的地層內傳播規律來勘探地下的地質情況。在地面某處激發的地震波向地下傳播時,遇到不同彈性的地層分界面就會產生反射波或折射波返回地面,用專門的儀器可記錄這些波,分析所得記錄的特點,如波的傳播時間、振動形狀等,通過專門的計算或儀器處理,能較准確地測定這些界面的深度和形態,判斷地層的岩性,是勘探含油氣構造甚至直接找油的主要物探方法,也可以用於勘探煤田、鹽岩礦床、個別的層狀金屬礦床以及解決水文地質工程地質等問題。近年來,應用天然震源的各種地震勘探方法也不斷得到發展。
❻ 地球物理探礦法
(一)地球物理探礦法的基本原理
物探的理論基礎是物理學或地球物理學,是把物理學上的理論(地電學、地磁學等)應用於地質找礦的方法。基本特點是利用地球物理場或某些物理現象,如地磁場、地電場、放射性場等異常特徵進行勘查找礦。它與地質學方法有著本質上的不同。通過物理場的研究可以了解覆蓋區的地質構造和產狀。因此地球物理探礦法的應用具有一定的特點和前提。
1.特點
(1)必須實行兩個轉化才能完成找礦任務。即先將地質問題轉化成地球物理探礦的問題,才能使用物探方法去觀測。在觀測取得數據之後(所得異常),只能推斷具有某種或某些物理性質的地質體,然後通過綜合研究,並根據地質體與物理現象間存在的特定關系,把物探的結果轉化為地質的語言和圖示,從而去推斷礦產的埋藏情況與成礦有關的地質問題。
(2)物探異常具有多解性。工作中採用單一的物探方法,往往不易得到較為肯定的地質結論。一般情況應合理地綜合運用幾種物探方法,並與地質研究緊密結合,才能得到較為肯定的結論。
(3)每種物探方法都要求有嚴格的應用條件和使用范圍。因為礦床地質、地球物理特徵及自然地理條件因地而異,從而影響物探方法的有效性。
2.物探工作的前提
物探工作的前提主要有下列幾方面。
(1)被調查研究的地質體與周圍地質體之間,要有某種物理性質上的差異。
(2)被調查的地質體要具有一定的規模和合適的深度,用現有的技術方法能發現它所引起的異常。若規模很小、埋藏又深的礦體,則不能發現其異常。有時雖然地質體埋藏較深,但規模很大,也可能發現異常。故找礦效果應根據具體情況而定。
(3)能區分異常,即從各種干擾因素的異常中,區分所調查的地質體的異常。如鉻鐵礦和純橄欖岩都可引起重力異常,蛇紋石化等岩性變化也可引起異常,能否從干擾異常中找出礦異常,是方法應用的重要條件之一。
(二)地球物理探礦的方法及方法的選擇
1.物探找礦的條件分析
(1)物探找礦有利條件:地形平坦,因物理場是以水平面作基面,越平坦越好;礦體形態規則;具有相當的規模,礦物成分較穩定;干擾因素少;有比較詳細的地質資料。最好附近有勘探礦區或開采礦山,有已知的地質資料便於對比。
(2)物探找礦的不利條件:物性差異不明顯或物理性質不穩定的地質體;尋找的地質體或礦體過小過深,地質條件復雜;干擾因素多,不易區分礦與非礦異常等。
2.物探方法的種類及主要用途
(1)物探方法的主要種類:
① 放射性測量法:尋找放射性礦床和與放射性有關的礦床,以及配合其他方法進行地質填圖、圈定某些岩體等。對放射性礦床能直接找礦。
② 磁法(磁力測量):主要用於找磁鐵礦和銅、鉛、鋅、鉻、鎳,鋁土礦、金剛石、石棉、硼礦床,圈定基性超基性岩體進行大地構造分區、地質填圖、成礦區劃分的研究及水文地質勘測。
③ 自然電場法:用於進行大面積快速普查硫化物金屬礦床、石墨礦床;水文地質、工程地質調查;黃鐵礦化,石墨化岩石分布區的地質填圖。
④ 中間梯度法(電阻率法):主要用於找陡立、高阻的脈狀地質體。如尋找和追索陡立高阻的含礦石英脈、偉晶岩脈及鉻鐵礦、赤鐵礦等。
⑤ 中間梯度裝置的激發極化法:要用於尋找良導金屬礦和浸染狀金屬礦床,尤其是用於那些電阻率與圍岩沒有明顯差異的金屬礦床和浸染狀礦體,效果良好。
⑥ 電剖面法按裝置的不同分為:聯合剖面法、對稱四極剖面法。前者主要用於尋找和追索陡立而薄的良導體的金屬礦體,後者主要用於地質填圖,研究覆蓋層下基岩起伏和對水文、工程地質提供有關疏鬆層中的電性不均勻分布特徵,以及疏鬆層下的地質構造等。
⑦ 偶極剖面法:一般在各種金屬礦上的異常反映都相當明顯,也能有效地用於地質填圖劃分岩石的分界面。
⑧ 電測深法:可以了解地質斷面隨深度的變化,藉以確定礦體頂部埋深以及了解礦體的空間賦有情況等。
⑨ 充電法:用以確定已知礦體的潛伏部分的形狀、產狀、大小、平面位置及深度;確定幾個已知礦體之間的連接關系;在已知礦體或探礦工程附近尋找盲礦體和進行地質填圖。
⑩ 重力測量:可用此法直接找富鐵礦、含銅黃鐵礦;配合磁法找鉻鐵礦、磁鐵礦,及研究地殼深部構造、劃分大地構造單元、研究結晶基底的內部成分和構造,確定基岩頂面的構造起伏,確定斷層位置及其分布、規模,圈定火成岩體,以達到尋找金屬礦床的目的。及用於區域地質研究,普查石油、天然氣有關的局部構造。
⑪ 地震法:主要用於解決構造地質方面的問題,在石油和煤田的普查及工程地質方面廣泛應用。
(2)物探方法的選擇:一般是依據工作區的下列3個方面情況,結合各種物探方法的特點進行選擇:一是地質特點,即礦體產出部位、礦石類型(是決定物探方法的依據)、礦體的形態和產狀(是確定測網大小、測線方向、電極距離大小與排列方式等決定因素);二是地球物理特性,即岩礦物性參數,利用物性統計參數分析地質構造和探測地質體所產生的各種物理場的變化特點。如磁鐵礦的粒度、品位、礦石結構等對磁化率的影響,採用方法的有效性等;三是自然地理條件,即地形、覆蓋物的性質和厚度及分布情況、氣候和植被土壤情況等。
❼ 調查方法及其設備
大洋多金屬結核礦產資源的勘查需要綜合應用各類地球物理勘探方法和地質勘查方法。地球物理勘探方法有:海底地形地貌調查,重力、磁力調查,地震調查;多頻探測和海底照相以及深拖和多波束回聲測深等先進的勘探系統。各類地質勘查方法有:有纜地質采樣、無纜地質采樣、溫度-鹽度-深度測量等。在不同的勘探階段所採用的方法種類以及工作量要求均有所差別。下面對各種調查設備(圖版Ⅱ—2)及其方法作進一步闡述。
3.2.1地球物理勘查方法及其調查設備
1.海底地形地貌測量及其調查設備
海底地形地貌測量是大洋多金屬結核調查中必須執行的調查項目之一。通過水深測量,可以了解海底地形特徵和海底基本情況,從而為評價和開采礦區提供必須的基本資料。
在區域調查階段,海底深度測量工作主要採用單波束回聲測深儀,以揭示海底地形地貌。傳統的做法是運用回聲測深儀測量調查區的水深值以獲得地形地貌的基本信息。近年來一些先進的測試儀器如SEABEAM等多波束測量裝置的運用,使得海底地形地貌測量變得更加精確可靠。有關SEABEAM等儀器設備的性能和有關資料將在下面敘述。這里將闡述運用回聲測深儀執行海底地形地貌調查的有關情況。
在區域調查階段,水深測量常用的儀器為12.5kHz的萬米測深儀,其測量精度由航行中船舶的定位精度和測深精度決定。所得的測量數據經過水深校正和聲速校正後即可得到相應的水深值,用於繪制海底地形圖。這種測深儀的缺點是水深數據采樣間距大(1km),難以准確地反映地形地貌形態,常把較小的地形輪廓拉平,使海底起伏平緩化,復雜地區的地形簡單化。
2.地震測量及其設備
為了解海底沉積物的分布特徵、沉積層的內部結構和基底起伏,在大洋多金屬結核勘查工作中往往採用單道地震的聲波勘查方法。設備配置方案為NEC-20C單道剖面儀、數字地震儀、氣槍、漂浮電纜等,資料以模擬方式記錄或者數字化方式記錄,炮號以數字方式記錄在衛星導航系統的磁帶上。工作航速常用6kn。測線首尾端點應有合格的導航定位點,單道地震的數字記錄常常和其它聲波探測結果綜合用於多金屬結核的分布狀況的解釋。
單道地震資料與多頻探測資料結合往往能獲得較好的解釋結果,這項調查常用於多金屬結核的初期階段。
3.多頻探測及其設備
多頻勘探數據處理系統(multi-frequency exploration system)是一種利用多種頻率的聲波勘探深海多金屬結核豐度和粒度大小的計算機數據處理系統。該系統可以在正常的航行速度(10~12kn)下工作,並可以在船上對已獲得的數據進行處理,迅速獲得多金屬結核的豐度和粒度值。
多頻勘探數據處理系統主要由聲波發射和接收、模擬信號檢測和數據處理三部分組成。在聲波發射和接收部分配置有淺層剖面儀(SBP)、測深儀(PDR)和窄波束測深儀(NBS)等裝置。模擬信號檢測部分的功能是對聲波信號進行放大、濾波。數據處理部分則對聲波信號進行數字化、存儲及數據處理。目前,它採用頻率為:SBP——3.5kHz,PDR——12kHz,NBS——30kHz三種不同頻率的聲波發射和對應的接收儀器。
多金屬結核呈席狀分布於海底表層,表層沉積物一般為硅質粘土、深海粘土、硅質軟泥或鈣質軟泥。這類沉積物富含孔隙水,質地松軟均勻,聲速接近於水或比水略低,聲波在此層的反射率很低,可以近似地認為不受阻礙地穿透這一沉積層(即透聲層),多金屬結核連同下伏的沉積層在3.5kHz淺層剖面上表現為一席狀披蓋的無反射帶或弱反射帶(即透聲層)。沉積速率過高或過低的海域都不利於結核的生長,只有特定厚度的聲波透聲層才有利於多金屬結核的賦存。多頻探測系統使用MFES-100B多頻勘探數據處理系統與3.5kHz淺層剖面儀和12kHz回聲測深儀聯機的方式測量結核的豐度,若要測量結核的粒度還需配置30kHz窄波束剖面儀。多頻探測與單道地震檢測資料相結合往往可以得到更好的解釋效果。
多頻探測與其它方法結合能得到更完滿的結果,這包括用地質采樣等多種手段。一些國家利用多頻探測系統進行多金屬結核調查,其結果與實際抓鬥取樣結果相比較,相關系數達0.7。
當多頻勘探數據處理系統與調查船的其它聲波探測器,如回聲探測器和深海淺層剖面儀一起使用時,可連續測得海底多金屬結核的分布密度和大小等資料。在此種情況下,回聲測深儀和深海淺層剖面儀等的頻率在理論上應在下列范圍:3~5kHz、8~15kHz和25~35kHz。因為所欲探測的結核的大小的直徑為幾厘米到>10cm不等,所以多頻勘探數據處理系統能與任何一般規格的聲波探測儀器結合使用,只要從這些儀器測得的聲波輸出信號給予線性放大,並加以控制,以避免飽和即可。
多頻勘測的具體工作方法與其它物探方法類似,測網的布置要依照不同的調查階段而定。按不同的精度要求和比例尺選擇適當的數據採集時間間隔,通常是每公里採集3~4個點,因而對不同的航速要有不同的採集時間間隔,以保證勘探精度要求。
多頻探測系統與無纜式抓鬥或有纜抓鬥相比較有如下優點:
(1)速度快;
(2)可以獲得連續的整條測線的數據;
(3)相關系數為0.7~0.9;
(4)工作方便,安全可靠。
與海底照相和海底電視相比較,多頻探測系統成本低、速度快、安全可靠並不受海底地形起伏和海山等障礙物的影響。它適合於在大洋中進行大面積的連續調查。
4.重力、磁力測量及其儀器設備
重力、磁力測量往往在大洋多金屬結核調查的初期進行,其目的是了解調查區域的構造特徵、岩漿活動以及海底地形、地貌變化的控制因素。我國現有的調查船往往都配置有這類設備,如海洋四號船使用KSS-5型海洋重力儀和G821G型核子磁力梯度儀;向陽紅16號船配置有KSS-5型海洋重力儀和CHHK-2型海洋核子磁力儀。
5.海底照相及其設備
通過海底照相,在照片上可直接觀察到多金屬結核在大洋表面的賦存狀態,求得其覆蓋率、粒徑和豐度,並了解洋底表層沉積物的特徵、底棲生物的活動等信息。海底照相通常採用兩種方法和設備:
(1)自返式海底照相系統該設備配合自返式采樣裝置可以拍攝采樣點的海底沉積物和多金屬結核的分布特徵。美國Boathos公司生產的改進型4201自返式抓鬥配備有海底照相系統。這種系統把袖珍的135相機裝在一高壓密封罐中,照相機系有2.0kg的重物,當與海底接觸時啟動電磁快門。在取樣前觸發一次照相,拍攝的海底面積最大為2.1m×1.4m。
圖3—1海底照相系統
(2)拖曳式海底照相系統該系統的作用是探明海底多金屬結核賦存狀態,照片供研究人員計算結核覆蓋率、推算豐度及其它解釋使用。海洋四號採用英國Camera Alive公司生產的CI800和CI256型海底照相系統(圖3—1),兩系統的結構和原理相同,均由照相機、閃光燈、聲脈沖發生器、觸發器、直流電源和同步控制器組成。前者可以連續拍攝800張135彩色膠片,後者可以連續拍攝256張135彩色膠片(照相機鏡頭離海底距離3m,每張膠片的畫面最大覆蓋面積3.9rn×2.6m)。照相系統工作時,鋼纜連結,萬米絞車收放,聲脈沖發生器和回聲測深儀的應答器確定和控制海底照相機到達海底預定深度,每觸發一次拍攝相片一張。系統結構合理,性能良好,成功率達到80%左右。
亦有一些國家將海底電視勘查系統用於大洋多金屬結核海區海床勘查,當然這些設備的技術性能亦應滿足如下要求:①作業深度——6000m;②拖曳速度——2.5kn;③電視離海底距離——3~10m;④像幀數——2×3150;⑤電視系統——慢速掃描標准。
6.先進的勘查系統及其設備
深拖系統和多波束回聲測深儀等先進勘探系統是西方國家在多金屬結核勘探階段採用的手段,尤其是帶有電視/照相裝置的深拖系統,它可用於海底表層多金屬結核的直接觀察和評價。深拖裝置所配備的淺層剖面儀、旁側聲納以及多波束回聲測深儀配置的測深儀、淺層剖面儀和旁側聲納等均可以快速、精確地提供海底有關地形起伏、成分[1]、海底結構和構造等信息。這些設備往往在勘查的後期階段使用。我國現已引進了這類設備,在開辟區內結核勘查的中、後期階段,可以利用這些勘查系統獲得精確可靠的資料。
(1)深拖系統深拖系統主要由聲學拖體和光學拖體兩部分組成。以美國Simrad公司製作的AMS-60SI型深拖系統為例,該裝置的聲學拖體配備有淺層剖面儀(4.5kHz)、旁側聲納(56.7kHz)等測量系統,具有旁側聲納、條帶水深測量和淺地層剖面測量等多種聲學測量功能;光學拖體配置有一套電視/照相系統。工作水深可達6000m。該設備還備有為旁側聲納和淺層剖面資料歸位校正的感測器。當作業中因拖魚深度變化而引起的地形畸變時,可通過聯機自動歸位校正。拖魚結構設計最大拖速為8kn,然而,該系統在運用淺層剖面儀(4.5kHz)、旁側聲納(56.7kHz)等測量系統進行工作時,則將深拖裝置置於海底之上50m處,以拖速1.5kn進行航行。
我國購置的深拖設備,包括一套AMS-60SI標准配置的聲學拖體和一套電視/照相光學拖體、甲板控制和數據採集工作站、後處理工作站以及Dynacon柴油機-液壓絞車系統和萬米同軸電纜。在聲學和光學拖體中,各種設備的技術指標分別如下:
旁側聲納
發射頻率56.7kHz
發射功率2000W(RMS,Hi設置)150W(RMS,Lo設置)
帶寬水平1.5°±0.1°垂直600
最小旁辨壓縮20dB
信號帶寬.8kHz
磁通門羅經KVHC100,0.10解析度
橫縱搖感測器0.1°解析度
壓力/深度感測器0.01m解析度
條帶水深測量系統為同相干涉測量,增加了一組換能器和相關電路,包括波束尋找和波束正常化特徵電路。
海底剖面儀
發射頻率4.5kHz
發射功率500W(RMS)
帶寬±25°
光學拖體的配置
ColmekTVTM多路傳輸系統
Simradphotosea5000D照相機
Simradphotosea1500SD閃光燈①成分泛指地層分層、分層結構等。
Ospreysitoe 1323電視攝像機
600TV線5×10-4LUX
電視照明燈
高度計Simrad Mesotech Mode 1807
電視信號傳輸速率實時黑白傳輸30幀/s
這項裝置應能滿足多金屬結核後階段詳查工作的要求。
(2)多波束回聲測深儀海底多波束測量系統能提供較高密度和較高質量的地形測量資料。目前在一些先進國家,該設備的使用已經逐漸取代了單波束的深海測深儀。法國從1980年開始在「讓·夏爾科」號海洋科考船使用Sea Beam多波束回聲測深儀,在認識海底含多金屬結核地區的地貌方面取得了重大進展。這個系統發出16束狹窄的聲波(每束2°40′),構成一個復雜的系列,能自動補償船的縱橫搖動。在進入船隻本身的航行數據後可以得出航道兩側相當於海底深度2/3的長條的海底地形圖。在5000m水深的海域其測量的解析度不大於20~30m。多波束回聲測深儀的優點是能在相對較短的時間內進行大面積的探測,在5000m水深的海域內可以在25天內完成面積為3萬km2的測區。利用多波束回聲測深儀可以顯現回聲測深儀不能顯現的一些地貌和構造特徵。但在勘探的最後階段,仍無法取代高解析度的深拖系統。
這類測量系統的深度測量范圍為10~11000m,最新一代的海底多波束測量系統包括:海底測深系統、旁側聲納和淺層剖面儀。目前已有德國的ATLAS公司、挪威的SINRAD公司和美國的SEABEAM儀器公司生產製作這類系統。
以SEABEAM儀器公司製作的SEABEAM2100型為例,其主要裝置有:發射換能器子系統、水聽器子系統、發射機子系統、接受機和聲納處理機子系統、工作站以及繪圖處理機和顯示儲存子系統。
最新一代的多波束測量系統集測深、旁側聲納和淺地層剖面儀功能於一體,可以同時測量並獲得海底寬幅的地形資料、旁側聲納圖像資料、海底淺地層剖面資料,繪制海底等深線圖,並揭示有關地形起伏、成分、海底結構和構造等有用信息。
SEABEAM 2100型多波束測量系統的主要技術指標:
深度范圍10~11000m
頻率2~7kHz
聲源電平233dB/(μPa·m)
發射功率30kW(峰值線性)
TX動態范圍70dB
TX脈沖射窗口矩形、餘弦
3.2.2地質勘查方法及其調查設備
在各個階段的多金屬結核調查中,都必須按測站系統地採集地質樣品用於直接的觀察、描述和測試研究。研究目的不同,調查要求不同,所採用的采樣設備也不同。以下將列舉各種樣品採集裝置及其用途。
1.有纜地質采樣器
有纜地質采樣的項目包括抓鬥、箱式取樣器、拖網、重力取樣器和重力活塞取樣器等多種采樣手段。
(1)抓鬥抓鬥是採集多金屬結核或表層沉積物樣品最常用的設備。有纜抓鬥的配套裝置是帶鋼纜的深海絞車和供取樣器投放和回收的倒L型吊架或A型架。在離取樣器50~100m處的鋼纜上裝上聲脈沖發生器,它產生的脈沖信號及海底反射信號由測深儀接收,以便操作人員掌握抓鬥到達海底的情況,及時進行定位和回收。通常採用的抓鬥的開口面積為0.25m2(50cm×50cm)。目前我國大洋多金屬結核調查所採用的抓鬥多選用中國科學院(青島)海洋研究所製作的大洋50型抓鬥。
(2)箱式取樣器箱式取樣器(圖版Ⅰ—1)用於採集不受擾動的海底沉積物樣品,其取樣面積為0.25m2(50cm×50cm)。箱式取樣器用鋼纜連結,由萬米絞車釋放和回收。在投放海底採集樣品時,根據聲脈沖發生器發出的信號確認取樣器是否已抵達海底。
(3)拖網拖網(圖版Ⅰ—2)用於海底拖曳採集多金屬結核和岩石樣品,其網口為1.2m×0.6m,鋼質。網身為尼龍繩編織,網眼一般為1.5cm×1.5cm,長度2m左右。網尾固定一重錘,以維持網身伸展狀態。收放及拖曳作業則用鋼纜及萬米絞車進行,必要時船舶配合以低速移動。
(4)重力取樣器重力取樣器用於採集柱狀沉積物樣品,取心直徑為7.3cm,長度為3.2m。用鋼纜連接,由萬米絞車控制釋放和回收。重力取樣器和其它有纜采樣器一樣,需要在鋼纜上安裝一聲脈沖發生器,作為取樣器到達海底的應答手段,便於操作人員控制釋放和回收。目前我國在大洋多金屬結核礦產資源調查中常用的重力取樣器為美國Benthos公司所產的2175型重力取樣器。
(5)重力活塞取樣器在採集長柱狀沉積物岩心時往往需要採用大型重力活塞取樣器(圖版Ⅰ—3)。這種取樣器的優點是被採集的沉積物樣品不被擾動,而且能獲得有足夠長度的沉積物岩心。Benthos公司生產的2450型重力活塞取心器能獲得15.2m長的岩心,經過一定的改裝還可獲得更長的岩心。岩心的長度取決於研究工作的需要以及調查船工作面的大小。在安裝有聲脈沖發生器的重力活塞取心器到達海底時,取樣器巨大的自重和活塞底局部真空所造成的壓差將柱狀沉積物壓入樣管,即可獲得這種長柱狀沉積物樣品。聲脈沖發生器和回聲測深儀的應答,將保證操作人員能正確了解重力活塞取心管到達海底的時間,以便控制它的收放。
這種取心器只是在對某些地點進行詳細勘探時才系統地使用。它既能從沉積物表層,也能從較深的地層採集樣品。這些樣品不僅能用於土質特性的研究,還可以對這些含結核地區的地質史進行科學研究(例如:沉積學、地球化學、生物學、年代測量等)。
2.無纜地質采樣
無纜地質采樣包括自返式抓鬥和自返式重力取心器等多種采樣手段,現分別敘述如下:
(1)自返式抓鬥自返式抓鬥是取多金屬結核的最主要手段。我國採用的是美製4201型自返式抓鬥(圖版Ⅰ—4),取樣面積為0.2m2。自返式抓鬥的工作原理為:用載有壓載物(鐵砂)的抓鬥沉入海底後,自動觸發裝置把裝有沉積物樣品的抓鬥取樣網合攏,同時釋放壓載物。由於浮球的作用,網中的樣品被帶出水面。依靠導航定位、信號旗、閃光燈、無線電信標等裝置的幫助回收自返式抓鬥。這種抓鬥在5000m左右水深的海域作業時每個站位的作業時間約為3~4h。採用自返式抓鬥作業的最大優點是調查船可以在連續航行中採集樣品。因此,這是獲取多金屬結核的主要設備。
裝在取樣器上的照相機,拍攝的每張照片涉及的海底面積約為1m2,拍攝方向稍微偏離垂直線。樣品是在近於拍攝的同一時間取得的,取樣的理論面積為0.18m2。
取樣系統的采獲量隨結核的大小而變化,不能將所采結核的重量直接折算為豐度(kg/m2);這一必要數據是通過對樣品和海底照片進行嚴謹的分析比較而得出的。
這種采樣裝置在礦床勘查初期用得很多,實踐證明,其損失率約為1%,頗為有效。每個采樣點算作一個站位。一組站位(通常5~7個)構成一個測站。
(2)自返式重力取心器
自返式重力取心器用於採集海底柱狀沉積物樣品。其取心直徑為7.3cm,最大取心長度為1.22m,其工作原理與自返式抓鬥相同。採用自返式重力取心器的優點是獲得未被擾動的柱狀沉積物樣品,以便研究這一深度內沉積物的沉積特徵等各類地質信息。採集的沉積物樣品回收則依靠導航定位以及取心器上所帶的閃光燈的幫助,因此在夜間作業效果較好。
自返式取心器雖然容易操作,但是效果不穩定,在作業的可靠性(它不能用於固結沉積物)和測量有效性方面亦是如此。
圖3—2溫鹽深(CTD)測量系統
3.溫度-鹽度-深度測量
目前,在大洋多金屬結核勘查工作中,對調查站位海水的溫度、鹽度和水深(簡稱溫鹽深)的綜合測量,常採用美國EG&G公司生產的MARK-Ⅲ型溫鹽深測量系統(圖3—2)。其主要功能既滿足了部分地質調查項目的要求,亦符合水文調查的需要。測量項目有海水的溫度、鹽度、深度、電導率、pH值、溶解氧、聲速和密度的縱向分布值等,並可以選擇12個不同深度水層採集水樣。每個水樣的體積為500ml,用於不同的研究目的。
3.2.3水文氣象觀察
水文氣象調查工作雖然是一項輔助工作,但其調查結果對於多金屬結核的地質成因及分布的探討,對於調查規劃的制定和實施都有重要意義。水文氣象觀察的內容應包括溫鹽深的測量、海流的測量和氣象觀察等項目。在不同的階段,調查的內容和要求也不同。
1.水文地質調查
水文地質調查包括溫度、鹽度、水色透明度、海流和海浪的調查。水文地質調查一般採用定點調查的方式,它又可分為斷面觀測、大面觀測和連續觀測等幾種。
由於水文地質調查往往是定點觀測,採用溫鹽深儀測量系統(CTD)在測量觀測點的水深的同時就可以滿足溫度和鹽度的測量要求,因此,選用的設備必須滿足工作區適用的水深范圍和所測水文要素的測量要求。
海流觀測主要是測定海流的流速和流向,輔助測量風速和風向,在測量過程中,對海流流速的准確度不大於±3cm/s;流向准確度不大於±10°。大洋海流的觀測多採用聲學多普勒剖面儀或自容式海流計,藉助於深海測流浮標系統進行測量。近年來,計算機系統的配置,使得海流觀測數據可以進行實時處理,處理後的數據可記錄在磁碟上或磁帶上。
海浪觀測需要測量海浪的波高、周期、波向、波形和海況。海浪的觀測既可以用目測,也可以用儀器測量。儀器測量一般採用浮標式加速度型測波儀。配有數據處理系統的測波儀,可藉助系統的微機對觀測資料進行實時處理,求得波高、有效波周期、最大波高和最大波周期;處理後的資料可以在熒光屏上實時地顯現出來,也可以記錄在磁碟和磁帶上,通過回放機和列印機直接列印出來。
2.氣象調查
各個航次的大洋調查都需要進行海面氣象調查,因為它是為天氣預報和水文地質調查目的服務的。大洋勘查中不斷積累的氣象調查資料亦將為今後對這一海區的多金屬結核礦區的開發評價提供氣象方面的依據。
海洋氣象調查的內容包括海冰、表層氣溫、天氣現象、能見度、雲、風、空氣的溫度和濕度、氣壓等氣象要素。這些項目均屬於常規的調查工作,使用常規的設備就可以完成。在當前大洋多金屬結核勘查中亦經常可以藉助氣象衛星發布的資料指導大洋調查工作的實施,然而在大洋多金屬結核勘查工作中堅持進行這項氣象調查有助於對氣象衛星發布數據的正確性進行判別。不斷積累的氣象資料將有助於對預定的開發區作氣象方面的正確評價。
❽ 海洋地球物理勘探的勘探方法
海洋地球物理勘探主要使用重力、磁力、地震和熱流測量 4種方法。電法和放射性測量在海洋地區現仍處於理論探討和方法試驗階段,沒有投入實際應用。 根據震源產生的形式分為天然地震和人工地震兩大類。
海洋地區的天然地震測量,是通過布設在島嶼上或海底的地震台站,觀測天然地震所產生的體波、面波和微震,來研究海洋底部的構造活動、地殼厚度和低速層的展布等。
海洋地區的人工地震測量,是利用炸葯或非炸葯震源激發地震波,觀測在不同波阻抗界面上反射,或在不同速度界面上折射的地震波。折射波法主要用來研究地殼深部界面和上地幔的結構,也稱為深地震測深。它要求有強大的低頻震源(例如使用大炸葯量爆炸或使用大容積的空氣槍激發),在運動中依次產生地震波,而在相當的距離之外觀測地殼深部界面上的折射波和廣角反射波(動爆炸點法)。至於淺層折射,除利用聲吶浮標獲取沉積層中速度資料之外,現已很少使用。反射波法在近海油氣勘探中獲得廣泛的應用。
現代海洋地震勘探廣泛採用組合空氣槍作震源,用等浮組合電纜裝置在水下接收地震波,通過數字地震儀將地震波記錄於磁帶上。這樣不僅能夠在觀測船行進中實現快速和高效率的共深點反射的連續觀測,而且能夠使用電子計算機充分利用所獲取的地震信息,精確地查明沉積岩不同層位的產狀、構造及其岩性,以闡明沉積盆地及其中的局部構造和沉積環境,甚至給出烴類顯示,為直接尋找油氣提供依據。而根據反射地震波傳播方案,採用高頻頻段觀測的回聲測深儀、地層剖面儀和側掃聲吶等,則是現代調查海底地形、地貌、淺層沉積物結構及其工程地質性質的重要手段。 亦稱海底不穩定性或災害性調查,是開發海洋的前期工程。通過回聲測深、側掃聲吶、地層剖面儀以及高解析度地震調查,結合海底取樣和淺鑽,提供基礎資料。同樣內容的觀測和資料,也是海洋沉積、海底地形地貌、第四紀地質和固體礦產調查所需要的。
❾ 地球物理方法對海洋平台場址調查的應用與探討
馬勝中
(廣州海洋地質調查局 廣州 510760)
作者簡介:馬勝中,男,1968生,1990年畢業於中國地質大學(武漢),工程碩士,高級工程師,從事海洋環境地質、災害地質和綜合地質地球物理研究工作。E-mail:sz-m@163.com。
摘要 海洋石油鑽井平台的安全就位和穩定施工,與井場區海底的工程地質條件密切相關。地球物理探測技術作為一門綜合性較強的科學技術,在海洋工程地質和海洋災害地質調查中有著不可替代的作用。實踐證明,採用測深、側掃聲吶掃描、淺地層剖面、單道地震、高解析度2D地震和海洋磁力測量等地球物理探測手段進行綜合調查,對鑽井平台場址周圍海域的地形變化和潛在地質災害因素,具有很好的揭示作用。
關鍵詞 平台場址調查 海洋地球物理探測 海洋地質災害
1 前言
隨著我國經濟的發展和戰略儲備的需要,我國原油勘探開發的重點由陸地逐漸轉向海域。我國近海海底蘊藏著豐富的礦產資源,現已探明石油資源量達246×108 t,天然氣15.79×1012m3,佔全國油氣總資源量的23%。然而在油氣開發中,屢屢遭到海洋地質災害的破壞,不均一的持力層多次造成渤海、珠江口盆地鑽井平台的傾斜和位移,使國家蒙受重大經濟損失。
鑽井平台場址災害調查在石油鑽井之前進行,既要探測諸如斷層、淺層氣地層情況以應對鑽井或採油時發生的井架倒塌、井噴、著火和溢油等災害,又要調查與鑽井平台基礎有關的土工問題,以避免事故和災害發生。據資料,1955~1980年間,美國每年發生鑽井船基礎嚴重破壞的事故3~4起,經濟損失和人員傷亡巨大。海洋結構物場地調查是確定影響固定式平台和海底管線等工程結構物的設計、布局、施工及安全操作的工程地質條件。1969年,卡米爾颶風襲擊密西西比河三角洲,引起海底大面積土體滑移,造成3個平台破壞,損失1億多美元[1]。可見,海洋石油鑽井平台場址調查研究在油井鑽探開發中有著重要的作用。我國海洋石油開發工作起步較晚,直到20世紀80年代初,我國才真正開始海洋工程地質勘察工作,近十年來,我們對石油鑽井平台場址調查研究做了許多實驗工作,隨著調查技術的不斷進步,研究正向深海挺進。
海洋平台的設計和建造需對平台場地進行包括海底地形地貌、海底表層、淺地層結構等內容的海洋工程地質勘察,從地貌、沉積物特徵和地質測年等方面,利用實測的和平台設計用的海洋水文資料以及場地內土的物理力學參數,對海底穩定性進行分析計算,並在分析研究的基礎上,進行場地的海底穩定性評價。
2 海洋常見災害地質類型
海洋常見的災害地質類型[2-5]如下:
活動斷層、地震和火山等。它們不僅可能對海底構築物造成直接破壞,而且地震可能誘發滑坡、濁流、沙土液化等其他災害。
滑坡、崩塌、濁流和泥流等,它們的活動可能對鑽井平台、海底管線構成直接破壞。
海底沙丘、海底沙波、潮流沙脊、沖刷槽、凹凸地和淺谷等,屬於地貌類型的災害,其分布和氣象水文條件有關。
淺層氣、泥底辟、軟弱夾層、可液化砂層等。它們呈承壓流體、塑性體狀態存在於第四紀淺地層中。當海底構築物基礎觸及這些地質體時,都有可能發生災害。
埋藏古河道、埋藏古湖沼、埋藏起伏基岩面、埋藏珊瑚礁等。它們一般是淺地層中的透鏡體,當鑽井平台樁腳插入不同地質體時,由於持力不均會導致平台歪斜,甚至傾覆。
3 地球物理方法對平台場址調查的應用和研究
3.1 海底地形地貌探測
海底地形地貌探測包括單波束測深、多波束測深和旁側聲吶等,是通過探測聲波在水下或岩土介質內的傳播特徵來研究岩土性質和完整性的一種物探方法,只是它們使用的聲波頻率和強度有差異,高頻能提高解析度,而低頻則能提高聲波的作用距離和穿透深度[6~9],目前很多探測系統都採用雙頻或多頻探頭結構,提高儀器的探測能力。
3.1.1 單波束測深和多波束測深
單波束測深系統是利用其換能器從水面向海底發射一束聲脈沖,聲波傳到水底界面被反射,再回到換能器被接收,通過時間函數的轉換,形成一組時間離散的數字量系列,進行實時處理,而在記錄紙上直接顯示測線上連續起伏變化的海底剖面。反映了海底表面形態的凸凹性質、高差大小和延伸范圍(發育規模)。
多波束測深系統是一種由多個感測器組成的復雜系統,在測量斷面內可形成十幾個至上百個測點點條幅式測深數據,幾百個甚至上千個反向散射數據,能獲得較寬的海底掃幅和較高的測點密度,它具有全覆蓋、高精度、高密度和高效率的特點。測深資料反映了海底表面起伏變化、高差大小和延伸范圍,利用計算機處理和繪圖技術,可製成所測海區海底地形圖。
3.1.2 側掃聲吶掃描
側掃聲吶技術運用海底地物對入射聲波反向散射的原理來探測海底形態,能直觀地提供活動形態的聲成像。旁側聲吶是一種高解析度、多用途的水聲設備,在海洋測繪、海底目標探測(如探測沉入水底的船、飛機、導彈、魚雷及水雷等)、大陸架和海洋專屬經濟區劃界、海洋地質、海洋工程、港口建設及航道疏浚等方面有廣泛的應用。
側掃聲吶採用深拖型側掃聲吶系統,使用雙頻頻率100/500 kHz,量程100/200 m,拖體距離海底10~30 m,可以獲取海底表面的各種目標探測物,獲取的聲吶圖像質量較高,可以分辨出海底表面的管道和電纜,海底物體的高度可以根據物體的陰影來確定。幾種地球物理方法同步作業可以相互印證(圖1)。
圖1 側掃聲吶和單道地震剖面顯示的災害地質類型
3.2 中、淺地層探測
3.2.1 淺地層剖面測量
淺地層剖面測量系統是探測海底以下30 m內的淺層結構、海底沉積特徵和海底表層礦產分布的重要方法之一。淺地層剖面系統的發射頻率較低,一般在2.5~23 kHz之間,產生聲波的電脈沖能量較大,發射聲波具有較強的穿透力,能夠有效穿透海底數十米的地層[10~11],地層解析度在8 cm以上。它可以提供調查船正下方地層的垂直剖面信息,它可以准確地反映出地層界面及可能存在的淺層氣、淺斷層和古河道等海底地質災害因素或其他物體(如管線)。淺地層剖面儀的穿透深度則因工作頻率和海底沉積物類型的不同而異。
淺地層剖面測量系統採用德國INNOMAR公司SES-96參量淺層剖面系統,外接涌浪補償系統,可輸出水深數據。採用發射功率18 kw,主頻100 kHz,差頻4~12 kHz,在平台場址調查中一般使用差頻8 kHz,探測到的地層解析度較高,淺海可以探測管道,可以與磁力探測相互驗證。
3.2.2 單道地震剖面測量
單道地震記錄系統由單道數據採集處理系統、震源系統、信號接收電纜、EPC記錄儀組成。主要用於了解海底以下200 m范圍內的中、淺地層結構、沉積特徵。
單道地震與油氣地震勘探技術具有相同的工作原理。單道地震探測採用的震源能量小、頻帶寬(幾十赫茲到幾千赫茲)、主頻高(幾百赫茲到上千赫茲),一般選用電火花和氣槍作為震源,能量從幾十焦耳到幾千焦耳,地層的穿透深度從幾十米到數百米。
海上最常用的震源有空氣槍和電火花二種,在平台場址調查中一般使用電火花震源,震源系統由震源控制箱、聲源裝置(電極、聲脈沖發生器)組成。
如英國的CSP1500震源系統,主要包括CSP1500震源控制箱、SQUID500型電極、SQUID2000型電極或AA200型BOOMER組成電火花震源,該震源的激發能量級別為100~1500J,而且重復激發所需的時間較短。法國的SIG800J震源系統,採用120或200極魚骨型電火花電極,能量輸出270J、540 J和800J。在平台調查中一般選擇250~800J的激發能量,激發間隔0.5 s(圖2)。荷蘭的GEO-SPARK 10kJ震源系統,GEO-SPARK2×800型電極能量輸出在100~10000 J之間,最大工作水深為4500 m,最大穿透深度為750 ms,可以滿足深水井場調查的需要。
我們選用法國的SIG16 4.8.12型和SIG16 12.12.34型水聽器,英國的AAE20單道信號接收電纜,荷蘭的GEO-Sense信號接收電纜,檢波器按0.15~1 m的間隔並聯組成,該接收電纜具有較高的靈敏度和較寬的頻率響應,適用於高頻反射信號的數據採集。
記錄儀器與以上震源和水聽器配套使用的是DELPHSEISMIC數據採集系統。該系統不僅可以主動控制震源每秒的激發次數,而且通過連接GPS導航系統,能夠時時記錄每一炮道的經緯度坐標,便於精確定位。該儀器的動態范圍90db,16位模數轉換,而且具有極高的采樣頻率,在與BOOMER震源配合使用時,其采樣率高達6000~10000 Hz,極高的采樣頻率更有利於高頻有效信號的接收。在海上單道地震數據採集過程中,可以通過控制測量船的速度來調整記錄道間的距離,船速越慢,道間距越小,地震波組的連續性越好。在震源每秒激發二次的情況下,測量船體以3.5節的速度航行,地震記錄道間的距離小於1 m,可見,該方法更適用於高精度的淺層地震勘探。
在資料處理流程中,採用有效的方法技術對數據進行信噪分離,削弱多次及繞射等干擾波的影響,可進一步提高單道地震記錄的信噪比和解析度,圖3(左)清楚顯示了淺層氣及其沿著斷層上升,紅色橢圓圈著的反射波為強振幅,反射同相軸反轉,具明顯的反相特徵;圖3(右)顯示了各種形態的埋藏古河道。
圖2 單道地震剖面
圖3 單道地震剖面顯示的淺層氣和埋藏古河道
3.3 高解析度2D多道地震剖面測量
高解析度2D地震資料的採集一般使用48道或96道多道地震電纜,為了避免虛反射對高頻成分的壓製作用,震源和檢波器電纜的沉放深度比較淺,一般震源的沉放深度3m,一般電纜的沉放深度4 m,地震震源一般是小容量GI氣槍震源或套筒槍組合震源,以保證產生高頻率的地震子波。這種方法採集到的地震資料頻帶可達20~350 Hz,比常規的地震採集資料的頻帶(20~50 Hz)要高得多,完全可以滿足識別薄層及地層結構的需要,提高了精度。
3.4 海洋磁力測量
磁法是利用地下岩礦石或者岩土介質之間的磁性差異所引起的磁場變化(磁異常)來尋找有用礦產,查明地下構造和解決其他地質問題的一種探測方法。磁力是解決工程地質調查中探測含磁性物體的有效手段。在各種調查中,我們使用GS880銫光泵磁力儀和SeaSPY海洋磁力儀,針對不同的研究目的分別採用不同的調查方法,均能獲得滿意的效果。它的優勢在於不僅能夠探測暴露於海底的磁性異常體,同時對於覆蓋於海底以下的磁性異常體也有效。
在調查中的應用,由於海底光纜路由海域存在著已經敷設過的海纜(包括海底通訊電纜、電力電纜和光纜等),經過歲月的變遷,這些海纜在海域中的坐標有了變化,有的是否還存在也不明確;另外,過去敷設海纜時的定位儀存在較大的誤差,為了探明光纜路由線交匯的海底電纜的精確位置,必須對光纜路由進行探測。在平台場址調查中,使用加拿大MarineMagnetics公司生產的SeaSPY海洋磁力儀進行勘察,結合旁側聲吶和淺地層剖面共同進行探測。圖4是淺地層剖面探測到的管道,當磁力儀探頭穿過電纜時測得的磁異常曲線,旁側聲吶掃描到的電纜和平台,磁異常的幅值一般可達幾十到上百nT。
圖4 淺層剖面、磁力和側掃聲吶探測到的管道、電纜和採油平台
4 結論與討論
平台場址地質調查的方法主要有兩種:一種為地球物理方法,另一種為地質取樣方法。目前地球物理方法應用得比較廣泛的是單波束測深或多波束測深、側掃聲吶、淺層剖面探測、單道地震、高解析度2D地震和磁力測量等,以上六種水下探測系統在高精度的定位系統的支持下配合使用,可使我們獲得平台場址內三維的工程地質條件,特別是危害工程建設的各種災害地質現象的形態、規模、位置及其發展趨勢等性質。其優點是比較經濟、快速,對各種地球物理勘探方法都有各自解決某一方面地質問題的能力,各有優勢和局限性。因此,在調查時要視調查的目的與要求,採用多種方法進行綜合調查,使各種方法優勢互補,以便取得最佳的成果。根據20多年來的實踐經驗,採用以高解析度地震為主的綜合淺層物探技術,同時在井位和預計拋錨位置進行2~3 m長的地質重力取樣和地質淺鑽,物探和地質取樣相互結合,是了解海洋地質災害因素、災害的類型以及海洋工程地質有關問題的行之有效的調查方法,它能夠既經濟又快捷地為業主提供資料。
參考文獻
[1]顧小芸.海洋工程地質的回顧與展望[J].工程地質學報,2000,8(1):40~45.
[2]金慶煥,李唐根.南沙海域區域地質構造[J].海洋地質與第四紀地質,2000,20(1):1~8.
[3]劉光鼎,陳潔.中國前新生代殘留盆地油氣勘探難點分析及對策[J].地球物理學進展,2005,20(2):273 ~275.
[4]陳潔,溫寧,李學傑,南海油氣資源潛力及勘探現狀[J].地球物理學進展,2007,22(4):1285~1294.
[5]劉錫清,劉守全,等.南海災害地質發育規律初探[J].中國地質災害與防治學報,2002,13(1):12~16.
[6]Spiess F N.Seafloor research and ocean technology[J].MTS Journal,1987,21(2):5~17.
[7]Wille Peter C.Sound Images of the Ocean in Research and Monitoring [M].Berlin:Springer,2005.
[8]Fish J P,Carr H A.Sound Reflections(Advanced Applications of Side Scan Sonar).Oreans:Lower CapePublishing,2001.
[9]金翔龍,海洋地球物理研究與海底探測聲學技術的發展.地球物理學進展,2007,22(4):1243~1249.
[10]Dybedal J.Kongsberg Defence &Aerospace AS.Training Course TOPASPS 018 Parametric Sub-bottom Profiler System,2003.
[11]Dybedal J .Kongsberg Defence &Aerospace AS.TOPASPS 018 Operator Manual,2002.
Marine Geophysical Survey Techniques and Their Applications to Well Site Survey
Ma Shengzhong
(Guangzhou Marine geological Survey,Guangzhou,510760)
Abstract:The safety of marine oil drilling platform is closely related to the submarine engineeringgeological conditions of the well site.Geophysical technique has an irreplaceable role in marineengineering and hazard geological survey.Practice proves that,using geophysical instruments in-cluding echo sounder,sidescan sonar,sub-bottom profiler,single-channel seismic,high resolu-tion 2D seismic and marine magnetometer etc.to carry out a comprehensive survey can efficientlyreveal the topography and potential geo-hazards of the well site area.
Key words:Well site survey Marine geophysical survey Submarine geo-hazards
❿ 地球物理勘探知識
地球物理勘探是利用地球的物理特性與原理,根據各種岩石及其他礦物之間的密度、磁性、電性、彈性、放射性等物理性質的差異,選用不同的物理方法和物理勘探儀器,探測工程區域內的地球物理場的變化,以研究不同物理場的地質內涵,了解區域內水文地質和工程地質條件和礦藏分布的勘探和測試方法。
地球物理勘探一般分為重力勘探、磁力勘探、電法勘探和人工地震勘探幾類。地球物理勘探,它是運用物理學原理勘查地下礦產、研究地質構造的一種方法和理論,簡稱物探。地球物理勘探是地質調查、地質學研究、礦產勘查當今不可或缺的非常實用的一種最常用手段和方法。
實際探測的區域重力場、航磁場是區域內地質構造在地球物理場中的反映,這些物理場與區域成礦作用、礦產富集與成礦區帶的形成、分布也是相關的,並且也能互為因果。地球物理勘探主要用於了解地下的地質構造、圈閉、斷層發育情況、有無礦床生成的可能、有無礦床保存條件,礦體是否具備開發的條件等。相對於鑽井勘探,它是著眼於較為宏觀的或稱戰略方面的勘探。鑽探則是側重於點上勘探。地震勘探也需藉助於區域內已有鑽探成果如錄井、測井、測試資料進行標准層的確定和標准層地質屬性確定,從而展開對剖面分析與解釋。物探與鑽探的結合,共同推進地質找礦研究工作的進展。因此,在勘探界,有「地質指路,物探先行,鑽探驗證」之說。學習物探的人,也需了解鑽探知識,它們是緊密相依的相關學科。
(一)人工地震勘探知識
人工地震,是地球物理勘探中的主要手段,在石油和天然氣勘探、煤田勘探和工程地質勘探以及地殼和上地幔深部結構探測中發揮著重要作用。它是利用炸葯人工激發產生地震波在彈性不同的地層內傳播規律來探測地下的地質情況。炸葯爆炸產生地震波在地下傳播的過程中,遇到不同岩石或其他物質時其彈性系數發生變化,從而引起地震波聲的變化,產生反射、折射和透射現象,再通過儀器接收變化後的地震波數據,利用地震波速度和岩石礦物的相關性,對地震波進行處理、解釋後,反演出地下情況的知識。
在油氣田勘探中,人工地震用於尋找有利於油氣聚集的構造圈閉。其工作主要程序分為:地震波和與地震波相關數據的野外採集、採回的數據室內處理和對處理數據的數據解釋三個環節,相應產生了野外採集的原始地震資料、室內計算機數據的處理資料和數據的解釋成果資料三個部分。
野外數據採集是人工地震勘探的基礎工作,其產生的數據也是基礎資料也稱原始資料,主要是地震測線和地震波數據;人工地震勘探中的數據處理環節,是將野外採集到的地震數據波去粗取精去偽存真工作過程,通過「去噪」和「校正」技術處理,提高原始數據解析度,這個過程就形成處理數據,再由處理數據形成可視的地震剖面圖和一些其他成果圖件及文字性的處理報告。
(1)二維地震資料處理過程:原始資料的解編和觀測系統的定義→振幅補償、雙向去噪→單炮去噪→野外靜校正→地表一次性預測反褶積→速度分析→剩餘校正→疊前去噪→速度分析→最終疊加→疊後去噪→偏移處理→最終二維處理顯示剖面。
(2)三維地震資料處理過程:原始資料的解編和觀測系統的定義→高通濾波→野外靜校正→三折射靜波校正→三維地表的一致性振幅補償→三維地表一次性反褶積→抽CDP 道集→速度分析①→三維剩餘靜校正→三維 DMO→速度分析②→三維DMO疊加→三維去噪→三維道內插→三維進一步法時間偏移→三維修飾處理→三維數據圖像顯示。
解釋環節是前期數據處理環節產生的成果,運用相關知識,結合鑽井等其他勘探資料,通過用計算機工作站技術進行分析研究,推斷地層沉積、地下構造特徵、岩性和含流體等地質結構情況。這種分析研究和推斷結論產生的資料,稱解釋成果。解釋成果主要有:斷面識別成果、特殊地質現象解釋、構造圖和厚度圖成果、三維可視立體解釋構造圖和文字性的解釋報告。
地震數據解釋階段的工作,一般將其歸納為四項工作:構造解釋;地層解釋;岩性解釋和礦產檢測;綜合解釋。
地質科技人員閱讀解釋資料,最好能要了解解釋程序和解釋結論產生的過程,如二維資料解釋,是在收集工區內已有地質資料基礎上進行的,剖面解釋首先是選擇區域內有代表性的剖面,確定標准層和標准層的地質屬性,然後在進行非標准層的追蹤;進行時間剖面的對比,斷面的識別與解釋;不整合面、超覆、古潛山等特殊地質現象的解釋;構造圖、厚度圖、等厚度圖的編制過程。了解它的解釋工序和過程,就能深度看懂和徹底消化這些解釋資料,而不是一知半解、囫圇吞棗。
近幾年來隨著時代的發展,人工地震勘探技術有了新的進展,儲層預測和油藏描述技術方法已被油田類企業廣泛利用。其中油藏描述中圈閉描述、地層沉積描述、儲集體描述、油氣儲量計算技術在不斷發展和深化,水平解析度和垂直解析度區分地質特徵的識別能力也在不斷提高,地震層析成像技術初步運用,人工神經網路技術也在醞釀發展。三維可視化技術的利用等方面的知識都應了解或掌握。四維地震就是在三維地震的基礎上加上時間推移,用於監測油氣開采動態情況,油田開發的採收率一般在25%~30%之間,三維地震技術用於油田開發後採收率可提高到45%,據報道,將四維地震技術方法用於油田開發後採收率可提高到65%以上。
了解這些人工地震知識後,對於利用這些物探資料作用非凡。如我們在看解釋報告結論有懷疑時,可查看數據處理資料,看看它的「去噪」和「校正」過程中是否有瑕疵,了解一下標准層及其地質屬性的確定是否准確。看看解釋過程和解釋觀念。而不懂處理技術方面的知識是發現不了其中的問題的,而有時候發現了一個瑕疵就發現了一個礦藏構造或是糾正了一個對地層的認識;學習物探類學科的學生或剛剛從事其他學科的技術工作的人員只有了解和系統掌握了這一學科知識,才能看懂這些物探資料,而要利用這些資料,首先是讀懂它,然後才能發現其中蘊含的價值。即使你是工作多年的技術人員,你也得注意積累,因為人工地震在不同環境下的取得的數據,也會有巨大差距。如在沙漠地區因巨厚的地表浮沙形成低速層厚度橫向變化很大,對數據採集中的激發和接收一致性影響較大,與此相應,它對地震波的能量衰減較為嚴重,對地震波的高頻成分吸收強烈,對「靜校正」提出了更高要求。同理,水網地區的人工地震與一般陸地人工地震「靜校正」要求又有區別。處理與閱讀這些資料奧妙無窮。
人工地震產生的物探資料主要有:
二維地震資料統計表
續表
三維地震資料統計表
二維、三維地震資料品種很多,但主要需看懂的資料是:
處理報告、解釋報告及圖件。尤其是圖件中的「時間剖面」。
人工地震工程得到的是地震波數據,技術人員對數據的處理與解釋結果體現在時間剖面上,而解釋報告是對剖面的解讀和總結的結論。一般表現為:推斷地層分布、構造特徵及流體性質,圈閉描述、地層沉積描述、儲集體描述、礦產儲量計算等。這些推斷和描述是否准確,就得看推斷和描述的依據和過程,得出自己獨立的見解或對推斷和描述給予贊成與否的結論。
(二)重力勘探知識
重力勘探是地球物理中的又一種勘探方法。它是利用組成地殼的各種岩石及其介質的密度差異引起的重力場變化原理,在野外通過重力儀器測量,對重力數據進行觀測,研究其重力的變化,推斷地下構造的一種物理勘探的方法。由於重力異常區場與區域內地質構造、深部地殼構造以及地形、地貌均呈相關性,通常能反映出斷裂構造帶斷裂構造的重力異常梯度帶與礦產資源分布具有密切關系。而且,從成礦理論到勘探實踐看來,礦床往往是成群出現的,在一定范圍內會集中出現礦體。研究區域內的重力情況,也是認識地質構造和發現礦產的又一個重要途徑,地質資料館中主要珍藏的是圍繞重力異常產生的資料。
重力勘探產生的主要資料統計表
續表
要求能看懂的最主要的重力資料:
布格重力異常圖。
布格重力剩餘異常圖。
趨勢面分析報告。
重力勘探項目處理成果報告。
(三)電磁感應法勘探
電磁感應勘探法,分為電法勘探和磁法勘探。電法勘探,是利用地殼中多種岩石或其他固態、液態、氣態介質的電學性質的不同,引起的電磁場在空間分布狀態發生相應變化實際差異,來研究地質構造和尋找礦藏的一種物探方法。產生相關電法勘探圖件和勘探文字報告。
磁法勘探是根據區域內各種岩石和其他介質的磁性不同,利用儀器發現和研究地球磁場及異常,進而尋找磁性礦體和研究地質構造的又一種地球物理勘探方法。磁異常是磁性地質體引起的,磁異常的分布與對應的區域地面及地下地層、岩層磁性相關。通常火山岩和變質岩易引起磁性異常,這種異常的變化激烈往往表明磁性體淺,意味著結晶體基底淺,反之,表示結晶體基底深。這樣就能劃分出隆起區和坳陷區,進而發現伴隨火山岩活動的深大斷裂帶。
電法與磁法勘探,實踐中通常不是各自獨立進行的,而是利用電磁感應理論結合進行的勘探,它是在地質目標或礦體與相鄰岩體存在電磁學性質差異時,通過觀測和研究由地質目標或礦體引起電磁場空間和時間分布規律,尋找地質目標或礦體的方法。
電磁法勘探形成的地質資料統計表
續表
需要讀懂的主要資料:
電法、磁法或電磁法勘探報告,測線大地電磁測深Ρyx/Ρxy剖面圖、測線大地電磁測深曲線與斷層關系對比圖、測線地質——物探解釋參考剖面圖、測線大地電磁測深地質解釋剖面圖、大地電磁測深儀野外處理結果曲線、大地電磁測深儀對比曲線冊、大地電磁測深及解釋研究報告、大地電磁測深勘探報告。
(四)遙感技術
遙感技術,是指地質學科里運用的遙感探測技術,又稱遙感地質或稱地質遙感。遙感地質是綜合應用現代遙感技術來研究地質規律、進行地質調查和資源勘察的一種方法。從宏觀的角度,著眼於由空中取得的地質信息,即以各種地質體對電磁輻射的反應作為基本依據,結合其他各種地質資料及遙感資料的綜合應用,以分析、判斷一定地區內的地質構造情況。遙感技術對地質學研究和探礦方面的作用:
(1)能了解各種地質體和地質現象在電磁波譜上的特徵。
(2)能了解地質體和地質現象在遙感圖像上的判別特徵。
(3)可以通過對地質遙感圖像的光學及電子光學處理和圖像及有關數據的數字處理和分析,得出相關認識。
遙感技術在地質制圖、地質礦產資源勘查及環境、工程、災害地質調查研究中廣泛運用。
遙感技術在地質勘探上運用成果,得到遙感圖像。它相當於一定比例尺縮小了的地面立體模型。能全面、真實地反映了各種地物(包括地質體)的特徵及其空間組合關系。遙感圖像的地質解譯包括對經過圖像處理後的圖像的地質解釋,即運用用遙感原理、地學理論和相關學科知識,以目視方法揭示遙感圖像中的地質信息。遙感圖像地質解譯的基本內容包括:
(1)岩性及地層解譯。解譯的標本有色調、地貌、水系、植被與土地利用特點等。
(2)構造的解譯。在遙感圖像上識別、勾繪和研究各種地質構造形跡的形態、產狀、分布規律、組合關系及其成因聯系等。
(3)礦產解譯及成礦遠景分析。這是一項復雜的綜合性解譯工作。通常在大比例尺圖像上,有的可以直接判別原生礦體露頭、鐵帽和采礦遺跡。但大多數情況下是利用多波段遙感圖像(特別是紅外航空遙感圖像)的解譯與成礦相關的岩石、地層、構造以及圍岩蝕變帶等地質體。除目視解譯外,還經常運用圖像處理技術獲取區域礦產信息。
成礦遠景分析工作是以成礦理論為指導,在礦產解譯基礎上,利用計算機將礦產解譯成果與地球物理勘探、地球化學勘查資料進行綜合處理,從而圈定成礦遠景區,提出預測區和勘探靶區。利用遙感圖像解譯礦產已成為一種重要的找礦手段。
主要資料就是遙感圖像——膠片和照片。對圖像解譯是閱讀遙感資料的基本功。實踐中閱讀圖片時,往往對照地面已開展的地質工作認識成果,可對遙感圖像有更深入的解讀。