『壹』 老式的留聲機,也就是那種需要燒盤出來的那種。有個針壓住的那種大喇叭!工作原理是什麼!不需要電么
不用電的,它的動力是靠發條供給,就像鬧鍾一樣上發條,通過齒輪傳遞給轉盤帶動唱片,唱針在唱片上振動而發聲,還有一組齒輪帶動一個重錘組件運轉達到控制轉速的目的
『貳』 圓錐生活中有哪些物品,原理是什麼
生活中圓錐物體有:雪糕筒,聖誕帽,有一些環保紙杯,圓錐形的大喇叭,漏斗。原理是:
1、以直角三角形的一條直角邊所在直線為旋轉軸,其餘兩邊旋轉形成的面所圍成的物體叫做圓錐體。
2、圓錐由一個頂點,一個側面和一個底面組成,從頂點到底面圓心的距離是圓錐的高。
3、圓錐有兩個面,底面是圓形,側面是曲面。
4、讓圓錐沿母線展開,是一個扇形。圓柱的體積等於和它等底等高的圓錐的體積的三倍是叫圓錐形。
『叄』 低音音響為什麼可以把低音做得這么有震動力 而把那個低音的大喇叭拿出來放音樂低音就一點也沒了
低音的大喇叭拿出來?低音喇叭時一定要箱子的,避免聲短路現象,而高音卻不一定要。是通過分頻器實現分高低音的。
『肆』 奧迪a4l後背有一個大喇叭
這個是低音喇叭,用來營造環繞聲效果。
低音喇叭是揚聲器的一種,是一種轉換電子信號成為聲音的換能器。低音喇叭是由電磁鐵、線圈、喇叭薄膜組成,同高音喇叭、中音喇叭一起構成了汽車音響。
低音喇叭是由電磁鐵、線圈、喇叭薄膜組成,把電流轉化為機械波,物理學原理,當電流通過線圈產生電磁場,磁場的方向為右手法則。假設,揚聲器播放C調為261.6Hz,揚聲器輸出261.6Hz的機械波,發出C調波長。當電線圈與揚聲器薄膜一起發出機械波,機械波傳輸到周圍的空氣,揚聲器由此產生聲音。
『伍』 揚聲器(俗稱大喇叭)是增加了聲音的哪一方面什麼原理啊
發動機原理,這個知識點在初三物理中有接觸到。揚聲器就是把電信號轉換成聲信號的一種裝置。主要由固定的永久磁體,線圈和錐形紙盆構成的。
『陸』 什麼叫喇叭
喇叭分為幾種不同的樂器,一種管樂器,上細下粗,多用銅製成。另一種是現代的電聲元件,作用是將電信號轉換為聲音,也叫揚聲器。 還可用來形容替人鼓吹、宣傳的人。
5
本詞條無參考資料,歡迎各位編輯詞條,額外獲取5個金幣。
基本信息
中文名稱
喇叭
外文名稱
Horn
發明時間
1877年
發聲原理
電能轉換成聲音
種類
帶狀、號角、氣墊式喇叭等
目錄
1樂器介紹
2發展歷史
3發聲原理
4電聲元件分類
5發聲方式
6故障原因
7擺位基本法
折疊編輯本段樂器介紹
喇叭分為幾種不同的樂器,一種是管樂器,上細下粗,多用銅製成,俗稱號筒。喇叭也是嗩吶的俗稱
管樂器
管樂器,上細下粗,最下端的口部向四周張開,可以放大聲音。
有許多分類方法,一般按照發音的方式方法,分為吹孔氣鳴樂器,單簧氣鳴樂器,雙簧氣鳴樂器和唇簧氣鳴樂器,且音色缺乏金屬感,所以統稱為木管樂器,盡管許多樂器都已使用金屬,橡膠乃至合成材料為原材料了。在管弦樂隊和軍樂隊中,這一組樂器被稱為木管組,相對應的,唇簧氣鳴樂器被稱為銅管組( 實際上這類樂器也確實是銅制的)。
我們常說的喇叭一般是電聲元件中的喇叭,本詞條主要介紹電聲元件中的喇叭。管樂器喇叭請查俗稱,嗩吶,號筒,號子。
折疊編輯本段發展歷史
早在1877年,德國西門子公司的Erenst Verner就根據佛萊明左手定律,獲得動圈式喇叭的專利。1898年,英國Oliver Lodge爵士進一步依照電話傳聲筒的原理發明了錐盆喇叭,與我們所熟悉的現代喇叭十分類似,Lodge爵士稱為「咆哮的電話」。不過這個發明卻無法運用,因為直到1906年Lee De Forest才發明了三極真空管,而製成可用的擴大機又是好幾年以後的事,所以錐盆喇叭要到1930年代才逐漸普及起來。另一個原因是1921年以電氣方式錄制的新唱片問世了,它比傳統機械式刻制的唱片有更好的動態范圍(最大到30dB),使得人們不得不設法改良喇叭特性以為配合。1923年,貝爾實驗室決定要發展完善的音樂再生系統,包括新式的唱機與喇叭,立體聲錄音與MC唱頭、立體聲刻片方式等,就在這波行動中被發明出來。研發喇叭的重責大任,落在CW Rice與EW Kellogg兩位工程師身上。他們所使用的設備都是當時人前所未見的,包括一台200瓦的真空管擴大機、許多貝爾實驗室自己完成的錄音,以歷年來貝爾實驗室發展出來的各種喇叭 - 像是Lodge的錐盆喇叭雛形、用振膜瓣控制壓縮氣流的壓縮空氣喇叭、電暈放電式喇叭(今天叫電離子驅動器),以及靜電喇叭。
沒多久Rice與Kellogg從眾多樣式中挑選出兩種設計--錐盆式與靜電式,這一個決定使喇叭發展方向從此一分而二:傳統式與創新式。動圈式喇叭是從舌簧喇叭的基礎演變而來,在環狀磁鐵中間有一個圓筒型線圈,線圈前端直接固定紙盆或振膜上,但線圈中通過音頻電流,磁場受到變化,線圈就會前後移動而牽動紙盆發聲。動圈式喇叭問世之初由於永久磁鐵強度難以配合,所以多採用電磁式設計,在磁鐵中另外纏繞一個線圈來產生磁場,這種設計曾流行廿年之久。但電磁喇叭有它的問題,比如通過電磁線圈的直流脈沖容易產生60Hz與120Hz的交流聲干擾;而電磁線圈的電流強度隨音頻訊號而變動,造成新的不穩定因素。
1930年代經濟大蕭條期間,愛迪生留聲機公司倒閉了,其它人也好不到哪去,需要擴大機驅動的喇叭因此推廣不順,老Victorla留聲機直到二次世界大戰前都還很流行。二次戰後經濟起飛,各種新型音響配件成為搶手貨,錐盆式喇叭再度受到嚴重考驗。這段時間由於強力合金磁鐵開發成功,動圈式喇叭由電磁式全部變成永久磁鐵式,過去的缺點一掃而空(常用的除了天然磁鐵鈷以外,還有Alnico與Ferrite磁鐵,除了磁通密度外,天然磁鐵的各種特性都較優越,高級喇叭則採用釹磁鐵)。為配合LP的問世,以及Hi-Fi系統的進展,錐盆喇叭於是在紙盆材料上尋求改革。常見的像是以較厚重材料製造低音單體,輕而硬的振膜當高音;或者把不同大小的喇叭組裝成同軸單體;也有在高音前面加號筒變成壓縮式號角高音喇叭;甚至有將高音號筒隱藏在低音紙盆後面的設計。1965年英國的Harbeth發明了真空成型(Bextrene)塑料振膜,是材料上的一大進步,這種柔軟但阻尼系數高的產品,在KEF與一些英國喇叭上仍可見到。後來Harbeth還發明了聚丙烯塑料振膜,這種新材料有更高的內部阻尼系數,質量更輕,仍被許多喇叭採用。工程師設計喇叭時變成有兩個思考方向:低音喇叭尋求音箱的突破;高音喇叭則進行單體的改良。所以這個時候出現的一些新設計,幾乎都是高音單體。比較成功的設計,就屬靜電喇叭了。靜電喇叭前面提到貝爾實驗室的Rice與Kellogg實驗喇叭,他們製造的靜電喇叭大得像扇門板,振膜由豬大腸外包金箔構成(塑料還未為上市)。當真空管的光輝照耀,發亮的金色龐然大物具有催眠作用,加上實驗室空氣中充滿豬腸腐臭味與臭氧味,兩位科學家也許會想到「科學怪人」與利用死人耳朵製成的貝爾「記音器」。但開始發聲後,它光彩奪目的聲音與逼真的音色,簡直讓大家嚇呆了,他們明白一個嶄新的時代已經來臨了。不過Rice與Kellogg在設計靜電喇叭時遇到了無法克服的問題:需要有龐大的振膜才能再生完整的低音,在技術難以突破的情況下,貝爾實驗室只得轉向錐盆喇叭發展,這一停滯使得靜電喇叭沉寂了三十年。1947年一位年輕的海軍軍官Arthur Janszen受指派發展新的聲納探測設備,而這套設備需要很准確的喇叭。Janszen發現錐盆喇叭並不線性,於是他動手試做了靜電喇叭,在塑料薄片上塗上導電漆當振膜,事後證明無論是相位或振幅表現都不同凡響。Janszen繼續研究,發現將定極板(Stator)絕緣可防止破壞作用的電弧效應。1952年,Janszen完成商業化生產的靜電高音單體,與AR的低音單體搭配,是當時音響迷夢寐以求的最佳組合。1955年,Peter Walker在英國的「無線電世界」一連發表多篇有關靜電喇叭設計的文章,他認為靜電喇叭與生俱來就有寬廣平直的響應,以及極低的失真,失真度比當時的擴大機還低得多。1956年,Peter Walker的理想在Quad ESL喇叭上實現了(Quad是以他早年一種擴大機Quality Unit Amplifier-Domestic的縮寫來命名),它的准確性被譽為鑒聽新標准,不過仍有一些問題待克服:音量不足、阻抗負載令某些擴大機望而生畏、擴散性不足、承載功率也有限。60年代初期Janszen加入KLH公司為KLH-9的上市而努力,由於KLH-9的大尺寸化,解決了Quad ESL的問題,一直到當1968年Infinity公司成立前,KLH-9靜電喇叭都是最Hi-End的產品。Janszen的成就不僅於此,在他協助下,Koss、Acoustech、Dennesen等靜電喇叭陸續問世,Janszen企業的首席設計師Roger West也自立創設了Sound Lab公司。
當Janszen企業出售時,RTR公司買下生產設備,推出Servostatic靜電板,Infinity的第一對喇叭就使用RTR的產品。Janszen公司幾經轉手,卻始終沒有消失,今天喇叭王之一- Dave Wilson的WAMM巨型系統,裡面就用了部分Janszen所設計的靜電板。靜電喇叭的設計吸引許多廠商投入,比較有名的包括Acoustat、Audio Static、Beverage、Dayton Wright、Sound Lab、Stax與Martin Logan等。Acoustat X本身附有真空管擴大機,可以輸出高壓訊號而不必使用升壓器;Beverage 2SW除了附有高電壓擴大機、控制器,還有一對超低音。由於Beverage 2SW兩公尺高的振膜裝在一個橢圓音箱中,利用聲波導板讓聲音由前方開口均勻傳出,可以形成非常立體的音像,它的建議擺位是放在兩側牆邊,然後面對面播放。Dayton Wright的設計也很特殊,振膜裝在以六氟化硫惰性氣體密封的塑料袋內,用以增加喇叭的效率與輸出音壓。最貴的靜電喇叭,要屬Mark Levinson的HQD。每一聲道使用兩具Quad靜電喇叭,加上一個改良的帶狀高音與一個24吋的低音增加頻率兩端延伸,配上三台Mark Levinson ML-2後級與電子分音器,要價15,000美金,當時真的是天價。Martin Logan為解決大片振膜產生低音的問題,近年來混和錐盆低音的一系列設計獲得很大成功,再加上延遲線、聲學透鏡、波浪狀振膜等新技術的引進,讓靜電喇叭越來越可親,相信它還會繼續的存在。
折疊編輯本段發聲原理
喇叭其實是一種電能轉換成聲音的一種轉換設備,當不同的電子能量傳至線圈時,線圈產生一種能量與磁鐵的磁場互動,這種互動造成紙盤振動,因為電子能量隨時變化,喇叭的線圈會往前或往後運動,因此喇叭的紙盤就會跟著運動,這此動作使空氣的疏密程度產生變化而產生聲音。
折疊編輯本段電聲元件分類
帶狀喇叭
1940年末,一位年輕的加拿大發明家Gilbert Hobrough使用擴大機時,一時大意在音樂播出中拆下喇叭線,並讓發熱的導線靠近電線的接地端。這是很危險的動作,但Hobrough驚訝的發現電線開始拌動,並發出音樂聲,這個「具有增益的金屬線」不久後才明白是靜電效果。Hobrough進一步研究,才知道1910年左右已經有人提出這個問題,1925年在磁場內使用導電金屬片的喇叭已經於德國取得專利,當時人說這是帶狀喇叭。1920年與1930年代分別有兩種帶狀喇叭上市,不過曇花一現很快就沉寂了。帶狀喇叭的原理是在兩塊磁鐵中裝設一條可以震動的金屬帶膜,當金屬帶通過電流,就會產生磁場變化而震動發聲。在Hobrough重新發現帶狀喇叭時,Quad創辦人Peter Walker也在英國推銷一種號角負載的帶狀高音,這個高音並不成功,反而是1960年左右英國Decca推出很成功的帶狀高音。另一種類似的帶狀喇叭Kelly Ribbon由Irving Fried引進美國,他將Kelly高音配上傳輸線式低音而產生不錯的效果。1970年代,Dick Sequerra為金字塔(Pyramid)發展的帶狀喇叭,首次揚棄號角的設計。Hobrough發現帶狀喇叭後的三十年中,他以經營空中繪圖和靠著自動機械的專利貼補,持續進行研究,終於在1978年發展成功頻率響應低至400Hz仍然平直的帶狀單體(當時產品只能到600Hz),並且不會融化、破碎或變形,失真則只有1%。Hobrough與他的兒子Theodore Hobrough還獲得一項專利:與帶狀高音搭配的多丙烯低音所使用的無諧振特殊音箱。不過他們以Jumetite Lab為品牌所製造的喇叭,一心想以較低價格提供給大家使用,在市場上卻沒有紅起來。後來包括加州柏克萊的VMPS Audio、愛荷華市Gold Ribbon Concepts、麻州的Apogee Corporation,都發展出比Jumetite Lab頻寬更大的帶狀喇叭系統。
Gold Ribbon製造了頻寬最大的帶狀驅動器(200Hz-30KHz),它們不是用鋁,而是以厚度僅1微米(百萬分之一公尺)的金製成振膜。不過最成功的,卻是Apogee公司。身兼藝術經紀人與音響玩家的Jason Bloom,加上他的岳父Leo Spiegel - 一個退休的航空工程師,共同組成Apogee。它們用古典帶狀驅動器負責中高音,100Hz以下使用另一種准帶狀驅動器,近年來也加入錐盆低音作混和設計,評價都相當的高。另外有一個帶狀喇叭家族的遠親 - BES(Bertagni Electroacoustic System)脈動振膜喇叭。BES跟典型的靜電喇叭或Magneplanar平面喇叭一樣,都有一個開放的架子與一塊平面振膜,聲音向前後輻射。不過BES不是很薄的金屬板,而是厚度不一的泡沫塑料,外表有點像立體地圖。BES的設計使振膜表面有多種諧振模式,振膜的不同部分在不同的頻率部分振動,振動的方式不是機械活塞式,倒像隨著寬廣音頻而均勻振動的音叉。BES的設計引起很大爭議,最後當然就不了了之了。平面喇叭在帶狀喇叭演化的過程中,衍變出一種平面動態喇叭,也稱為假帶狀喇叭,它的問世要歸功於美國3M的工程師Jim Winey。Jim Winey原本是業餘音響愛好者,他很喜歡靜電喇叭,但又覺得KLH-9太過昂貴,應該有辦法降低成本才對。有天他獲得靈感,他發現用於冰箱門邊的軟性陶片磁鐵,質量輕、成本低、切割製造容易,很適於做磁性結構。這種磁鐵可均勻的驅動扁平、寬大的整個振膜表面,可用在雙極輻射型態的塑料振膜喇叭。Jim Winey設計的喇叭振膜上有許多細小的金屬導線,金屬線接收來自擴大機的訊號,並配合永久磁鐵的磁場產生吸、推作用。1971年,Winey正式推出新型態的喇叭,起初命名「靜磁」(Magnestatic),後來改名為「平面磁」(Magneplanar)。Magneplanar上市後得到很大的回響,包括Strathearn、Wharfedale、JVC、Cerwin-Vega、Thorens等公司紛紛發展不同型態的平面動態喇叭,其中最有名的是Infinity。Infinity推出的Quantum Reference Standard附有雙擴大機與電子分音器,它不是用一整塊振膜,而是由許多小振膜組成。QRS高兩米,寬一米,一共有20個高音單體,其中13個向前,其餘向後,垂直成一直線排列。中音則有三個單體,也是垂直排列。加上一隻15吋低音,使得QRS可以發出極為震撼的音量,頻率也超出可聞范圍。後來的EMIT高音(Electro Magnetic Inction)與EMIM中音,也是一種平面振膜,與後來Genesis所用的高音已經不太一樣,Genesis的高音可以視為帶狀單體與平面單體的混合設計,而中音部分Genesis的大喇叭都採用帶狀單體,與Infinity分道揚鑣。不過我們可以看到Infinity從IRS所建立的巨型喇叭架構,這么多年來仍是Hi-End揚聲器的最高典範。平面喇叭也有其限制,它的磁結構使得只有磁場的邊緣通量能與振膜上分布的「音圈」相互作用,因此效率都不高,到目前這個現象能然存在。再一方面,平面喇叭所用的振膜比靜電喇叭或帶狀喇叭都來得重,因此會限制它的頻寬,過去只有Audire一家公司使用全音域的平面驅動器,連Magneplanar自己的喇叭後來都改采帶狀單體的中高音,加上平面振膜低音組合而成。Burwen與日本山葉曾利用平面振膜製成耳機,Pioneer則放棄磁性平板,改用高分子聚合物來製造耳機,但這些產品似乎都沒有獲得肯定。海耳喇叭非傳統式喇叭中最成功的要屬海爾式設計,就在Winey完成第一個平面動態喇叭後不久,德國物理學家海爾(Oskar Heil)研究出一種很高雅的帶狀喇叭變形物,他稱為氣動式變壓器(Air Motion Transformer)。
海爾的發明與平面動態喇叭很像,使用一層很薄的塑料振膜,上面覆以導電的鋁制「音圈」。不過海爾式喇叭的振膜不是拉緊的,而是打褶的、鬆鬆的掛在架子上,因此導線音圈位於一堆垂直磁鐵的間隙內,當磁力交替擠壓彎曲皺褶的振膜,再將它們推開,空氣就隨著音頻而擠壓發聲。這樣的設計有很高的效率,振膜上的強大磁力可降低有效質量電抗或音頻阻抗,這也是「氣動式變壓器」名稱的由來。事實上這種喇叭就是聲音變壓器,跟號角一樣,較低的有效質量使它的高頻可以往上延伸,普通的海爾驅動器有300Hz-25kHz的頻寬,完全不需要等化。雖然海爾博士對自己的設計信心滿滿,認為自己的喇叭才是合理,別人的喇叭都是奇特,但因為製造品質掌控不佳,低音單體的配合又過於簡陋,所以海爾喇叭逐漸淡出市場。會冒火的離子喇叭當貝爾實驗室的Rice與Kellogg面對許多未知時,稱為響弧(Singing Arc)或環形放電喇叭的怪物,大概是最令人敬畏的。早於1920年代,無線電技術員就發現,用來調變發射機的高壓電訊號有時會形成藍色的球狀發亮氣體,廣播的聲音會從發亮的球體傳出來,聲音不大但很清楚,有人形容:簡直很火舌一樣。Rice與Kellogg並沒有認真去研究這個現象,因為這種發音裝置頻寬不足,還會發出大量臭氧。1940年代,法國核物理學家Siegfried Klein再度發現此現象,並嘗試開發新的喇叭,1950年他替新產品命名為「離子喇叭」。這種設計沒有機械諧振,沒有質量,有無限的順服性,似乎是喇叭的一大突破。英國的Decca、法國Audax、德國Telefunken、英國Fane與日本Realon都紛紛投入離子喇叭的研究,但首先商業化上市的卻是美國Dukane(Electro Voice),它們在1962年推出名為Ionovac的新產品,後來改由AmericanAudioC om.生產,持續了很長一段時間。至於Siegfried Klein本身並未參與生產,他繼續研究,神奇的離子喇叭猶如燭光一樣,可以朝它用力吹氣而絲毫不損音樂播放。離子喇叭的另一優點是效率很高,105dB的音壓只需10瓦的擴大機即可達成,頻率響應也可降至1000Hz左右。Siegfried Klein的設計由德國Magant生產,但美國禁止出售,因為臭氧量超過標准,而且另一個Hill Plasmatronic的品牌也威脅Magant獨佔地位。雷射物理學家Alan Hill所設計的Plasmatronic喇叭原理與Siegfried Klein的離子喇叭相同,使用一隻裝有特殊氣體的石英管產生放電現象,使空氣電離而發出聲音,最簡單的說,它們的發聲過程好象是閃電過後的雷鳴現象。這種喇叭高頻特性極佳,但石英管壽命有限(每隔幾個月就要補充氦氣),成本又高,使用上並不方便。Hill的離子喇叭頻率從700Hz-20kHz,在10呎外仍有90dB的音壓,低音則交給傳統錐盆喇叭處理。這對喇叭有完美的相位與振幅線性,失真小於1%,可惜售價高達一萬美元(附贈A類擴大機一部推動高音,並且有電子分頻器),想當然的沒有幾個人購買。不過Hill與Magant的離子喇叭,仍在市場上存在許久。真正的錐型喇叭1985年由Ohm所推出的Walsh,其創意足以和BES相提並論,也是第一對真正的錐型喇叭,不但用錐型單體,喇叭本身就是個錐型。Walsh只用一個單體處理20Hz-20kHz的廣闊頻率,錐型驅動器放在音箱頂端,音圈和磁鐵在上面,振膜朝向音箱內部。Walsh以管制的分解方式工作,頻率上升時,對音圈起反應的紙盆范圍縮小;頻率較低時紙盆活動范圍增加。
未達到此一目標,紙盆由數種不同材料的同心環組成,同心環的作用等於低音濾波器。環越大,處理的頻率越低,最低的頻率使整個紙盆運動;高頻則只用很輕的振膜維持,以阻尼的方式維持頻率響應平直。這種設計不論相位或振幅都有很好的線性,最主要是它能180度發聲。另一個錐型喇叭的典範,是德國mbl的101喇叭。1975年左右,一家計算機儀控公司老闆Meletzky發現,球面單體最能符合他的理想,球型單體的振膜大於傳統喇叭單體,更能模擬出自然樂器在空間中的表現。於是他結合柏林大學的兩位教授以鋁片作成百褶裙狀的圓形單體,這個稱為100的產品並沒有正式上市。1987年mbl以碳纖維當材料,製造了可以360度發聲的中高音單體,再加上許多鋁片黏合成的葫蘆狀低音,推出令人驚訝的101喇叭。還有一種Orthophase喇叭,在整片塑料膜上黏附很輕的鋁帶,然後放在強磁場中,鋁帶通電而產生震動發聲。
號角喇叭