① 如何判斷吸附類型
基本上所有可逆的吸附都是物理吸附,不可逆的基本上都是化學吸附
化學吸附的主要特點是:僅發生單分子層吸附;吸附熱與化學反應熱相當;有選擇性;大多為不可逆吸附;吸附層能在較高溫度下保持穩定等。化學吸附又可分為需要活化能的活化吸附(activated
adsorption)和不需活化能的非活化吸附(non-activated
adsorption),前者吸附速度較慢,後者則較快。
化學吸附是多相催化反應的重要步驟。研究化學吸附對了解多相催化反應機理,實現催化反應工業化有重要意義。吸附特點
與物理吸附相比,化學吸附主要有以下特點:①吸附所涉及的力與化學鍵力相當,比范德華力強得多。②吸附熱近似等於反應熱。③吸附是單分子層的。因此可用朗繆爾等溫式描述,有時也可用弗羅因德利希公式描述。捷姆金吸附等溫式只適用於化學吸附:v/vm=1/a·㏑cop。式中v是平衡壓力為p時的吸附體積;vm是單層飽和吸附體積;a和c0是常數。④有選擇性。⑤對溫度和壓力具有不可逆性。另外,化學吸附還常常需要活化能。確定一種吸附是否是化學吸附,主要根據吸附熱和不可逆性。
物理吸附有以下特點:①氣體的物理吸附類似於氣體的液化和蒸氣的凝結,故物理吸附熱較小,與相應氣體的液化熱相近;②氣體或蒸氣的沸點越高或飽和蒸氣壓越低,它們越容易液化或凝結,物理吸附量就越大;③物理吸附一般不需要活化能,故吸附和脫附速率都較快;任何氣體在任何固體上只要溫度適宜都可以發生物理吸附,沒有選擇性;④物理吸附可以是單分子層吸附,也可以是多分子層吸附;⑤被吸附分子的結構變化不大,不形成新的化學鍵,故紅外、紫外光譜圖上無新的吸收峰出現,但可有位移;⑥物理吸附是可逆的;⑦固體自溶液中的吸附多數是物理吸附。
② 通過物理吸附測定比表面的原則是什麼
常用的吸附氣體是氮氣,它已經成為比表面分析的標准吸附物質。這是因為高純度的氮氣很容易得到;另外,液氮作為最合適的冷卻劑也很容易得到;其三,氮氣與大多數固體表面相互作用的強度比較大;最後,氮氣分子在77.35K時的截面面積為0.162nm2,這個在BET計算中必須用到的數值已經被廣泛接受。
在傳統的容量法技術中,小於整數的相對壓力是通過造成部分真空條件來實現的。在已知的固定體積里,用精確的高精度壓力感測器監控因吸附過程引起的壓力變化情況。需要測得在不同相對
壓力下一系列的氣體吸附量。通常,測定儀器在相對壓力范圍0.025和0.30之間至少採集3個數據點。實驗測定的數據以成對數值的方式進行記錄:以在標准溫度和壓力(STP)下的體積(VSTP)表示氣體吸附量,其對應的是相對壓力(P/Po)。根據這些數據繪制的圖就稱為吸附等溫線。
③ 如何表徵是物理吸附還是化學吸附
不必用其他方法表徵,直接做吸附等壓線,如果溫度上升吸附量下降為物理吸附,溫度上升吸附量先上升後降低為化學吸附。(通常溫度升高,會由物理吸附過渡到化學吸附,二者不相互獨立)
④ 如何根據吸附自由能確定物理吸附和化學吸附
物理吸附是范德華力作用,化學吸附是化學鍵力作用;物理吸附的吸附熱小,化學吸附吸附熱較大。吸附自由能的話,應該也是化學吸附大一些
⑤ 如何判斷是不是物理吸附還是化學吸附
基本上所有可逆的吸附都是物理吸附,不可逆的基本上都是化學吸附
化學吸附的主要特點是:僅發生單分子層吸附;吸附熱與化學反應熱相當;有選擇性;大多為不可逆吸附;吸附層能在較高溫度下保持穩定等。化學吸附又可分為需要活化能的活化吸附(activated adsorption)和不需活化能的非活化吸附(non-activated adsorption),前者吸附速度較慢,後者則較快。
化學吸附是多相催化反應的重要步驟。研究化學吸附對了解多相催化反應機理,實現催化反應工業化有重要意義。吸附特點
與物理吸附相比,化學吸附主要有以下特點:①吸附所涉及的力與化學鍵力相當,比范德華力強得多。②吸附熱近似等於反應熱。③吸附是單分子層的。因此可用朗繆爾等溫式描述,有時也可用弗羅因德利希公式描述。捷姆金吸附等溫式只適用於化學吸附:V/Vm=1/a·㏑CoP。式中V是平衡壓力為p時的吸附體積;Vm是單層飽和吸附體積;a和c0是常數。④有選擇性。⑤對溫度和壓力具有不可逆性。另外,化學吸附還常常需要活化能。確定一種吸附是否是化學吸附,主要根據吸附熱和不可逆性。
物理吸附有以下特點:①氣體的物理吸附類似於氣體的液化和蒸氣的凝結,故物理吸附熱較小,與相應氣體的液化熱相近;②氣體或蒸氣的沸點越高或飽和蒸氣壓越低,它們越容易液化或凝結,物理吸附量就越大;③物理吸附一般不需要活化能,故吸附和脫附速率都較快;任何氣體在任何固體上只要溫度適宜都可以發生物理吸附,沒有選擇性;④物理吸附可以是單分子層吸附,也可以是多分子層吸附;⑤被吸附分子的結構變化不大,不形成新的化學鍵,故紅外、紫外光譜圖上無新的吸收峰出現,但可有位移;⑥物理吸附是可逆的;⑦固體自溶液中的吸附多數是物理吸附。
⑥ 怎麼判斷物理吸附還是化學吸附
基本上所有可逆的吸附都是物理吸附,不可逆的基本上都是化學吸附
⑦ 怎樣證明一種東西有吸附性
物體(固、液體)表面吸收周圍介質中其他物質的分子(如各種無機離子、有機極性分子、氣體分子等)的性能。溫石棉由於力場強度和內表面積大,故有很大的吸附能力。石棉纖維吸附性是石棉濕紡和生產石棉水泥製品的重要物性特徵。
編輯本段吸附性
物質從體相濃集到界面上的一種性質。例如,氣相中的某些物質可以在固體表面上濃集;液體中某些物質可以在氣-液界面、液—液界面和固—液界面上濃集。通常把能有效吸附其他物質的固體稱為吸附劑,被吸附的物質稱為吸附質。分類 根據不同的角度,可以有不同的分類方法,但主要分類方法有兩種。一種是依據吸附劑與吸附質之間作用力的性質,可將吸附作用分為物理吸附和化學吸附。 物理吸附 不具選擇性,在吸附過程中沒有電子的轉移,沒有化學鍵的生成和破壞,沒有原子的重排等反應,產生的吸附只是分子間的引力,吸附過程中吸附速率和解吸速率都很快,且不受溫度的影響。此類吸附實質是一種物理作用。 化學吸附 具選擇性,一些吸附劑只對某些吸附質產生吸附作用,其吸附熱差不多和化學反應熱處在同一數量級,它的吸附速率和解吸速率都很小,而且隨溫度升高吸附(解吸)速率增加。這類吸附一般都需要一定的活化能,被吸附分子與吸附表面的作用力和化合物中原子間的作用力相似。這種吸附實質上是一種化學反應。 另一種分類方法是根據吸附的界面不同,主要有溶液表面吸附、固—液界面吸附、固—氣界面吸附等。 溶液表面的吸附 水的表面張力因加入溶質形成溶液而改變,有些溶質加入後能使溶液的表面張力降低,另一些溶質加入後則會使溶液的表面張力升高。若所加入的溶質能降低表面張力,則溶質力圖濃集在表面層上以降低體系的表面能;反之,當溶質使表面張力升高時,則表面層中的濃度比內部的濃度低,這種溶液表面層的組成與本體溶液的組成不同的現象稱為表面層發生了吸附作用。在溶液表面層上溶質的濃度可以大於、等於或小於溶液內部的濃度,分別對應著正吸附、不吸附和負吸附。 根據實驗,水溶液中表面張力隨溶質濃度變化曲線大致分為三類,如圖1: 1876年,吉布斯用熱力學方法求得定溫下溶液的濃度、表面張力和吸附量之間的關系,稱為吉布斯公式: 式中 a2——溶液中溶質的活度; γ——溶液的表面張力; ——溶質的表面超量。 從吉布斯公式可知:①若dγ/da<0,即增加溶質活度使溶液的表面張力降低者, 為正值,是正吸附。表面活性物質就是屬於此情況;②若dγ/da2>0,即增加溶質活度使溶液的表面張力升高者, 為負值,非表面活性物質就是屬於此情況,無機強電解質和高度水化的有機物如蔗糖等都有此性質。由於吉布斯公式的推導過程中,對所考慮的組分及界面沒有附加限制條件,所以在原則上對於任何兩相的體系都可以適用。 固—氣界面的吸附 處在固體表面的原子,由於周圍原子對它的作用力不對稱,即原子所受的力不飽和,因而有剩餘力場,可以吸附氣體分子,使固體界面上的氣體濃度增加,這種現象稱為固—氣界面的吸附。 對於一個給定的體系,達到平衡時的吸附量與溫度及氣體的壓力有關,其中在一定溫度下平衡吸附量與吸附質濃度的關系稱為吸附等溫線。吸附等溫線有多種形式,經過一定的數學處理得到吸附等溫線方程,利用這些方程可以給出有關吸附量、吸附質和吸附過程特點等有用的信息。綜合大量實驗結果,氣體吸附等溫線主要有五種類型,見圖2。這些吸附等溫線反映了吸附劑的表面性質有所不同,孔分布性質及吸附質和吸附劑的相互作用也不同。因此由吸附等溫線的類型反過來可以了解一些吸附劑表面性質、孔分布性質以及吸附質和吸附劑相互作用的情況。 式中 a——平衡濃度為c時的吸附量; am——單分子層飽和吸附量; b、k和n——常數。 影響固體在溶液中吸附的因素很多,一般可從溶質、溶劑和吸附劑三者之間的關系考慮。對於小的有機和無機物分子,若以分子狀態吸附時至少有以下規律:①稀溶液時,隨著濃度增加,固—液界面自由能降低多的溶質吸附量大,這就是特勞貝規則;②吸附與溶解是性質相反的過程,故溶解度越小越容易被吸附;③吸附是放熱過程,溫度升高一般對吸附不利,即溫度升高吸附量下降;④極性吸附劑容易從極性弱的溶劑中吸附極性強的溶質;非極性吸附劑容易從極性強的溶劑中吸附極性弱的溶質。其他如溶質的分子結構、溶劑的性質、吸附劑的制備條件等都對吸附有影響。 固體從溶液中吸附電解質有三種情況:①有些電解質(如弱電解質)以分子狀態吸附,其吸附規律與小分子吸附相似;②有的固體在中性鹽水溶液中吸附時,溶液的pH值發生變化,就像鹽類發生了水解,固體有選擇地吸附酸或鹼,這種吸附稱為水解吸附;③電解質在溶液中解離後某種離子被固體吸附,另一種反離子處於固體表面附近的擴散層中,這些反離子可以被與其同號的離子所交換。有些離子直接與固體骨架上的某些離子發生交換作用,這兩種因固體吸附而發生的交換過程統稱為離子交換吸附。離子交換吸附在土壤學和工業上有著重要應用。 固體從溶液中吸附大分子遠比小分子復雜,每個大分子可有若干個吸附點,因而在較小濃度時吸附量上升很快,許多大分子吸附等溫線服從蘭格繆爾等溫式。由於大分子分子量大,在多孔性固體上吸附時有小孔分子不能進入,故分子量增加,吸附量反而減小。溶劑、吸附劑的性質等對大分子的吸附也有影響。 應用 我國勞動人民很早就知道新燒好的木炭有吸濕、吸臭的性能,在湖南長沙馬王堆一號墓里就是用木炭作為防腐劑和吸濕劑的。近幾十年來有關吸附性的應用越來越廣,人們利用吸附回收少量的稀有金屬,對混合物進行分離、提純,回收溶劑,處理污水,凈化空氣以及進行吸附色譜等。分子篩富氧就是利用某些分子篩優先吸附氮的性質,從而提高空氣中氧的濃度等等。在催化領域中關於吸附的研究和應用,對工農業生產和國民經濟具有特別重要的意義。
⑧ 常用的物理檢驗方法有哪些,如何進行測定
物理檢驗法
物理檢驗法大體有:物理量測定、不可見光檢驗、熒光檢驗、吸附與轉移。
1、度量衡檢驗法:幾何形狀及尺寸精度、質量、密度、粒度、粘度等。
2、光學檢驗法:利用光學原理採用各種光學儀器檢測材料的物理、化學性能及組分。
3、電性能檢驗法:利用電工原理採用電工、電子儀器檢測材料的各項電性能和電參數。
4、機械性能試驗法:利用物理力學原理對材料的力學和機械性能進行檢測。這是金屬和非金屬材料最常用最基本的檢驗方法,如拉伸強度、疲勞強度、硬度等。
5、無損檢測:在不損壞被檢材料的前提下,對材料表面或內部的缺陷、性能、狀態、結構進行檢測,主要有射線、超聲波、磁粉、滲透、渦流等探傷方法。
⑨ 如何測定一個化學吸附是活化吸附還是非活化吸附
傳統測定催化劑的吸附活化能使用量熱法。使用量熱器,固定催化劑表面面積改變氣體壓力,來得到一系列吸附熱量值(deltaH's). 然後使用Langmuir 等溫圖(Langmuir iostherm)和其他一些手段計算出吸附活化能。 物理吸附一般deltaH(activation) = -25 kJ/mol, 化學吸附deltaH(activation) = -40 kJ/mol (都是放熱過程)。
現在很少有人用這種方法。主要是太繁瑣,不好控制條件,誤差大。用光譜的方法又快,又省事,結果亦更可靠。
參考2007諾貝爾化學得主 Ertle's 工作。他主要研究氣體分子在催化劑表面上的吸附。
固液界面吸附動力學機理的研究對深入了解吸附規律具有重要意義.艾宏韜曾提出吸附動力學的基本公式,但對活化能的研究未予重視.陳松等雖測定了水合氧化鈦在海水中吸附鈾的活化能,但均假設吸附反應僅是單向進行.本文從質量作用定律出發,對正反兩方向的反應速率及吸附劑、吸附質的有關參數均予以考慮,導出了分別適用於速率較小或較大兩種情況下活化能的實驗測定方法,並分別以水合氧化鈦在海水中吸附鈾及水合氧化鐵吸附鉛、銅的動力學實驗結果為例,加以驗證.
⑩ 物理吸附與化學吸附如何區分
物理吸附與化學吸附區分:含義不同,特徵不同。
一、含義不同:
物理吸附是被吸附的流體分子與固體表面分子間的作用力為分子間吸引力,即所謂的范德華力。
化學吸附是固體表面與被吸附物間的化學鍵力起作用的結果。這類型的吸附需要一定的活化能,故又稱「活化吸附」。
二、特徵不同:
物理吸附的特徵是吸附物質不發生任何化學反應,吸附過程進行得極快,參與吸附的各相間的平衡瞬時即可達到。
化學吸附往往是不可逆的,而且脫附後,脫附的物質常發生了化學變化不再是原有的性狀,故其過程是不可逆的。
吸附劑表面
分子由於作用力沒有平衡而保留有自由的力場來吸引吸附質,由於它是分子間的吸力所引起的吸附,所以結合力較弱,吸附熱較小,吸附和解吸速度也都較快。被吸附物質也較容易解吸出來,所以物理吸附在一定程度上是可逆的。如:活性炭對許多氣體的吸附,被吸附的氣體很容易解脫出來而不發生性質上的變化。
以上內容參考:網路-物理吸附