『壹』 晶體與非晶體在外形和物理性質上有什麼區別
晶體與非晶體在外形上:晶體有規則的幾何形狀,非晶體沒有。
物理性質:晶體有固定的熔點,非晶體沒有固定的熔點。
『貳』 晶體與非晶體在外形和物理性質上有什麼區別
外形上
:(1)晶體有整齊規則的幾何外形;
物理性質上
:(2)晶體有固定的熔點,在熔化過程中,溫度始終保持不變;
其他
:
(3)晶體有各向異性的特點。
晶體是內部質點在三維空間成周期性重復排列的固體,具有長程有序,並成周期性重復排列。
非晶體是內部質點在三維空間不成周期性重復排列的固體,具有近程有序,但不具有長程有序。如玻璃。外形為無規則形狀的固體。
晶體和非晶體所以含有不同的物理性質,主要是由於它的微觀結構不同。
『叄』 非晶體,為什麼它的物理性質表現的是各向同性
非晶體是內部質點在三維空間不成周期性重復排列的固體,具有近程有序,但不具有長程有序.外形為無規則形狀的固體.物理性質在各個方向上是相同的,即「各向同性」.
『肆』 非晶體有哪些 什麼是非晶體
1、常見的非晶體:如玻璃、瀝青、松香、塑料、石蠟、橡膠等。
2、非晶體是指結構無序或者近程有序而長程無序的物質,組成物質的分子(或原子、離子)不呈空間有規則周期性排列的固體,它沒有一定規則的外形。它的物理性質在各個方向上是相同的,叫「各向同性」。它沒有固定的熔點,所以有人把非晶體叫做「過冷液體」或「流動性很小的液體」。玻璃體是典型的非晶體,所以非晶態又稱為玻璃態。重要的玻璃體物質有:氧化物玻璃、金屬玻璃、非晶半導體和高分子化合物。
3、非晶體沒有固定的熔點,隨著溫度升高,物質首先變軟,然後由稠逐漸變稀,成為流體,具有一定的熔點是一切晶體的宏觀特性,也是晶體和非晶體的主要區別。
4、基本性質:非晶體又稱無定形體內部原子或分子的排列呈現雜亂無章的分布狀態的固體稱為非晶體。 如玻璃、瀝青、松香、塑料、石蠟、橡膠等。非晶態固體包括非晶態電介質、非晶態半導體、非晶態金屬。它們有特殊的物理、化學性質。例如金屬玻璃(非晶態金屬)比一般(晶態)金屬的強度高、彈性好、硬度和韌性高、抗腐蝕性好、導磁性強、電阻率高等。這使非晶態固體有多方面的應用。它是一個正在發展中的新的研究領域,得到迅速的發展。
5、晶體與非晶體之間在一定條件下可以相互轉化。例如,把石英晶體熔化並迅速冷卻,可以得到石英玻璃。將非晶半導體物質在一定溫度下熱處理,可以得到相應的晶體。可以說,晶態和非晶態是物質在不同條件下存在的兩種不同的固體狀態,晶態是熱力學穩定態。
『伍』 晶體與非晶體的性質
固態物質分為晶體和非晶體。從宏觀上看,晶體都有自己獨特的、呈對稱性的形狀,如食鹽呈立方體;冰呈六角稜柱體;明礬呈八面體等。而非晶體的外形則是不規則的。晶體在不同的方向上有不同的物理性質,如機械強度、導熱性、熱膨脹、導電性等,稱為各向異性。而非晶體的物理性質卻表現為各向同性。晶體有固定的熔化溫度—熔點(或凝固點),而非晶體則是隨溫度的升高逐漸由硬變軟,而熔化。
晶體和非晶體所以含有不同的物理性質,主要是由於它的微觀結構不同。組成晶體的微粒——原子是對稱排列的,形成很規則的幾何空間點陣。空間點陣排列成不同的形狀,就在宏觀上呈現為晶體不同的獨特幾何形狀。組成點陣的各個原子之間,都相互作用著,它們的作用主要是靜電力。對每一個原子來說,其他原子對它作用的總效果,使它們都處在勢能最低的狀態,因此很穩定,宏觀上就表現為形狀固定,且不易改變。晶體內部原子有規則的排列,引起了晶體各向不同的物理性質。例如原子的規則排列可以使晶體內部出現若干個晶面,立方體的食鹽就有三組與其邊面平行的平面。如果外力沿平行晶面的方向作用,則晶體就很容易滑動(變形),這種變形還不易恢復,稱為晶體的范性。從這里可以看出沿晶面的方向,其彈性限度小,只要稍加力,就超出了其彈性限度,使其不能復原;而沿其他方向則彈性限度很大,能承受較大的壓力、拉力而仍滿足虎克定律。當晶體吸收熱量時,由於不同方向原子排列疏密不同,間距不同,吸收的熱量多少也不同,於是表現為有不同的傳熱系數和膨脹系數。
非晶體的內部組成是原子無規則的均勻排列,沒有一個方向比另一個方向特殊,如同液體內的分子排列一樣,形不成空間點陣,故表現為各向同性。
當晶體從外界吸收熱量時,其內部分子、原子的平均動能增大,溫度也開始升高,但並不破壞其空間點陣,仍保持有規則排列。繼續吸熱達到一定的溫度——熔點時,其分子、原子運動的劇烈程度可以破壞其有規則的排列,空間點陣也開始解體,於是晶體開始變成液體。在晶體從固體向液體的轉化過程中,吸收的熱量用來一部分一部分地破壞晶體的空間點陣,所以固液混合物的溫度並不升高。當晶體完全熔化後,隨著從外界吸收熱量,溫度又開始升高。而非晶體由於分子、原子的排列不規則,吸收熱量後不需要破壞其空間點陣,只用來提高平均動能,所以當從外界吸收熱量時,便由硬變軟,最後變成液體。玻璃、松香、瀝青和橡膠就是常見的非晶體。
多數的固體晶體屬於多晶體(也叫復晶體),它是由單晶體組成的。這種組成方式是無規則的,每個單晶體的取向不同。雖然每個單晶體仍保持原來的特性,但多晶體除有固定的熔點外,其他宏觀物理特性就不再存在。這是因為組成多晶體的單晶體仍保持著分子、原子有規則的排列,溫度達不到熔解溫度時不會破壞其空間點陣,故仍存在熔解溫度。而其他方面的宏觀性質,則因為多晶體是由大量單晶體無規則排列成的,單晶體各方向上的特性平均後,沒有一個方向比另一個方向上更占優勢,故成為各向同性。各種金屬就屬於多晶體。它們沒有固定的獨特形狀,表現為各向同性。
『陸』 「非晶體」除了沒有固定的熔點和凝固點,還有什麼其他特徵
組成非晶體的分子(或原子、離子)不呈空間有規則周期性排列。它沒有一定規則的外形,如玻璃、松香、石蠟等。它的物理性質在各個方向上是相同的,叫「各向同性」。
『柒』 從物理性質來看,晶體與非晶體的最基本的特徵是什麼
1.晶體與非晶體最本質的區別是什麼?准晶體是一種什麼物態?
答:晶體和非晶體均為固體,但它們之間有著本質的區別。晶體是具有格子構造的固體,即晶體的內部質點在三維空間做周期性重復排列。而非晶體不具有格子構造。晶體具有遠程規律和近程規律,非晶體只有近程規律。准晶態也不具有格子構造,即內部質點也沒有平移周期,但其內部質點排列具有遠程規律。因此,這種物態介於晶體和非晶體之間。
2.在某一晶體結構中,同種質點都是相當點嗎?為什麼?
答:晶體結構中的同種質點並不一定都是相當點。因為相當點是滿足以下兩個條件的點:a.點的內容相同;b.點的周圍環境相同。同種質點只滿足了第一個條件,並不一定能夠滿足第二個條件。因此,晶體結構中的同種質點並不一定都是相當點。
3.從格子構造觀點出發,說明晶體的基本性質。
答:晶體具有六個宏觀的基本性質,這些性質是受其微觀世界特點,即格子構造所決定的。現分別敘述:
a.自限性 晶體的多面體外形是其格子構造在外形上的直接反映。晶面、晶棱與角頂分別與格子構造中的面網、行列和結點相對應。從而導致了晶體在適當的條件下往往自發地形成幾何多面體外形的性質。
b.均一性 因為晶體是具有格子構造的固體,在同一晶體的各個不同部分,化學成分與晶體結構都是相同的,所以晶體的各個部分的物理性質與化學性質也是相同的。
c.異向性 同一晶體中,由於內部質點在不同方向上的排布一般是不同的。因此,晶體的性質也隨方向的不同有所差異。
d.對稱性 晶體的格子構造本身就是質點周期性重復排列,這本身就是一種對稱性;體現在宏觀上就是晶體相同的外形和物理性質在不同的方向上能夠有規律地重復出現。
e.最小內能性 晶體的格子構造使得其內部質點的排布是質點間引力和斥力達到平衡的結果。無論質點間的距離增大或縮小,都將導致質點的相對勢能增加。因此,在相同的溫度條件下,晶體比非晶體的內能要小;相對於氣體和液體來說,晶體的內能更小。
『捌』 晶體與非晶體的相同點和不同點的歸納求教,
1、晶體和非晶體的相同點
(1)都是從固態變成液態的過程。
(2)在熔化的過程中都要吸熱。
2、晶體和非晶體的不同點
(1)分子聚集形態不同
晶體:有整齊規則的幾何外形。
非晶體:沒有一定規則的外形,如玻璃、松香、石蠟等。
(2)熔點不同
晶體:有固定的熔點,在熔化過程中,溫度始終保持不變。
非晶體:沒有固定的熔點。
(3)物理性質變化不同
晶體:物理性質具有隨方向性變化,即具有各向異性。
非晶體:物理性質不隨方向性變化,即具有各向同性。
『玖』 什麼是晶體和非晶體
非晶體(noncrystal)非晶體是指組成物質的分子(或原子、離子)不呈空間有規則周期性排列的固體。它沒有一定規則的外形,如玻璃、松香、石蠟等。它的物理性質在各個方向上是相同的,叫「各向同性」。它沒有固定的熔點。所以有人把非晶體叫做「過冷液體」或「流動性很小的液體」。非晶態固體包括非晶態電介質、非晶態半導體、非晶態金屬。它們有特殊的物理、化學性質。例如金屬玻璃(非晶態金屬)比一般(晶態)金屬的強度高、彈性好、硬度和韌性高、抗腐蝕性好、導磁性強、電阻率高等。這使非晶態固體有多方面的應用。它是一個正在發展中的新的研究領域,近年來得到迅速的發展。晶體與非晶體區別晶體和非晶體所以含有不同的物理性質,主要是由於它的微觀結構不同。組成晶體的微粒——原子是對稱排列的,形成很規則的幾何空間點陣。空間點陣排列成不同的形狀,就在宏觀上呈現為晶體不同的獨特幾何形狀。組成點陣的各個原子之間,都相互作用著,它們的作用主要是靜電力。對每一個原子來說,其他原子對它作用的總效果,使它們都處在勢能最低的狀態,因此很穩定,宏觀上就表現為形狀固定,且不易改變。晶體內部原子有規則的排列,引起了晶體各向不同的物理性質。例如原子的規則排列可以使晶體內部出現若干個晶面,立方體的食鹽就有三組與其邊面平行的平面。如果外力沿平行晶面的方向作用,則晶體就很容易滑動(變形),這種變形還不易恢復,稱為晶體的范性。從這里可以看出沿晶面的方向,其彈性限度小,只要稍加力,就超出了其彈性限度,使其不能復原;而沿其他方向則彈性限度很大,能承受較大的壓力、拉力而仍滿足虎克定律。當晶體吸收熱量時,由於不同方向原子排列疏密不同,間距不同,吸收的熱量多少也不同,於是表現為有不同的傳熱系數和膨脹系數。
石英、雲母、明礬、食鹽、硫酸銅、糖、味精等就是常見的晶體非晶體的內部組成是原子無規則的均勻排列,沒有一個方向比另一個方向特殊,如同液體內的分子排列一樣,形不成空間點陣,故表現為各向同性。
當晶體從外界吸收熱量時,其內部分子、原子的平均動能增大,溫度也開始升高,但並不破壞其空間點陣,仍保持有規則排列。繼續吸熱達到一定的溫度——熔點時,其分子、原子運動的劇烈程度可以破壞其有規則的排列,空間點陣也開始解體,於是晶體開始變成液體。在晶體從固體向液體的轉化過程中,吸收的熱量用來一部分一部分地破壞晶體的空間點陣,所以固液混合物的溫度並不升高。當晶體完全熔化後,隨著從外界吸收熱量,溫度又開始升高。而非晶體由於分子、原子的排列不規則,吸收熱量後不需要破壞其空間點陣,只用來提高平均動能,所以當從外界吸收熱量時,便由硬變軟,最後變成液體。玻璃、蜂蠟、松香、瀝青、橡膠等就是常見的非晶體
『拾』 非晶體的性質
非晶體,從微觀上來看沒有規則的分子排列。所以導致從宏觀上具有一系列特點
沒有固定熔點,非晶體的外形無規則,物理性質表現為各向同性。