1. 物理學分支有哪些
物理學大可以分為六個大類:力學、光學、聲學、電磁學、量子物理學、固體物理學。
1.力學(力學作為物理學發展的最重要模塊,其分支也是最為龐大的)
靜力學 動力學 流體力學 分析力學 運動學 固體力學 材料力學 復合材料力學 流變學 結構力學 彈性力學 塑性力學 爆炸力學 磁流體力學 空氣動力學 理性力學 物理力學 天體力學 生物力學 計算力學 熱學 熱力學
2.光學
幾何光學 波動光學 大氣光學 海洋光學 量子光學 光譜學 生理光學 電子光學 集成光學 空間光學
3.聲學
次聲學 超聲學 電聲學 大氣聲學 音樂聲學 語言聲學 建築聲學 生理聲學 生物聲學 水聲學
4.電磁學
磁學 電學 電動力學
5.量子物理學
量子力學 核物理學 高能物理學 原子物理學 分子物理學
6.固體物理學
高壓物理學 金屬物理學 表面物理學
此外,物質的各種存在形式和運動形式之間普遍存在著聯系。隨著學科的發展,這種聯系逐步顯示出來。物理學也和其他學科相互滲透,產生一系列交叉學科,如:化學物理、生物物理、大氣物理、海洋物理、地球物理、天體物理等等。
數學對物理學的發展起了重要的作用,反過來物理學也促進數學的發展。在物理學的基礎性研究過程中,形成和發展出來的基本概念、基本理論、基本實施手段和精密的測試方法,已成為其他許多學科的重要組成部分,並產生了良好的效果。這對於天文學、化學、生物學、地學、醫學、農業科學都是如此。
物理學研究的重大突破導致生產技術的飛躍已經是歷史事實。反過來,發展技術和生產力的要求,也有力地推動物理學研究的發展,固體物理、原子核物理、等離子體物理、激光研究、現代宇宙學等之所以迅速發展,是和技術及生產力發展的要求分不開的。
2. 物理學分為哪些類我要全面的
1、牛頓力學(Newton mechanics)與分析力學(analytical mechanics)研究物體機械運動的基本規律及關於時空相對性的規律
2、電磁學(electromagnetism)與電動力學(electrodynamics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
3、熱力學(thermodynamics)與統計力學(statistical mechanics)研究物質熱運動的統計規律及其宏觀表現
4、狹義相對論(special relativity)研究物體的高速運動效應以及相關的動力學規律。
5、廣義相對論(general relativity)研究在大質量物體附近,物體在強引力場下的動力學行為。
6、量子力學(quantum mechanics)研究微觀物質運動現象以及基本運動規律
此外,還有:粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等等。
(2)物理有哪些學擴展閱讀:
物理學的六大性質
1、真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。
2、和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。
牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動性實現了統一。愛因斯坦的相對論又把時間、空間統一了。
3、簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。
4、對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5、預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。
6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。
物理學的發展:
應用物理學專業的畢業生主要在物理學或相關的科學技術領域中從事科研、教學、技術開發和相關的管理工作。科研工作包括物理前沿問題的研究和應用,技術開 發工作包括新特性物理應用材料如半導體等,應用儀器的研製如醫學儀器、生物儀器、科研儀器等。
應用物理專業的就業范圍涵蓋了整個物理和工程領域,融物理理 論和實踐於一體,並與多門學科相互滲透。
應用物理學專業的學生如具有扎實的物理理論的功底和應用方面的經驗,能夠在很多工程技術領域成為專家。
我國每年培養本科應用物理專業人才約12000人。和該專業存在交叉的專業包括物理專業,工程物理專業,半導體和材料專業等。人才需求方面,我國對應用物理專業的人才需求仍舊是供不應求。
3. 物理學專業課程有哪些
物理學專業課程有高等數學、力學、熱學、光學、電磁學、原子物理學、數學物理方法、理論力學、熱力學與統計物理、電動力學、量子力學、固體物理學、結構和物性、計算物理學入門等。
4. 物理學有什麼專業
答:物理學有:力學物理專業、電磁物理學專業、熱物理學專業、光學物理專業、原子物理學專業、量子物理學專業、……等。隨著科學的發展和提高,物理學專業細分會有更多種分類專業。
5. 物理學中有哪些專業
物理學、郵電通信、航空航天、能源開發、計算機技術及應用、光電子技術、醫療保健、自動控制等相關高校技術領域從事科研、教學、技術開發與應用、管理等工作
6. 物理學類專業有哪些
物理專業大方向一般可分為:理論物理、微電子、凝聚態。細分的話就很多了,比如純理論研究、核物理、生物物理、粒子物理;微電子學、固體電子學、物理電子學、應用物理。
7. 物理學類專業包括哪些專業 哪個專業好
①物理學院的本科專業為應用物理學,主要培養具有寬廣堅實的數理基礎和熟練科學實驗技能的復合型人才。
專業方向包括:基礎物理、光學、凝聚態與材料物理(包括納米材料)、等離子物理
主要課程:普通物理、實驗物理、理論物理、物理前沿、高等數學、電子技術、計算機應用等。
本專業的畢業生有大量的機會免試攻讀校內外和相關科研院所物理學、激光、光電子、材料學、信息、生物等學科的碩士、博士研究生,同時在科研院所、大專院校、企業單位有著廣泛的就業機會和良好的發展前景。
②材料科學類包括的專業為以下5個方向:
1.
材料物理方向
側重培養從事物質的組成、微觀結構與宏觀物理學性質的內在規律研究,進而利用現代物理手段與設備研究開發各種門類高性能新材料的材料科技人才。
2.
金屬材料方向
側重培養從事各種新型結構、功能金屬材料的制備工藝、微觀結構、相變與熱處理與各種應用性能關系的理論與應用基礎研究的科研人才,以及從事各種新型金屬材料的研製開發及性能檢測的工程技術人才。
3.
無機非金屬材料方向
側重培養既能從事各種新型結構與功能無機非金屬材料的制備工藝、微觀結構與各種應用性能關系的基礎理論研究,又能進行各類新型無機非金屬材料和元器件的研製開發及性能檢測的工程技術人才。
4.
復合材料方向
側重培養從事各種新型金屬、無機非金屬、高分子復合材料的制備工藝、微觀結構與各種應用性能關系的理論與應用基礎研究的科研人才,以及從事各種新型結構與功能復合材料與元器件的研製開發及性能檢測的工程技術人才。
5.
電子材料方向
側重培養從事各種電子材料和元器件的制備工藝、微觀結構與各種應用性能關系的理論與應用基礎研究的科研人才,以及從事各種新型電子材料和元器件的研製開發及性能檢測的工程技術人才。
8. 物理學 有幾大類
1、牛頓力學與分析力學:研究物體機械運動的基本規律及關於時空相對性的規律
2、電磁學與電動力學:研究電磁現象,物質的電磁運動規律及電磁輻射等規律
3、熱力學與統計力學:研究物質熱運動的統計規律及其宏觀表現
4、狹義相對論:研究物體的高速運動效應以及相關的動力學規律。
5、廣義相對論:研究在大質量物體附近,物體在強引力場下的動力學行為。
6、量子力學:研究微觀物質運動現象以及基本運動規律。
此外還有:粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等等。
(8)物理有哪些學擴展閱讀
物理學的方法和科學態度:提出命題 → 理論解釋 → 理論預言 → 實驗驗證 →修改理論。
現代物理學是一門理論和實驗高度結合的精確科學,它的產生過程如下:
1、物理命題一般是從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來。
2、首先嘗試用已知理論對命題作解釋、邏輯推理和數學演算。如現有理論不能完美解釋,需修改原有模型或提出全新的理論模型。
3、新理論模型必須提出預言,並且預言能夠為實驗所證實。
4、一切物理理論最終都要以觀測或實驗事實為准則,當一個理論與實驗事實不符時,它就面臨著被修改或被推翻。