A. 三角函數的正弦 餘弦 正切 餘切 正割 餘割
sin30=1/2
正弦=對邊除以斜邊
餘弦
=鄰邊除以斜邊
B. 什麼是三角函數
三角函數(Trigonometric)是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。它包含六種基本函數:正弦、餘弦、正切、餘切、正割、餘割。由於三角函數的周期性,它並不具有單值函數意義上的反函數。三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
正弦函數 sinθ=y/r 正弦(sin):角α的對邊 比 斜邊
餘弦函數 cosθ=x/r 餘弦(cos):角α的鄰邊 比 斜邊
正切函數 tanθ=y/x 正切(tan):角α的對邊 比 鄰邊
餘切函數 cotθ=x/y 餘切(cot):角α的鄰邊 比 對邊
正割函數 secθ=r/x 正割(sec):角α的斜邊 比 鄰邊
餘割函數 cscθ=r/y 餘割(csc):角α的斜邊 比 對邊
C. sin是什麼邊比什麼邊
sinA=∠A的對邊/斜邊。正弦,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA。
sin一般指正弦
古代說的「勾三股四弦五」中的「弦」,就是直角三角形中的斜邊,「勾」、「股」是直角三角形的兩條直角邊。
正弦是股與弦的比例,餘弦是餘下的那條直角邊與弦的比例。
正弦=股長/弦長
勾股弦放到圓里。弦是圓周上兩點連線。最大的弦是直徑。把直角三角形的弦放在直徑上,股就是∠A所對的弦,即正弦,勾就是餘下的弦——餘弦。
按現代說法,正弦是直角三角形的對邊與斜邊之比。
現代正弦公式是:sin=直角三角形的對邊比斜邊.
斜邊為r,對邊為y,鄰邊為a。斜邊r與鄰邊a夾角Ar的正弦sinA=y/r
無論a,y,r為何值,正弦值恆大於等於0小於等於1,即0≤sin≤1.
三角函數是什麼邊比值
1、正弦函數(sin),sinα=∠α的對邊/斜邊
2、餘弦函數(cos),cosα=∠α的鄰邊/斜邊
3、正切函數(tan),tanα=∠α的對邊/∠α的鄰邊
4、餘切函數(cot),cotα=∠α的鄰邊/∠α的對邊
D. 三角函數定義是什麼
三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。也可以等價地用與單位圓有關的各種線段的長度來定義。
三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。
常見的三角函數包括正弦函數、餘弦函數和正切函數。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函數、正割函數、餘割函數、正矢函數、余矢函數、半正矢函數、半余矢函數等其他的三角函數。不同的三角函數之間的關系可以通過幾何直觀或者計算得出,稱為三角恆等式。
三角函數一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函數為模版,可以定義一類相似的函數,叫做雙曲函數。常見的雙曲函數也被稱為雙曲正弦函數、雙曲餘弦函數等等。
三角函數
正弦sin=對邊比斜邊。
餘弦cos=鄰邊比斜邊。
正切tan=對邊比鄰邊。
1、正弦(sine),數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
2、餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°,∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。
3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
E. 正弦函數
我告訴你公式,計算還是靠你自己哦!^-^
三角函數
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
基本初等內容
它有六種基本函數(初等基本表示):
函數名 正弦 餘弦 正切 餘切 正割 餘割
正弦函數 sinθ=y/r
餘弦函數 cosθ=x/r
正切函數 tanθ=y/x
餘切函數 cotθ=x/y
正割函數 secθ=r/x
餘割函數 cscθ=r/y
以及兩個不常用,已趨於被淘汰的函數:
正矢函數 versinθ =1-cosθ
余矢函數 vercosθ =1-sinθ
同角三角函數間的基本關系式:
·平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
·倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函數恆等變形公式:
·兩角和與差的三角函數:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半形公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
部分高等內容
·高等代數中三角函數的指數表示(由泰勒級數易得):
sinx=[e^(ix)-e^(-ix)]/2
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]
泰勒展開有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此時三角函數定義域已推廣至整個復數集。
·三角函數作為微分方程的解:
對於微分方程組 y=-y'';y=y'''',有通解Q,可證明
Q=Asinx+Bcosx,因此也可以從此出發定義三角函數。
補充:由相應的指數表示我們可以定義一種類似的函數——雙曲函數,其擁有很多與三角函數的類似的性質,二者相映成趣。
F. 正弦函數和餘弦函數是什麼
正弦,數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°,∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
相關知識:
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
G. 什麼是正弦什麼是餘弦
正弦(sine),數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
(7)物理三人正弦函數是什麼擴展閱讀
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
H. 正弦函數是什麼意思
正弦=股長/弦長
勾股弦放到圓里。弦是圓周上兩點連線。最大的弦是直徑。 把直角三角形的弦放在直徑上,股就是∠A所對的弦,即正弦,勾就是餘下的弦——餘弦。
按現代說法,正弦是直角三角形的對邊與斜邊之比。
現代正弦公式是
sin = 直角三角形的對邊比斜邊.
如圖1,斜邊為r,對邊為y,鄰邊為a。斜邊r與鄰邊a夾角Ar的正弦sinA=y/r
無論a,y,r為何值,正弦值恆大於等於0小於等於1,即0≤sin≤1.
三角函數
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
sinx°函數圖像
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
在RT△ABC中,如果銳角A確定,那麼角A的對邊與鄰邊的比便隨之確定,這個比叫做角A 的正切,記作tanA
即tanA=角A 的對邊/角A的鄰邊
同樣,在RT△ABC中,如果銳角A確定,那麼角A的對邊與斜邊的比便隨之確定,這個比叫做角A的正弦,記作sinA
即sinA=角A的對邊/角A的斜邊
同樣,在RT△ABC中,如果銳角A確定,那麼角A的鄰邊與斜邊的比便隨之確定,這個比叫做角A的餘弦,記作cosA
即cosA=角A的鄰邊/角A的斜邊
I. 正弦餘弦正切餘割正割正積余積六種三角函數的名稱是什麼
六個三角函數是正弦、餘弦、正切、餘切、正割、餘割。
6種三角函數分別是正弦、餘弦、正切、餘切、正割、餘割。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。
三角函數一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函數為模版,可以定義一類相似的函數,叫做雙曲函數。常見的雙曲函數也被稱為雙曲正弦函數、雙曲餘弦函數等等。三角函數(也叫做圓函數)是角的函數;它們在研究三角形和建模周期現象和許多其他應用中是很重要的。
直角三角形三角函數定義
在直角三角形中,當平面上的三點A、B、C的連線,AB、AC、BC,構成一個直角三角形,其中∠ACB為直角。對∠BAC而言,對邊(opposite)a=BC、斜邊(hypotenuse)c=AB、鄰邊(adjacent)b=AC,