導航:首頁 > 物理學科 > 物理重要實驗有哪些

物理重要實驗有哪些

發布時間:2022-11-20 06:58:29

大學物理實驗有哪些

牛頓第二運動定律的驗證、動量守恆定律的驗證、液體表面張力系數的測定、霍爾效應實驗、聲速的測定、霍耳效應、測量薄透鏡的焦距、鎢的逸出電位的測定。

1、牛頓第二運動定律

牛頓第二運動定律的常見表述是:物體加速度的大小跟作用力成正比,跟物體的質量成反比,且與物體質量的倒數成正比;加速度的方向跟作用力的方向相同。

該定律是由艾薩克·牛頓在1687年於《自然哲學的數學原理》一書中提出的。牛頓第二運動定律和第一、第三定律共同組成了牛頓運動定律,闡述了經典力學中基本的運動規律。

2、動量守恆定律

動量守恆定律和能量守恆定律以及角動量守恆定律一起成為現代物理學中的三大基本守恆定律。最初它們是牛頓定律的推論, 但後來發現它們的適用范圍遠遠廣於牛頓定律,是比牛頓定律更基礎的物理規律, 是時空性質的反映。

其中,動量守恆定律由空間平移不變性推出,能量守恆定律由時間平移不變性推出,而角動量守恆定律則由空間的旋轉對稱性推出。

3、液體表面張力

凡作用於液體表面,使液體表面積縮小的力,稱為液體表面張力。它產生的原因是 液體跟氣體接觸的表面存在一個薄層,叫做表面層,表面層里的分子比液體內部稀疏,分子間的距離比液體內部大一些,分子間的相互作用表現為引力。

就象你要把彈簧拉開些,彈簧反而表現具有收縮的趨勢。正是因為這種張力的存在,有些小昆蟲才能無拘無束地在水面上行走自如。

4、霍爾效應

霍爾效應是電磁效應的一種,這一現象是美國物理學家霍爾(E.H.Hall,1855—1938)於1879年在研究金屬的導電機制時發現的。

當電流垂直於外磁場通過半導體時,載流子發生偏轉,垂直於電流和磁場的方向會產生一附加電場,從而在半導體的兩端產生電勢差,這一現象就是霍爾效應,這個電勢差也被稱為霍爾電勢差。霍爾效應使用左手定則判斷。

5、聲速

音速是介質中微弱壓強擾動的傳播速度,其大小因媒質的性質和狀態而異。空氣中的音速在1個標准大氣壓和15℃的條件下約為340m/秒。

❷ 大學物理實驗都有哪些

大學物理實驗有:楊氏模量,邁克爾遜干涉儀,全息照相,衍射光柵,單縫衍射,光電效應,用分光計測量玻璃折射率,透鏡組基點的測量,測量波的傳播速度,密里根油滴實驗,模擬示波器的使用,磁電阻巨磁電阻測量,半導體電光光電器件特性測量、等厚干涉

1、楊氏模量

楊氏模量是描述固體材料抵抗形變能力的物理量。當一條長度為L、截面積為S的金屬絲在力F作用下伸長ΔL時,F/S叫應力,其物理意義是金屬絲單位截面積所受到的力;ΔL/L叫應變,其物理意義是金屬絲單位長度所對應的伸長量。

2、邁克爾遜干涉儀

邁克爾遜干涉儀,是1881年美國物理學家邁克爾遜和莫雷合作,為研究「以太」漂移而設計製造出來的精密光學儀器。它是利用分振幅法產生雙光束以實現干涉。

3、等厚干涉

等厚干涉是由平行光入射到厚度變化均勻、折射率均勻的薄膜上、下表面而形成的干涉條紋.薄膜厚度相同的地方形成同條干涉條紋,故稱等厚干涉.(牛頓環和楔形平板干涉都屬等厚干涉.)

4、示波器的使用

波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。

5、電橋法測電阻

採用典型的四線制測量法。以期提高測量電阻(尤其是低阻)的准確度。程式控制恆流源、程式控制前置放大器、A/D轉換器構成了測量電路的主體。中央控制單元通過控制恆流源給外部待測負載施加一個恆定、高精度的電流,然後,將所獲得的數據(包括測試電壓、當前的測試電流等)進行處理,得到實際電阻值。

❸ 十大經典物理實驗的介紹

美國兩位學者在全美物理學家中做了一份調查,請他們提名有史以來最出色的十大物理試驗,結果刊登在了美國《物理世界》雜志上。

❹ 初中物理實驗有哪些

初中物理的實驗是很多的,包括熱學,聲學,光學,電學。力學實驗。
中考考試的時候,重點的實驗在於光學裡面的平面鏡成像,凸透鏡成像,還有光的反射規律。
力學裡面的重點實驗有很多,例如動能。重力勢能影響因素壓強的影響因素摩擦力的影響因素。液體壓強的特點。大氣壓強的測量。機械效率的測量,測量功率。電學實驗的包括串並聯電路電流,電壓的規律。測電阻測小燈泡的電功率。探究電阻大小的影響因素。熱血的實驗包括晶體的熔化,水的沸騰還有,比熱容的測量。以及焦耳定律驗證。

❺ 大學物理實驗有哪些



大學物理實驗共有16個,分為三大類,如下:
力學實驗:楊氏模量、拉脫法測水面張力、物體在流體中運動阻力的研究、用物理擺測重力加速度
光學實驗:邁克爾遜干涉儀、全息照相、衍射光柵、單縫衍射、光電效應、用分光計測量玻璃折射率、透鏡組基點的測量、測量波的傳播速度
電學實驗:密里根油滴實驗、模擬示波器的使用、磁電阻巨磁電阻測量、半導體電光光電器件特性測量

❻ 二戰後物理學最重要的實驗有哪些

」的標准見仁見智。且學科的發展是一脈相承的,實際上很難說那一步「更」重要。於是不妨多列舉一些,並給出簡要評介。
物理是實驗科學,重大實驗發現一般也意味著物理學本身的重大進展,所以寫成了大事年表。有些嚴格來說算是「發現」,不過發現和實驗本來就無絕對界限;還有一些實際上是「發明」或者「技術」,但因意義重大,故一並列出。

————————————————————

核磁共振(1946)
Edward Purcell和Felix Bloch分別用共振吸收和核磁感應法測量核磁矩,實現了核磁共振。二人因此獲得1952年Nobel物理學獎。

Lamb位移(1947)

由Willis Lamb和Robert Retherford發現。Lamb位移是量子電動力學的第一個實驗證據。其說明即便最簡單的氫原子,量子力學也不能完整描述,而需要用量子電動力學。Lamb因此獲得1955年Nobel物理學獎。

電子反常磁矩(1947)
反常磁矩包括電子和μ子的反常磁矩。前者由Polykarp Kusch精確測量,並因此獲1955年Nobel物理學獎。反常磁矩同Lamb位移一起,是量子電動力學的最重要的實驗支柱。

π介子(1947)
由Cecil Powell等人在宇宙線中發現。Powell因此獲得1950年Nobel物理學獎。而在1949年,湯川秀樹則因為理論預測π介子存在獲得Nobel獎。π介子是最輕也是最重要的介子,對研究低能強相互作用有重要作用。

晶體管(1947)

由Bell實驗室的John Bardeen、Walter Brattain和William Shockley發明。三人因此獲得1956年Nobel物理學獎。沒有晶體管就沒有現代文明。

全息攝影(1947)
Dennis Gabor於電子顯微鏡技術中發現全息技術的原理,並因此獲得1971年Nobel物理學獎。全息技術在激光發明後才有實質進展。Yuri Denisyuk在1962年拍攝了世界上第一張全息照片。

微波激射器(1953,1955)
即激光的前身,和激光的區別是前者為可見光,後者是微波。由美國的Charles Hard Townes和前蘇聯Nikolay Basov和Aleksandr Prokhorov兩組人各自獨立實現。三人因此分享1964年Nobel物理學獎。

反質子(1955)
是繼正電子之後,發現的第二個反粒子。由Owen Chamberlain和Emilio Gino Segrè發現,二人因此獲得1959年Nobel物理學獎。

❼ 高中物理那些實驗比較重要

重要的實驗考試大概15個,但程度不同,有些要求從實驗目的到實驗步驟都很詳細,還有誤差分析很重要,但大致重點都是相同的,力學和電學是靈魂,主抓這兩塊.老師一般都會總結,我在網上找了一下, 一是基本儀器的使用仍是實驗復習的基礎. 不管上一年度有無考到儀器的使用,我們對常用的物理儀器要熟練運用,這是實驗的基礎,是實驗的工具,任何時侯都不過時.在這方面花些時間是必需的.常見的有十三種儀器,這十三種儀器是刻度尺、游標卡尺、螺旋測微器、天平、秒錶、打點計時器、彈簧稱、溫度計、電流表、電壓表、多用電表、滑動變阻器、電阻箱等等.這些工具的使用每本復慣用書上都有很詳細的說明,本文不再多言. 二要從多種視角重新審視和組合實驗板塊. 在物理實驗總復習中,我們不應孤立地看待一個個實驗,而應該從這些實驗的原理、步驟、數據採集與處理方式的異同上,給這些實驗分門別類,從而組成不同的實驗板塊.平時我們已經自覺或不自覺地把實驗分成力學實驗板塊、電學實驗板塊、熱學實驗板塊、光學實驗板塊.但這樣的處理只是簡單地重復了物理課本知識的體系,大多數情況下也是為了講解的方便,沒有多大的創意,對於學生思維的開發和對實驗的科學思維方式的培養顯得很不夠的.在此,我認為我們要在這些實驗的組合板塊中挖掘一些功能,培養學生一種實驗的常規意識,比如對於力學板塊,這是由驗證力的合成與分解、打點計時器的使用和測勻變速直線運動加速度、驗證機械能守恆定律、驗證牛頓第二定律、驗證動量守恆定律等實驗組成的一個大的實驗板塊. 我們還可以把視野再擴大一些,以各種角度重新組合新的實驗板塊,比如按測量型與驗證型可把實驗分成兩大板塊,按能進行圖像處理數據和不能用圖像處理數據又可以把實驗分成兩大板塊.我們可以提示學生這樣劃分板塊,但把一個具體實驗歸類於哪個板塊,這要學生自已思考,比如說用圖像法處理數據,學生們熟悉的是驗證牛頓第二定律和測定電池電動勢和內電阻的實驗,不過畫出的圖形必須是直線,否則不好處理.這給予學生們思考的空間,其實還有許多實驗也是可以這樣處理的,它們都可以歸類於用圖像法處理數據,比如用單擺測重力加速度的實驗,我們測的是周期T和擺長L,再由公式來計算,書本上採用的是多測幾組再求平均值法,現在我們可以以L和T2/4л2為坐標軸,用測得的數據放入描點,畫直線求斜率即是g.

❽ 請教一下各位高人,初中物理的重要實驗都有哪些呢

常考的實驗有:光學:光的反射、平面鏡成像、凸透鏡成像;
物態變化:沸騰、熔化、凝固;力學:探究影響摩擦力大小的因素、的證明大氣壓強的存在(如馬德堡半球)、托里拆利、阿基米德原理;杠桿的平衡條件、影響機械效率的因素、測密度實驗。電學:影響導體電阻大小的因素、串並聯電路中電流、電壓關系的實驗、探究歐姆定律、伏安法測電阻、多種方法測電阻、測量燈泡的功率、焦耳定律;熱學:比熱容實驗磁學:電磁繼電器、通電導體在磁場中受到力的作用。我當時在北京新東方中小學一對一學習的時候老師給總結的,希望對你有幫助。

❾ 著名物理實驗列舉在物理史上,有哪些著名的實驗

1.埃拉托色尼測量地球的周長
古埃及有一現名為阿斯旺的小鎮。在這里,夏日正午的太陽懸在頭頂:物體沒有影子,陽光直射入深水井中。埃拉托色尼是公元前3世紀亞歷山大圖書館的館長,他意識到這一信息可以幫助他估計地球的周長,在以後幾年的時間里的同一天、同一時間,他在亞歷山大測量了同一地點的物體的影子。發現太陽光線有輕微的傾斜,在垂直方向偏離了大約7度角。 剩下的就是幾何學的問題了。假設地球是球狀,那麼它的圓周應該跨越360度。如果兩座城市成7度角,就是7/360的圓周,就是當時5000個希臘運動場的距離。因此地球的周長就應該是25萬個希臘運動場。今天,通過航跡測算,我們知道埃拉托色尼的測量誤差僅在5%以內。
2. 伽利略的自由落體實驗
在16世紀末,人人都認為重量大的物體比重量小的物體下落的快,因為偉大的亞里士多德已經這么說了。伽利略,當時在比薩大學數學系任職,他大膽的向公眾的觀點挑戰。著名的比薩斜塔實驗已經成為科學中的一個故事:他從斜塔上同時扔下一輕一重的物體,讓大家看到兩個物體同時落地。伽利略挑戰亞里士多德的代價也許是他失去工作,但他展示的是自然界的本質,而不是人類的權威,科學作出了最後的裁決。
3. 伽利略的加速實驗
伽利略繼續提煉他有關物體運動的觀點。他做了一個6米多長、3米多寬的光滑直木槽。再把這個木板的斜槽固定住,讓銅球從木槽頂端沿斜面滑下,並用水鍾測量銅球每次下滑的時間,研究它們之間的關系。亞里士多德曾預言滾動球的速度是均勻不變的;銅球滾動兩倍的時間就走出兩倍的路程。伽利略卻證明銅球滾動的路程和時間的平方成 正比:兩倍的時間里,銅球滾動的4倍的距離,因為存在恆定的重力加速度。
4.牛頓的棱鏡分解太陽光
埃薩克·牛頓出生那年,伽利略與世長辭。牛頓1665年畢業於劍橋大學的三一學院,後來因躲避鼠疫在家呆了兩年,後來順利地得到了工作。當時大家都認為白光是一種純的沒有其它顏色的光(亞里士多德就是這樣認為的),而彩色光是一種不知何故發生變化的光。
為了驗證這個假設,牛頓一面三棱鏡放在陽光下,透過三棱鏡,光在牆上分解為不同的顏色,後來我們稱作為光譜。人們知道彩虹的五顏六色,但是他們認為那是因為不正常。牛頓的結論是:正是這些紅、橙、黃、綠、藍、靛、紫基礎色有不同的色譜才形成了表面上顏色單一的白色光,如果你深入地看看,會發現白光是非常美麗的。
5.卡文迪許扭稱實驗
牛頓的另一偉大貢獻是他的萬有引力定律,但是萬有引力到底有多大?18世紀末,英國科學家亨利·卡文迪許決定要找出這個引力。他將兩邊系有小金屬球的6英尺木棒用金屬線懸吊起來,這個木棒就像啞鈴一樣。再將兩個350磅重的鉛球放在相當近的地方,以產生足夠的引力讓啞鈴轉動,並扭動金屬線。然後用自製的儀器測量出微小的轉動。
測量的結果驚人的准確,他測出了萬有引力恆量的參數,在此基礎上卡文迪許計算出地球的密度和質量。他的計算結果和當今世界公認的值很接近。
6. 托馬斯·楊的光干涉實驗
牛頓也不是永遠都正確的。在多次爭吵後,牛頓讓科學界接受了這樣的觀點:光是有微粒組成的,而不是一種波。1830年,英國醫生、物理學家托馬斯·楊用實驗來驗證這點。 他在百葉窗上開了一個小洞,讓光線通過,並用一面鏡子反射透過的光線。然後他用一個厚約1/30英寸的紙片把這束光從中間分成兩束。結果看到了相交的光線和陰影。這說明兩束光線可以像波一樣相互干涉。這個實驗為一個世紀後量子學的創立起到了至關重要的作用。
7.米歇爾·傅科鍾擺實驗
去年,科學家們在南極安置一個擺鍾,並觀察它的擺動。他們是在重復1851年巴黎的一個著名實驗。1851年法國科學家傅科在公眾面前做了一個著名的實驗,用一根長220英尺的鋼絲將一個62磅重的頭上帶有鐵筆的鐵球懸掛在屋頂下,觀測記錄他前後擺動的軌跡。周圍觀眾發現每次擺動都會稍稍偏離原來軌跡並發生旋轉時,無不驚訝。實際上這是因為房屋在緩緩移動。
傅科的演示說明地球是在圍繞地軸自轉的。在巴黎的緯度上,鍾擺的軌跡是順時針方向,30小時一個周期。在南半球,鍾擺應該逆時針轉動,而赤道上將不會轉動。在南極,轉動周期是24小時。
8.羅伯特·密里根的油滴實驗
很早以前,科學家就在研究電。人們知道這種無形的物質可以從天上的閃電中獲得,也可以通過摩擦頭發得到。1897年,英國物理學家J·J·托馬斯已經確立電流是由帶負電粒子即電子組成。1909年美國科學家羅伯特·密里根開始測量電流的電荷。密里根用一個香水瓶子的噴頭向一個透明的小盒子里噴油滴。小盒子的頂部和底部分別接一個電池,讓一邊成為正電板,另一邊成為負電板。當小油滴通過空氣時,就會吸引一些靜電,油滴下落的速度可以通過改變電板間的電壓來控制。
密里根不斷改變電壓,仔細觀察每一顆油滴的運動。經過反復的研究,密里根得出結論:電荷的值是某個固定的常量,最小的單位就是單個電子的帶電量。
9.盧瑟福發現核子的實驗
1911年盧瑟福還在曼徹斯特大學做放射能的實驗時,原子在人們的印象中就好像是「葡萄乾布丁」,大量正電荷聚集的糊狀物質,中間包含著電子的微粒。但是他和他的助手發現向金箔發射帶正電的阿爾法微粒時少量被彈回,這是他們非常吃驚。盧瑟福計算出原子不是一團糊狀物質,大部分物質集中在一個中心小核上,現在叫做核子,電子在它周圍環繞。
10.托馬斯·楊的雙縫演示應用於電子干涉的實驗
牛頓和托馬斯·楊對光的性質的研究得出的結論都不完全的正確。光既不是簡單由粒子構成,也不是一種單純的波。20世紀初,麥克斯·普朗克和阿爾伯特·愛因斯坦分別指出一種叫光子的東西發出光和吸收光。但是其他實驗還證明光是一種波狀物。經過幾十年發展的量子學說最終總結了兩個矛盾的真理:光子和亞原子微粒(如電子、光子等等)是同時具有兩種性質的微粒,物理上稱它們:波粒二象性。
將托馬斯·楊的雙縫演示改造一下可以很好的說明這一點。科學家們用電子流代替光束來解釋這個試驗。根據量子力學,電粒子流被分成兩股,被分的更小的粒子流產生波效應,它們互相影響,以致產生象托馬斯·楊的雙縫實驗中出現的加強光和陰影。這說明微粒也有波的效應。到1961年,某一位科學家才在真實的世界裡做出了這一實驗。

❿ 初中物理的重要實驗有

最新《義務教育物理課程標准》規定的學生必做的20個物理實驗項目如下。其中前面有「探究」兩個字的都是探究性實驗,其餘的屬於測量或測定性實驗。
1、用刻度尺測量長度、用表測量時間
2、用彈簧測力計測量力
3、用天平測量物體的質量
4、用常見溫度計測量溫度
5、用電流表測量電流
6、用電壓表測量電壓
7、測量物體運動的速度
8、測量水平運動物體所受的滑動摩擦力
9、測量固體和液體的密度
10、探究浮力大小與哪些因素有關
11、探究杠桿的平衡條件
12、探究水沸騰時溫度變化的特點
13、探究光的反射規律
14、探究平面鏡成像時像與物的關系
15、探究凸透鏡成像的規律
16、連接簡單的串聯電路和並聯電路
17、探究電流與電壓、電阻的關系
18、探究通電螺線管外部磁場的方向
19、探究導體在磁場中運動時產生感應電流的條件
20、測量小燈泡的電功率

閱讀全文

與物理重要實驗有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:973
武大的分析化學怎麼樣 瀏覽:1248
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057