1. 常用的數學思想方法有哪些 常用的數學思想方法有什麼
1、數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想(化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。
2、用字母表示數的思想:這是基本的數學思想之一.在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
3、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
4、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
5、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
6、類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.
7、函數的思想:辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。
8、方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略。
2. 求解數學.物理.化學中所有重要的思想
一、在高中復習教學中,數學思想方法教學的途徑主要有:
1、用數學思想指導基礎復習,在基礎復習中培養思想方法。
① 基礎知識的復習中要充分展現知識形成發展過程,揭示其中蘊涵的豐富的數學思想方法。如討論直線和圓錐曲線的位置關系時的兩種基本方法:一是把直線方程和圓錐曲線方程聯立,討論方程組解的情況;二是從幾何圖形上考慮直線和圓錐曲線交點的情況,利用數形結合的思想方法,將會使問題清晰明了。
②注重知識在教學整體結構中的內在聯系,揭示思想方法在知識互相聯系、互相溝通中的紐帶作用。如函數、方程、不等式的關系,當函數值等於、大於或小於一常數時,分別可得方程,不等式,聯想函數圖象可提供方程,不等式的解的幾何意義。運用轉化、數形結合的思想,這中塊知識可相互為用。
例如、若關於 x的方程9x2+(4+a)3x+4=0有實根,求實數a的范圍。
分析:若令3x=t ,則t>0,原方程有解的充要條件是方程t2+(4+a)t+4=0有正根,故解得:a≤-8。這種解法是根據一元二次方程解的討論,思維方法是常規合理的,但解法繁瑣,若採取以下解法:因為a∈R,所以原方程有解的a的取值范圍為函數a= 的值域。根據基本不等式上式 a≤-2-4=-8。則思維突破常規,利用函數與方程的轉化,解法靈活簡捷。
2、用數學思想方法指導解題練習,在問題解決中運用思想方法,提高學生自覺運用數學思想方法的意識。
①注意分析探求解題思路時數學思想方法的運用。解題的過程就是在數學思想的指導下,合理聯想提取相關知識,調用一定數學方法加工、處理題設條件及知識,逐步縮小題設與題斷間的差異的過程。也可以說是運用化歸思想的過程,解題思想的尋求就自然是運用思想方法分析解決問題的過程。
②注意數學思想方法在解決典型問題中的運用。例如選擇題中的求解不等式:>x+1,雖然可以通過代數方法求解,但若用數形結合,轉化為半圓與直線的位置關系,問題將變得非常簡單。
③用數學思想指導知識、方法的靈活運用,進行一題多解的練習,培養思維的發散性,靈活性,敏捷性;對習題靈活變通,引伸推廣,培養思維的深刻性,抽象性;組織引導對解法的簡捷性的反思評估,不斷優化思維品質,培養思維的嚴謹性,批判性。對同一數學問題的多角度的審視引發的不同聯想,是一題多解的思維本源。豐富的合理的聯想,是對知識的深刻理解,及類比、轉化、數形結合、函數與方程等數學思想運用的必然。數學方法、數學思想的自覺運用往往使我們運算簡捷、推理機敏,是提高數學能力的必由之路。
二、高中數學中常用的思想方法有以下幾類:
1、函數與方程的思想方法。
函數描述了自然界中量的依存關系,是對問題本身的數量本質特徵和制約關系的一種動態刻畫。因此,函數思想的實質是提取問題的數學特徵,用聯系的變化的觀點提出數學對象,抽象其數學特徵,建立函數關系。很明顯,只有在對問題的觀察、分析、判斷等一系列的思維過程中,具備有標新立異、獨樹一幟的深刻性、獨創性思維,才能構造出函數原型,化歸為方程的問題,實現函數與方程的互相轉化接軌,達到解決問題的目的。函數知識涉及到的知識點多,面廣,在概念性、應用性、理解性上能達到一定的要求,有利於檢測學生的深刻性、獨創性思維。
2、數形結合的思想方法。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數形結合的轉化,可以培養思維的靈活性,形象性,使問題化難為易,化抽象為具體。
3、分類討論的思想方法。
分類討論是解決問題的一種邏輯方法,也是一種數學思想,這種思想在人的思維發展中有著重要的作用。原因有二,其一:具有明顯的邏輯性特點;其二:能訓練人的思維的條理性的概括性。
如「參數問題」對中學生來說並不十分陌生,它實際上是對具體的個別的問題的概括.從絕對值、算術根以及在一般情況下討論字母系數的方程、不等式、函數,到曲線方程等等,無不包含著參數討論的思想.但在含參數問題中,常常會碰到兩種情形:在一種情形下,參數變化並未引起所研究的問題發生質變,例如在 中,參數 的變化並未改變曲線系是拋物線系的性質;而在另一種情況下,參數的變化使問題發生了質變.例如曲線系 中,隨著 值的變化,該曲線可能是橢圓、雙曲線、圓、二平行直線等,因此需根據 的不同范圍分類討論.這種分類討論有時並不難,但問題主要在於有沒有討論的意識.在更多的情況下,「想不到要分類」比「不知如何分類」的錯誤更為普遍.這就是所謂「素質」的問題.良好的數學素養,需長期的磨練形成.
4、等價轉化的思想。
等價轉化思想是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的數學思想方法,轉化包括等價轉化和非等價轉化,等價轉化要求轉化過程中前因後果應是充分必要的,這樣的轉化能保證轉化後的結果仍為原問題所需要的結果;而非等價轉化其過程是充分或必要的,這樣的轉化能給人帶來思維的閃光點,找到解決問題的突破口,是分析問題中思維過程的主要組成部分。
轉化思想貫穿於整個高中數學之中,每個問題的解題過程實質就是不斷轉化的過程。
3. 高中物理常用的數學思想方法
1.數形結合,作圖。
2.實驗法則。
3.精確運算。
4. 物理學中常用的幾種科學思維方法
1.模型法
物理模型是一種理想化的物理形態,將復雜的問題抽象化為理想化的物理模型是研究物理問題的基本方法。科學家通常利用抽象化、理想化、簡化、類比等把研究對象的物理學本質特徵突出出來,形成概念或實物體系,即為物理模型。模型思維法就是對研究對象或過程加以合理的簡化,突出主要因素忽略次要因素,從而解決物理問題的方法。從本質上說,分析物理問題的過程,就是構建物理模型的過程。通過構建物理模型,得出一幅清晰的物理圖景,是解決物理問題的關鍵。實際中必須通過分析、判斷、比較,畫出過程圖(過程圖是思維的切入點和生長點)才能建立正確合理的物理模型。
2.等效法
當研究的問題比較復雜,運算又很繁瑣時,可以在保證研究對象的有關數據不變的前提下,用一個簡單明了的問題來代替原來復雜隱晦的問題,這就是所謂的等效法。在中學物理中,諸如合力與分力、合運動與分運動、總電阻與各支路電阻以及平均值、有效值等概念都是根據等效的思想引入的。教學中若能將這種方法滲透到對物理過程的分析中去,不僅可以使問題的解決變得簡單,而且對知識的靈活運用和知識向能力轉化都會有很大的促進作用。
3.極端法
所謂極端法,就是依據題目所給的具體條件,假設某種極端的物理現象或過程存在並做科學分析,從而得出正確判斷或導出一般結論的方法。這種方法對分析綜合能力和數學應用能力要求較高,一旦應用得恰當,就能出奇制勝。常見有三種:極端值假設、臨界值分析、特殊值分析。
4.逆思法
在解決問題的過程中為了解題簡捷,或者從正面入手有一定難度,有意識地去改變思考問題的順序,沿著正向(由前到後、由因到果)思維的相反(由後到前、由果到因)途徑思考、解決問題,這種解題方法叫逆思法。是一種具有創造性的思維方法,通常有:運用可逆性原理、運用反證歸謬、運用執果索因進行逆思。
5.估演算法
所謂估演算法就是對某些物理量的數量級進行大致推算或精確度要求不太高的近似計算方法。估算題與一般的計算題相比較,它雖然是不精確不嚴密的計算,但確是合理的近似,它可以避免繁瑣的計算而著重於簡捷的思維能力的培養。解估算題的基本思路是:(1)抓住主要因素,忽略次要因素,從而建立理想化模型。(2)認真審題,注意挖掘埋藏較深的隱含條件。(3)分析已知條件和所求量的相互關系以及物理過程所遵守的物理規律,從而找到估算依據。(4)明確解題思路,步步為營層層剝皮求出答案,答案一般保留一到兩位有效數字。
6.虛設法
在物理解題中,我們常常用到一種虛擬的思維方法,即從給定的物理條件出發,假設與想像某種虛擬的東西,達到迅速、准確地解決問題的目的,我們把這種方法較虛設法。虛設法常見的幾種情形是:虛設條件、虛設過程、虛設狀態、虛設結論等。
7.圖像法
所謂圖像法,就是利用圖像本身的數學特徵所反映的物理意義解決物理問題(根據物理圖像判斷物理過程、狀態、物理量之間的函數關系和求某些物理量)和由物理量之間的函數關系或物理規律畫出物理圖像,並靈活應用圖像來解決物理問題。
5. 數學思想有哪些
數學思想包括的內容如下:
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師要善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法
小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
6. 物理思想是什麼
意思是學物理常用的思維方法,思維其活動的結果,屬於認識。
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟。
從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑。
意識運動的引起是為思,思是意識的順向運動。
生命體在生命活動中,在意識的形態作用下,在原本意識里的事物形態與新出現的事物的形態出現了形態里的差異時,生命體的意識在差異中達成意識運動形式的引起,這引起的意識的運動就是思的本身,意識的運動的引起的內容就是問題的實質,實質的問題就是問題的主體。
意識的順向是以意識的主體的意識為參照來說明的,意識的參照是事物慣性的參照,也就是慣性行為在意識里的表現的形式表達。事物的發展變化已經超出了意識的印象時,意識在印象里的留戀是意識的慣性,以意識來講是意識的順向,在意識慣性的順向運動行為里,思進行著變化的考量。
7. 在物理學計算中,常用的思想和方法有哪些
你真的沒有找到學習物理的竅門,物理的學習不強調死記硬背,要注重理解概念規律的內涵與外延,注重把握基本的物理模型,更特別注重掌握常用的物理思想方法,主要有:
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟.從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑.
三、圖象法
圖象能直觀地描述物理過程,能形象地表達物理規律,能鮮明地表示物理量之間的關系,一直是物理學中常用的工具,圖象問題也是每年高考必考的一個知識點.運用物理圖象處理物理問題是識圖能力和作圖能力的綜合體現.它通常以定性作圖為基礎(有時也需要定量作出圖線),當某些物理問題分析難度太大時,用圖象法處理常有化繁為簡、化難為易的功效. 四、假設法
假設法是先假定某些條件,再進行推理,若結果與題設現象一致,則假設成立,反之,則假設不成立.求解物理試題常用的假設有假設物理情景,假設物理過程,假設物理量等,利用假設法處理某些物理問題,往往能突破思維障礙,找出新的解題途徑.在分析彈力或摩擦力的有無及方向時,常利用該法.
五、整體、隔離法
物理習題中,所涉及的往往不只是一個單獨的物體、一個孤立的過程或一個單一的題給條件.這時,可以把所涉及到的多個物體、多個過程、多個未知量作為一個整體來考慮,這種以整體為研究對象的解題方法稱為整體法;而把整體的某一部分(如其中的一個物體或者是一個過程)單獨從整體中抽取出來進行分析研究的方法,則稱為隔離法.
六、圖解法
圖解法是依據題意作出圖形來確定正確答案的方法.它既簡單明了、又形象直觀,用於定性分析某些物理問題時,可得到事半功倍的效果.特別是在解決物體受三個力(其中一個力大小、方向不變,另一個力方向不變)的平衡問題時,常應用此法.
七、轉換法
有些物理問題,由於運動過程復雜或難以進行受力分析,造成解答困難.此種情況應根據運動的相對性或牛頓第三定律轉換參考系或研究對象,即所謂的轉換法.應用此法,可使問題化難為易、化繁為簡,使解答過程一目瞭然. 八、程序法
所謂程序法,是按時間的先後順序對題目給出的物理過程進行分析,正確劃分出不同的過程,對每一過程,具體分析出其速度、位移、時間的關系,然後利用各過程的具體特點列方程解題.利用程序法解題,關鍵是正確選擇研究對象和物理過程,還要注意兩點:一是注意速度關系,即第1個過程的末速度是第二個過程的初速度;二是位移關系,即各段位移之和等於總位移.
九、極端法
有些物理問題,由於物理現象涉及的因素較多,過程變化復雜,同學們往往難以洞察其變化規律並做出迅速判斷.但如果把問題推到極端狀態下或特殊狀態下進行分析,問題會立刻變得明朗直觀,這種解題方法我們稱之為極限思維法,也稱為極端法.
運用極限思維思想解決物理問題,關鍵是考慮將問題推向什麼極端,即應選擇好變數,所選擇的變數要在變化過程中存在極值或臨界值,然後從極端狀態出發分析問題的變化規律,從而解決問題.
有些問題直接計算時可能非常繁瑣,若取一個符合物理規律的特殊值代入,會快速准確而靈活地做出判斷,這種方法尤其適用於選擇題.如果選擇題各選項具有可參考性或相互排斥性,運用極端法更容易選出正確答案,這更加突出了極端法的優勢.加強這方面的訓練,有利於同學們發散性思維和創造性思維的培養.
十、極值法
常見的極值問題有兩類:一類是直接指明某物理量有極值而要求其極值;另一類則是通過求出某物理量的極值,進而以此作為依據解出與之相關的問題. 物理極值問題的兩種典型解法.
(1) 解法一是根據問題所給的物理現象涉及的物理概念和規律進行分析,明確題中的物理量是在什麼條件下取極值,或在出現極值時有何物理特徵,然後根據這些條件或特徵去尋找極值,這種方法更為突出了問題的物理本質,這種解法稱之為解極值問題的物理方法. (2)解法二是由物理問題所遵循的物理規律建立方程,然後根據這些方程進行數學推演,在推演中利用數學中已有的有關極值求法的結論而得到所求的極值,這種方法較側重於數學的推演,這種方法稱之為解極值問題的物理—數學方法.
此類極值問題可用多種方法求解:
①算術—幾何平均數法,即
a.如果兩變數之和為一定值,則當這兩個數相等時,它們的乘積取極大值. b.如果兩變數的積為一定值,則當這兩個數相等時,它們的和取極小值.
②利用二次函數判別式求極值 一元二次方程ax2+bx+c=0(a≠0)的根的判別式,具有以下性質:
Δ=b2- 4ac>0——方程有兩實數解; Δ=b2-4ac=0——方程有一實數解; Δ=b2-4ac<0——方程無實數解.
利用上述性質,就可以求出能化為ax2+bx+c=0形式的函數的極值. 十一、估演算法
物理估算,一般是指依據一定的物理概念和規律,運用物理方法和近似計算方法,對物理量的數量級或物理量的取值范圍,進行大致的推算.物理估算是一種重要的方法.有的物理問題,在符合精確度的前提下可以用近似的方法簡捷處理;有的物理問題,由於本身條件的特殊性,不需要也不可能進行精確的計算.在這些情況下,估算就成為一種科學而又有實用價值的特殊方法.
十二、守恆思想
能量守恆、機械能守恆、質量守恆、電荷守恆等守恆定律都集中地反映了自然界所存在的一種本質性的規律——「恆」.學習物理知識是為了探索自然界的物理規律,那麼什麼是自然界的物理規律?在千變萬化的物理現象中,那個保持不變的「東西」才是決定事物變化發展的本質因素.
從另一個角度看,正是由於物質世界存在著大量的守恆現象和守恆規律,才為我們處理物理問題提供了守恆的思想和方法.能量守恆、機械能守恆等守恆定律就是我們處理高中物理問題的主要工具,分析物理現象中能量、機械能的轉移和轉換是解決物理問題的主要思路.在變化復雜的物理過程中,把握住不變的因素,才是解決問題的關鍵所在.
8. 物理學的幾種主要思維方式
1.模型法
物理模型是一種理想化的物理形態,將復雜的問題抽象化為理想化的物理模型是研究物理問題的基本方法。科學家通常利用抽象化、理想化、簡化、類比等把研究對象的物理學本質特徵突出出來,形成概念或實物體系,即為物理模型。模型思維法就是對研究對象或過程加以合理的簡化,突出主要因素忽略次要因素,從而解決物理問題的方法。從本質上說,分析物理問題的過程,就是構建物理模型的過程。通過構建物理模型,得出一幅清晰的物理圖景,是解決物理問題的關鍵。實際中必須通過分析、判斷、比較,畫出過程圖(過程圖是思維的切入點和生長點)才能建立正確合理的物理模型。
2.等效法
當研究的問題比較復雜,運算又很繁瑣時,可以在保證研究對象的有關數據不變的前提下,用一個簡單明了的問題來代替原來復雜隱晦的問題,這就是所謂的等效法。在中學物理中,諸如合力與分力、合運動與分運動、總電阻與各支路電阻以及平均值、有效值等概念都是根據等效的思想引入的。教學中若能將這種方法滲透到對物理過程的分析中去,不僅可以使問題的解決變得簡單,而且對知識的靈活運用和知識向能力轉化都會有很大的促進作用。
3.極端法
所謂極端法,就是依據題目所給的具體條件,假設某種極端的物理現象或過程存在並做科學分析,從而得出正確判斷或導出一般結論的方法。這種方法對分析綜合能力和數學應用能力要求較高,一旦應用得恰當,就能出奇制勝。常見有三種:極端值假設、臨界值分析、特殊值分析。
4.逆思法
在解決問題的過程中為了解題簡捷,或者從正面入手有一定難度,有意識地去改變思考問題的順序,沿著正向(由前到後、由因到果)思維的相反(由後到前、由果到因)途徑思考、解決問題,這種解題方法叫逆思法。是一種具有創造性的思維方法,通常有:運用可逆性原理、運用反證歸謬、運用執果索因進行逆思。
5.估演算法
所謂估演算法就是對某些物理量的數量級進行大致推算或精確度要求不太高的近似計算方法。估算題與一般的計算題相比較,它雖然是不精確不嚴密的計算,但確是合理的近似,它可以避免繁瑣的計算而著重於簡捷的思維能力的培養。解估算題的基本思路是:(1)抓住主要因素,忽略次要因素,從而建立理想化模型。(2)認真審題,注意挖掘埋藏較深的隱含條件。(3)分析已知條件和所求量的相互關系以及物理過程所遵守的物理規律,從而找到估算依據。(4)明確解題思路,步步為營層層剝皮求出答案,答案一般保留一到兩位有效數字。
6.虛設法
在物理解題中,我們常常用到一種虛擬的思維方法,即從給定的物理條件出發,假設與想像某種虛擬的東西,達到迅速、准確地解決問題的目的,我們把這種方法較虛設法。虛設法常見的幾種情形是:虛設條件、虛設過程、虛設狀態、虛設結論等。
7.圖像法
所謂圖像法,就是利用圖像本身的數學特徵所反映的物理意義解決物理問題(根據物理圖像判斷物理過程、狀態、物理量之間的函數關系和求某些物理量)和由物理量之間的函數關系或物理規律畫出物理圖像,並靈活應用圖像來解決物理問題。
9. 物理學中運用到的哪些數學知識
很多,基本上物理和數學不分家的。不如說物理上最常用的微積分,還有其他比如說函數的思想,導數,
解析幾何
等等,可以說數學上的東西你想用到物理上就能用的上
10. 常見的數學思想有哪些
1、符號化思想
在數學教學中,各種量的關系、量的變化以及在量與量之間進行推導和演算,都是以符號形式(包括字母、數字、圖形與圖表以及各種特定的符號)來表示,即運行著一套形式化的數學語言。
2、分類思想
以比較為基礎,按照事物間性質的異同,將相同性質的對象歸入一類,不同性質的對象歸入不同類別——這就是分類,也稱劃分。數學的分類思想體現對數學對象的分類及其分類標准。
3、函數思想
函數概念深刻地反映了客觀世界的運動變化與實際事物的量與量之間的依存關系。
它告訴人們一切事物都在不斷地變化著,而且相互聯系、相互制約,從而了解事物的變化趨勢及其運動規律。對於函數,《標准》提出了學生各個學段的要求,結合實驗教材,小學中年級的要求是「探索具體問題中的數量關系和變化規律」「通過簡單實例,了解常量和變數的意義」。
4、化歸思想
「化歸」就是轉化和歸結。在解決數學問題時,人們常常是將需要解決的問題,通過某種轉化手段,歸結為另一個相對比較容易解決的或者已經有解決程序的問題,以求得問題的解答。在小學數學中處處都體現出化歸的思想,它是解決問題的一種最基本,最常用的思想方法。
5、歸納思想
研究一般性問題時,先研究幾個簡單、個別的、特殊的情況,從中歸納出一般的規律和性質,這種從特殊到一般的思維方式被稱為歸納思想。
歸納法分為不完全歸納法和完全歸納法兩種。小學階段學生接觸較多是不完全歸納法。教學四年級上冊運算律(以加法交換律和加法結合律為例),就採用了不完全歸納法展開了教學。
6、優化思想
「多中選優,擇優而用」既是一種自然規律,又是一種好的思想方法。演算法多樣化是解決問題策略多樣化的一種重要體現。計算長方形的周長是一題多解,求同存異,在對的方法中要選擇最好的方法,弄清對的與好的,選擇好的。
在教學中滲透優化的策略和方法,及時引導學生對各種方法進行評價與反思,通過對各種不同方法的辨析、比較,幫助學生認識不同方法的特點與優勢,達到「去偽存真、去粗存精」的目的,培養學生「多中選優,擇優而用」的優化意識,構建數學知識,實現對知識的優化和系統化。
7、數形結合思想
數學是研究現實世界的空間形式和數量關系的科學。數形結合的思想,就是把問題的數量關系和空間形式結合起來加以考察的思想。