導航:首頁 > 物理學科 > 物理函數有哪些方法有哪些方法有哪些方法

物理函數有哪些方法有哪些方法有哪些方法

發布時間:2022-02-16 12:10:47

『壹』 物理研究方法有哪些。拜託了

物理方法既是科學家研究問題的方法,也是學生在學習物理中常用的方法,新課標也要求學生掌握一些探究問題的物理方法。

常見的物理方法

模型法 即將抽象的物理現象用簡單易懂的具體模型表示。如用太陽系模型代表原子結構,用簡單的線條代表杠桿等。

疊加法 物理學中常常把微小的、不易測量的同一物理量疊加起來,測量後求平均值的方法俗稱「疊加法」。

控制變數法 自然界發生的各種現象,往往是錯綜復雜的。決定某一個現象的產生和變化的因素常常也很多。為了弄清事物變化的原因和規律,必須設法把其中的一個或幾個因素用人為的方法控制起來,使它保持不變,然後來比較,研究其他兩個變數之間的關系,這種研究問題的科學方法就是「控制變數法」。初中物理實驗大多都用到了這種方法,如通過導體的電流I受到導體電阻R和它兩端電壓U的影響,在研究電流I與電阻R的關系時,需要保持電壓U不變;在研究電流I與電壓U的關系時,需要保持電阻R不變。

實驗+推理法 有一些物理現象,由於受實驗條件所限,無法直接驗證,需要我們先進行實驗,再進行合理推理得出正確結論,這也是一種常用的科學方法。如將一隻鬧鍾放在密封的玻璃罩內,當罩內空氣被抽走時,鍾聲變小,由此推理出:真空不能傳聲。

轉換法 一些看不見,摸不著的物理現象,不好直接認識它,我們常根據它們表現出來的看的見、摸的著的現象來間接認識它們。如根據電流的熱效應來認識電流大小,根據磁場對磁體有力的作用來認識磁場等。

等效法 在研究物理問題時,有時為了使問題簡化,常用一個物理量來代替其他所有物理量,但不會改變物理效果。如用合力替代各個分力,用總電阻替代各部分電阻,浮力替代液體對物體的各個壓力等。

描述法 為了研究問題的方便,我們常用線條等手段來描述各種看不見的現象。如用光線來描述光,用磁感線來描述磁場,用力的圖示描述力等。

類比法 在認識一些物理概念時,我們常將它與生活中熟悉且有共同特點的現象進行類比,以幫助我們理解它。如認識電流大小時,用水流進行類比。認識電壓時,用水壓進行類比。

物理實驗數據的處理方法

實驗數據是對實驗定量分析的依據,是探索、驗證物理規律的第一手資料。在系統誤差一定的情況下,實驗數據處理得恰當與否,會直接影響偶然誤差的大小。所以對實驗數據的處理是實驗復習的重要內容之一。本文結合一些實例來簡單介紹實驗數據的處理方法。

1. 平均值法

取算術平均值是為減小偶然誤差而常用的一種數據處理方法。通常在同樣的測量條件下,對於某一物理量進行多次測量的結果不會完全一樣,用多次測量的算術平均值作為測量結果,是真實值的最好近似。

2. 列表法

實驗中將數據列成表格,可以簡明地表示出有關物理量之間的關系,便於檢查測量結果和運算是否合理,有助於發現和分析問題,而且列表法還是圖象法的基礎。

列表時應注意:①表格要直接地反映有關物理量之間的關系,一般把自變數寫在前邊,因變數緊接著寫在後面,便於分析。②表格要清楚地反映測量的次數,測得的物理量的名稱及單位,計算的物理量的名稱及單位。物理量的單位可寫在標題欄內,一般不在數值欄內重復出現。③表中所列數據要正確反映測量值的有效數字。

3. 作圖法

選取適當的自變數,通過作圖可以找到或反映物理量之間的變化關系,並便於找出其中的規律,確定對應量的函數關系。作圖法是最常用的實驗數據處理方法之一。

描繪圖象的要求是:①根據測量的要求選定坐標軸,一般以橫軸為自變數,縱軸為因變數。坐標軸要標明所代表的物理量的名稱及單位。②坐標軸標度的選擇應合適,使測量數據能在坐標軸上得到准確的反映。為避免圖紙上出現大片空白,坐標原點可以是零,也可以不是零。坐標軸的分度的估讀數,應與測量值的估讀數(即有效數字的末位)相對應。

在網路知道里直接打進去就有了,我也是從那找來的。你不用提問的,這些問題都有答案的

『貳』 在物理學計算中,常用的思想和方法有哪些

你真的沒有找到學習物理的竅門,物理的學習不強調死記硬背,要注重理解概念規律的內涵與外延,注重把握基本的物理模型,更特別注重掌握常用的物理思想方法,主要有:
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟.從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑.
三、圖象法
圖象能直觀地描述物理過程,能形象地表達物理規律,能鮮明地表示物理量之間的關系,一直是物理學中常用的工具,圖象問題也是每年高考必考的一個知識點.運用物理圖象處理物理問題是識圖能力和作圖能力的綜合體現.它通常以定性作圖為基礎(有時也需要定量作出圖線),當某些物理問題分析難度太大時,用圖象法處理常有化繁為簡、化難為易的功效. 四、假設法
假設法是先假定某些條件,再進行推理,若結果與題設現象一致,則假設成立,反之,則假設不成立.求解物理試題常用的假設有假設物理情景,假設物理過程,假設物理量等,利用假設法處理某些物理問題,往往能突破思維障礙,找出新的解題途徑.在分析彈力或摩擦力的有無及方向時,常利用該法.
五、整體、隔離法
物理習題中,所涉及的往往不只是一個單獨的物體、一個孤立的過程或一個單一的題給條件.這時,可以把所涉及到的多個物體、多個過程、多個未知量作為一個整體來考慮,這種以整體為研究對象的解題方法稱為整體法;而把整體的某一部分(如其中的一個物體或者是一個過程)單獨從整體中抽取出來進行分析研究的方法,則稱為隔離法.
六、圖解法
圖解法是依據題意作出圖形來確定正確答案的方法.它既簡單明了、又形象直觀,用於定性分析某些物理問題時,可得到事半功倍的效果.特別是在解決物體受三個力(其中一個力大小、方向不變,另一個力方向不變)的平衡問題時,常應用此法.
七、轉換法
有些物理問題,由於運動過程復雜或難以進行受力分析,造成解答困難.此種情況應根據運動的相對性或牛頓第三定律轉換參考系或研究對象,即所謂的轉換法.應用此法,可使問題化難為易、化繁為簡,使解答過程一目瞭然. 八、程序法
所謂程序法,是按時間的先後順序對題目給出的物理過程進行分析,正確劃分出不同的過程,對每一過程,具體分析出其速度、位移、時間的關系,然後利用各過程的具體特點列方程解題.利用程序法解題,關鍵是正確選擇研究對象和物理過程,還要注意兩點:一是注意速度關系,即第1個過程的末速度是第二個過程的初速度;二是位移關系,即各段位移之和等於總位移.
九、極端法
有些物理問題,由於物理現象涉及的因素較多,過程變化復雜,同學們往往難以洞察其變化規律並做出迅速判斷.但如果把問題推到極端狀態下或特殊狀態下進行分析,問題會立刻變得明朗直觀,這種解題方法我們稱之為極限思維法,也稱為極端法.
運用極限思維思想解決物理問題,關鍵是考慮將問題推向什麼極端,即應選擇好變數,所選擇的變數要在變化過程中存在極值或臨界值,然後從極端狀態出發分析問題的變化規律,從而解決問題.
有些問題直接計算時可能非常繁瑣,若取一個符合物理規律的特殊值代入,會快速准確而靈活地做出判斷,這種方法尤其適用於選擇題.如果選擇題各選項具有可參考性或相互排斥性,運用極端法更容易選出正確答案,這更加突出了極端法的優勢.加強這方面的訓練,有利於同學們發散性思維和創造性思維的培養.
十、極值法
常見的極值問題有兩類:一類是直接指明某物理量有極值而要求其極值;另一類則是通過求出某物理量的極值,進而以此作為依據解出與之相關的問題. 物理極值問題的兩種典型解法.
(1) 解法一是根據問題所給的物理現象涉及的物理概念和規律進行分析,明確題中的物理量是在什麼條件下取極值,或在出現極值時有何物理特徵,然後根據這些條件或特徵去尋找極值,這種方法更為突出了問題的物理本質,這種解法稱之為解極值問題的物理方法. (2)解法二是由物理問題所遵循的物理規律建立方程,然後根據這些方程進行數學推演,在推演中利用數學中已有的有關極值求法的結論而得到所求的極值,這種方法較側重於數學的推演,這種方法稱之為解極值問題的物理—數學方法.
此類極值問題可用多種方法求解:
①算術—幾何平均數法,即
a.如果兩變數之和為一定值,則當這兩個數相等時,它們的乘積取極大值. b.如果兩變數的積為一定值,則當這兩個數相等時,它們的和取極小值.
②利用二次函數判別式求極值 一元二次方程ax2+bx+c=0(a≠0)的根的判別式,具有以下性質:
Δ=b2- 4ac>0——方程有兩實數解; Δ=b2-4ac=0——方程有一實數解; Δ=b2-4ac<0——方程無實數解.
利用上述性質,就可以求出能化為ax2+bx+c=0形式的函數的極值. 十一、估演算法
物理估算,一般是指依據一定的物理概念和規律,運用物理方法和近似計算方法,對物理量的數量級或物理量的取值范圍,進行大致的推算.物理估算是一種重要的方法.有的物理問題,在符合精確度的前提下可以用近似的方法簡捷處理;有的物理問題,由於本身條件的特殊性,不需要也不可能進行精確的計算.在這些情況下,估算就成為一種科學而又有實用價值的特殊方法.
十二、守恆思想
能量守恆、機械能守恆、質量守恆、電荷守恆等守恆定律都集中地反映了自然界所存在的一種本質性的規律——「恆」.學習物理知識是為了探索自然界的物理規律,那麼什麼是自然界的物理規律?在千變萬化的物理現象中,那個保持不變的「東西」才是決定事物變化發展的本質因素.
從另一個角度看,正是由於物質世界存在著大量的守恆現象和守恆規律,才為我們處理物理問題提供了守恆的思想和方法.能量守恆、機械能守恆等守恆定律就是我們處理高中物理問題的主要工具,分析物理現象中能量、機械能的轉移和轉換是解決物理問題的主要思路.在變化復雜的物理過程中,把握住不變的因素,才是解決問題的關鍵所在.

『叄』 物理研究方法有哪幾種

1.比較法 例:比較其他條件相同時電阻大小與長度的關系
2.控制變數法 例:探究電阻與哪些因素有關
3.等效替換法 例:平面鏡成像的兩根等長的蠟燭
4.模型法 例:光線
5.類比法 例:電流與水流類比
6.演繹法 例:其他條件相同時電阻大小與長度成正比.銀是電阻 所以其他條件相同時銀的電阻大小與長度成正比
7.歸納法 例:風是空氣振動發聲 人說話是聲帶振動發聲......所以一切發聲的物體都在振動
8.推理法 例:真空罩里的鬧鈴聲音隨著空氣的減少而減弱 所以真空不能傳聲

『肆』 研究物理現象一般有哪些方法

物理方法既是科學家研究問題的方法,也是學生在學習物理中常用的方法,新課標也要求學生掌握一些探究問題的物理方法。
常見的物理方法
模型法 即將抽象的物理現象用簡單易懂的具體模型表示。如用太陽系模型代表原子結構,用簡單的線條代表杠桿等。
疊加法 物理學中常常把微小的、不易測量的同一物理量疊加起來,測量後求平均值的方法俗稱「疊加法」。
控制變數法 自然界發生的各種現象,往往是錯綜復雜的。決定某一個現象的產生和變化的因素常常也很多。為了弄清事物變化的原因和規律,必須設法把其中的一個或幾個因素用人為的方法控制起來,使它保持不變,然後來比較,研究其他兩個變數之間的關系,這種研究問題的科學方法就是「控制變數法」。初中物理實驗大多都用到了這種方法,如通過導體的電流I受到導體電阻R和它兩端電壓U的影響,在研究電流I與電阻R的關系時,需要保持電壓U不變;在研究電流I與電壓U的關系時,需要保持電阻R不變。
實驗+推理法 有一些物理現象,由於受實驗條件所限,無法直接驗證,需要我們先進行實驗,再進行合理推理得出正確結論,這也是一種常用的科學方法。如將一隻鬧鍾放在密封的玻璃罩內,當罩內空氣被抽走時,鍾聲變小,由此推理出:真空不能傳聲。
轉換法 一些看不見,摸不著的物理現象,不好直接認識它,我們常根據它們表現出來的看的見、摸的著的現象來間接認識它們。如根據電流的熱效應來認識電流大小,根據磁場對磁體有力的作用來認識磁場等。
等效法 在研究物理問題時,有時為了使問題簡化,常用一個物理量來代替其他所有物理量,但不會改變物理效果。如用合力替代各個分力,用總電阻替代各部分電阻,浮力替代液體對物體的各個壓力等。
描述法 為了研究問題的方便,我們常用線條等手段來描述各種看不見的現象。如用光線來描述光,用磁感線來描述磁場,用力的圖示描述力等。
類比法 在認識一些物理概念時,我們常將它與生活中熟悉且有共同特點的現象進行類比,以幫助我們理解它。如認識電流大小時,用水流進行類比。認識電壓時,用水壓進行類比。
物理實驗數據的處理方法
實驗數據是對實驗定量分析的依據,是探索、驗證物理規律的第一手資料。在系統誤差一定的情況下,實驗數據處理得恰當與否,會直接影響偶然誤差的大小。所以對實驗數據的處理是實驗復習的重要內容之一。本文結合一些實例來簡單介紹實驗數據的處理方法。
1. 平均值法
取算術平均值是為減小偶然誤差而常用的一種數據處理方法。通常在同樣的測量條件下,對於某一物理量進行多次測量的結果不會完全一樣,用多次測量的算術平均值作為測量結果,是真實值的最好近似。
2. 列表法實驗中將數據列成表格,可以簡明地表示出有關物理量之間的關系,便於檢查測量結果和運算是否合理,有助於發現和分析問題,而且列表法還是圖象法的基礎。
列表時應注意:①表格要直接地反映有關物理量之間的關系,一般把自變數寫在前邊,因變數緊接著寫在後面,便於分析。②表格要清楚地反映測量的次數,測得的物理量的名稱及單位,計算的物理量的名稱及單位。物理量的單位可寫在標題欄內,一般不在數值欄內重復出現。③表中所列數據要正確反映測量值的有效數字。
3. 作圖法選取適當的自變數,通過作圖可以找到或反映物理量之間的變化關系,並便於找出其中的規律,確定對應量的函數關系。作圖法是最常用的實驗數據處理方法之一。
描繪圖象的要求是:①根據測量的要求選定坐標軸,一般以橫軸為自變數,縱軸為因變數。坐標軸要標明所代表的物理量的名稱及單位。②坐標軸標度的選擇應合適,使測量數據能在坐標軸上得到准確的反映。為避免圖紙上出現大片空白,坐標原點可以是零,也可以不是零。坐標軸的分度的估讀數,應與測量值的估讀數(即有效數字的末位)相對應。

『伍』 學函數有哪些技巧和方法

函數比較不好學,但以前我們老師一直強調一點,就是歸納,這是最重要的.自己多做題目,然後歸納出總共有哪些解題類型,把它們分成幾類,再找出以前做過的比較好的題目歸到相應的類型中,因為數學里類型分別的非常清楚,所以只要能夠歸好類型,以後的題目都可以用類型去套,至於歸納的到底准確不準確,我想可以去請教老師,或者是多做一些題目,也許結果就明了了.歸納是最重要的,拿一本本子,把裡面的各個類型都整理好,加上多做題,按我們老師的話說就是"以後有題目看一看就出來了",可以立即反應它應該用什麼方法做,其實有的時候,數學的題目解題過程就是差不多隻有那麼幾種方法,只要把類型套進去,什麼問題都可以迎刃而解

『陸』 函數一共有哪些展開方法

1. Taylor series
2. Laurent series

they are the most common used expansion in mathematics

『柒』 判斷函數的解析性有哪些方法

在區域上研究問題,解析和可微(可導)是等價的,兩者可以互推。在某點處研究問題,只有解析才能推出可微。可微推不出可導。討論可微性和解析性時,不管是用可微的充分性還是用必要性或充要性,只需看實部和虛部是在某點上或某線上滿足C-R方程還是在某個域滿足C-R方程。在域上就是解析的。

拓展資料:

1、連續性定義:若函數f(x)在x0有定義,且極限與函數值相等,則函數在x0連續
2、充分條件:若函數f(x)在x0可導或可微(或者更強的條件),則函數在x0連續
3、必要條件:若函數f(x)在x0無定義、或無極限、或極限不等於函數值,則在x0不連續
4、觀察圖像(這個不嚴謹,只適用直觀判斷)
5、記住一些基本初等函數的性質,大部分初等函數在定義域內都是連續的
6、連續函數的性質:連續函數的加減乘,復合函數等都是連續的

個人認為學函數要注意幾點:

1。清楚定義域,值域,這個是正確解答函數的前提。

2。一般題目都會給些基本知識,所以要清楚弄懂基礎概念:
例如:
奇(偶)函數及其等價數學表達式(例如:奇函數等價於f(x)=-f(-x))。
二次函數,冪函數、指數函數、對數函數,這些函數的圖象與性質。
函數在區間上單調增(減)證明。
周期函數證明。

3。培養數形結合的思維,進行數學符號語言與圖形語言的靈活轉換,記住基礎函數的圖像和性質,一開始可以對著課本做習題。

弄清楚以上概念,不管題目怎麼變換都是熟悉的模式,最多加上解題技巧,這些通過一定習題就可以練習出來,所以學函數抓基礎定義及其等價數學表達,數形結合三大關鍵因素。

『捌』 物理實驗數據處理的方法有哪些

實驗數據的處理方法

實驗結果的表示,首先取決於實驗的物理模式,通過被測量之間的相互關系,考慮實驗結果的表示方法。常見的實驗結果的表示方法是有圖解法和方程表示法。在處理數據時可根據需要和方便選擇任何一種方法表示實驗的最後結果。

(1)實驗結果的圖形表示法。把實驗結果用函數圖形表示出來,在實驗工作中也有普遍的實用價值。它有明顯的直觀性,能清楚的反映出實驗過程中變數之間的變化進程和連續變化的趨勢。精確地描制圖線,在具體數學關系式為未知的情況下還可進行圖解,並可藉助圖形來選擇經驗公式的數學模型。因此用圖形來表示實驗的結果是每個中學生必須掌握的。

圖解法主要問題是擬合面線,一般可分五步來進行。

①整理數據,即取合理的有效數字表示測得值,剔除可疑數據,給出相應的測量誤差。

②選擇坐標紙,坐標紙的選擇應為便於作圖或更能方使地反映變數之間的相互關系為原則。可根據需要和方便選擇不同的坐標紙,原來為曲線關系的兩個變數經過坐標變換利用對數坐標就要能變成直線關系。常用的有直角坐標紙、單對數坐標紙和雙對數坐標紙。

③坐標分度,在坐標紙選定以後,就要合理的確定圖紙上每一小格的距離所代表的數值,但起碼應注意下面兩個原則:

a.格值的大小應當與測量得值所表達的精確度相適應。

b.為便於制圖和利用圖形查找數據每個格值代表的有效數字盡量採用1、2、4、5避免使用3、6、7、9等數字。

④作散點圖,根據確定的坐標分度值將數據作為點的坐標在坐標紙中標出,考慮到數據的分類及測量的數據組先後順序等,應採用不同符號標出點的坐標。常用的符號有:×○●△■等,規定標記的中心為數據的坐標。

⑤擬合曲線,擬合曲線是用圖形表示實驗結果的主要目的,也是培養學生作圖方法和技巧的關鍵一環,擬合曲線時應注意以下幾點:

a.轉折點盡量要少,更不能出現人為折曲。

b.曲線走向應盡量靠近各坐標點,而不是通過所有點。

c.除曲線通過的點以外,處於曲線兩側的點數應當相近。

⑥註解說明,規范的作圖法表示實驗結果要對得到的圖形作必要的說明,其內容包括圖形所代表的物理定義、查閱和使用圖形的方法,制圖時間、地點、條件,制圖數據的來源等。

(2)實驗結果的方程表示法。方程式是中學生應用較多的一種數學形式,利用方程式表示實驗結果。不僅在形式上緊湊,並且也便於作數學上的進一步處理。實驗結果的方程表示法一般可分以下四步進行。

①確立數學模型,對於只研究兩個變數相互關系的實驗,其數學模型可藉助於圖解法來確定,首先根據實驗數據在直角坐標系中作出相應圖線,看其圖線是否是直線,反比關系曲線,冪函數曲線,指數曲線等,就可確定出經驗方程的數學模型分別為:

Y=a+bx,Y=a+b/x,Y=a\b,Y=aexp(bx)

②改直,為方便的求出曲線關系方程的未定系數,在精度要求不太高的情況下,在確定的數學模型的基礎上,通過對數學模型求對數方法,變換成為直線方程,並根據實驗數據用單對數(或雙對數)坐標系作出對應的直線圖形。

③求出直線方程未定系數,根據改直後直線圖形,通過學生已經掌握的解析幾何的原理,就可根據坐標系內的直線找出其斜率和截距,確定出直線方程的兩個未定系數。

④求出經驗方程,將確定的兩個未定系數代入數學模型,即得到中學生比較習慣的直角坐標系的經驗方程。

中學物理實驗有它一套實驗知識、方法、習慣和技能,要學好這套系統的實驗知識、方法、習慣和技能,需要教師在教學過程中作科學的安排,由淺入深,由簡到繁加以培養和鍛煉。逐步掌握探索未知物理規律的基本方法。

『玖』 應用題中列出函數關系式有哪些方法

(1)待定系數法:已知條件中已給出了含參數的函數關系式,或可確定函數類別,此種情形下應用待定系數法求出函數表達式中的相關參數(未知系數)的值,就可以得到確定的函數式. (2)歸納法:先讓自變數x取一些特殊值,計算出相應的函數值,從中發現規律,再推廣到一般情形,從而得到函數表達式. (3)方程法:用x表示自變數及其他相關的量,根據問題的實際意義,運用掌握的數學、物理等方面的知識,列出函數關系式,此種方法形式上和列方程解應用題相仿,故稱為方程法,實際上函數關系式就是含x、y的二元方程.

『拾』 怎樣學好物理 有哪些方法和技巧高中

多學習、多觀察、多思考。其實高中物理講的就是一些自然界當中事物的定理,這些在我們身邊還有很多事物都蘊含這這些真理,生活處處都有物理,就比如說我們每次坐車,我們看外面的世界就可以看見這些車子外面的東西都在向後走,這就是我們高中物理當中的參照物,這個知識點,生活到處都存在知識,你要用心去體會。

閱讀全文

與物理函數有哪些方法有哪些方法有哪些方法相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1259
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1349
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:826
武大的分析化學怎麼樣 瀏覽:1212
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016