㈠ 學習物理需要哪些知識
學好數學和邏輯學就足夠學好全部的物理了。最多加點天文學。
數學的建立就是為了解決物理學問題。
你要想把物理的所有分支都學好,就必須把數學的所有分支都學好,這一點沒商量的。實際上人的精力是有限的,就算是愛因斯坦那樣的天才的人也只能學好物理學的一兩個分支,同時要相應的學好數學的幾個分支。
㈡ 物理學習時應注意哪些問題
有一句話道出了各科的特點:「物理難,化學繁,數學習題做不完」,許多門生反應物理難學,欠好明確,面臨著一道道的物理題,就像是霧中看花一樣,總有不識廬山真面目之感,著實,我以為難不難在於你對該科學習本事的探索和掌握,對怎樣學好物理,我說說自己的以為,盼望能起到拋磚引玉的作用。
一、學會對物理看法的重復闡發、琢磨
能不能學好物理,在很大水平上決定於你對物理看法能否明確得透徹,物理看法因其抽象性,總有:「只可意會,不行言傳」之感,好比「能量」、「慣性」等等這些看法,單靠老師的「言傳」並不能傳神地表達出看法的真諦所在,而只有自己做到了「意會」才氣真正領略出它的全部內在,這種「意會」的以為就只有靠我們對看法的重復闡發、琢磨才氣領會得到,所謂「師傅引進門,修行在小我私家」意義正在於此。比喻「摩擦力」這個看法,書中是這樣下界說的:「兩個相互打仗的物體,當它們孕育發生相對活動時,就會在打仗面上孕育發生一種攔阻相對活動的力,這種力就叫做摩擦力」,經過闡發,我們可首先找出看法中的要害字句,「相互打仗」、「相對活動」、「打仗面上」「攔阻相對活動」然後琢磨、領會這些字句的寄義。「相互打仗」說出了摩擦力孕育發生的主要條件,並由此可遐想到它與重力、磁力等的差異,但是不是相互打仗的物體就肯定有摩擦力呢?顯然不是,一個「當」字展現出了「摩擦力」的孕育發生一定是陪同著「相對活動」,那麼什麼是「相對活動」呢?「相對」二字應該是指這「兩個相互打仗的物體」,由此意識到堅定兩個相互打仗的物體之間是否孕育發生摩擦力的依據應該是看這兩個物體是否孕育發生了「相對活動」而不是看這兩個物體是否孕育發生了「活動」,「打仗面上」陳訴了我們摩擦力孕育發生的位置,而「攔阻相對活動」則說明確「摩擦力」的作用和偏向,它的作用是攔阻「相對活動」而不是「攔阻活動」,那麼它的偏向就應該與「相對活動」的偏向相反而不是與「活動」的偏向相反,並由此可恍然悟到摩擦力並不總是阻力。經過這樣的重復闡發、琢磨,我們對摩擦力孕育發生的條件、位置、作用、偏向自然就會清楚、透徹,那裡還會有似是而非之感呢。
二、學會對物理實驗的層層分析
物理是一門實驗科學,縱觀課本上的實驗內容,演示實驗、門生實驗、課後小實驗、小製作等,大巨微小不下百十個,由此可見物理與實驗的不行支解性,這么多的實驗怎樣才氣搞得清,弄得明呢?所謂「萬變不離其宗」,著實無論什麼樣的實驗,無外乎都有這么幾部分組成,實驗的目的、原理是什麼?需要哪些器材?分幾步舉行?每一步要饜足什麼樣的條件?怎樣饜足?要視察什麼?紀錄什麼?怎樣闡發視察到的徵象?整理紀錄到的數據?著末得到的結論是什麼?比喻在《焦耳定律》這節課中,書中一開始就給我們提出了這樣一個題目,「燈泡接入電路中時,燈泡和電線中流過類似的電流,燈泡和電線都要發熱,但是現實上燈泡熱得發光,電線的發熱卻覺察不出來,這是為什麼?」由此,需要研究電流孕育發生的熱量跟哪些因素有關連,這即是焦耳定律實驗的目的。怎樣舉行研究呢?遐想到物體間熱轉達的規律和溫度計的製作原理便計劃出了如課本圖9-7所示的實驗裝置,由此便把電放逐出熱量的幾多形象地轉化成了液柱上升得曲折,這即是該實驗的原理。闡發可知該實驗需分三步舉行,分別研究電流孕育發生的熱量與電阻的巨細、電流的巨細、和通電時間的是非的關連,在這三步中,當我們研究電熱與電阻的關連時,就必須保證電流和通電時間類似而電阻差異;當研究電熱與電流的關連時,就必須保證電阻和通電時間類似而來轉變電流;當研究電熱與通電時間的關連時就應該保證電流和電阻的巨細類似而通電時間差異。那麼書中又是怎樣到達這些要求呢?在第一步中接納的措施是把兩個差異阻值的電阻接成了串聯電路;在第二步中接納的措施是比力統一個燒瓶中液柱上升得曲折,而用變阻器來轉變它的電流;至於第三步就無須多說各人明確,然後議決視察每一步中條件轉變前後液柱的升降情況便得出了焦耳定律的內容。在平常的學習中,如果我們對每一個實驗都能這樣環環設問、層層分析,那麼對整個實驗歷程就會了如指掌、緘默於胸,還有什麼能難倒我們呢?
三、學會議決實踐加深對物理公式中各物理量寄義簡直切明確
學習理科離不開盤算,在物理公式中對各物理量間的對應性以及確切的物理寄義的明確要求很高,而搪塞初學者而言通常不行能一下子就明確得透徹,因此通常出現張冠李戴、亂點鴛鴦譜的徵象,這就要求我們要學會議決實踐來加深對物理量寄義簡直切明確。比喻,搪塞功的盤算公式W=FS中S的寄義的考察有這么一道題:一位同硯用50N的力,將重30N的鉛球推到7m遠處,這位同硯對鉛球做的功為:A.350J B.210J C.0J D.無法堅定。初學者通常以為選A或C,但一旦知道准確答案應為D,那麼對S的寄義自然是心心相印。哲學上講,我們對事物的認
㈢ 學物理需要什麼
學物理需要弄明白幾個問題:
一是「物理模型」這個概念,在物理學習中很重要,很多題目均是一個模型,這樣能舉一反三。
二是學會將看似零碎的知識點穿插起來,所有學科中,物理是最綜合的。只要將知識點聯系起來,你會發現其實物理當中知識點很少。
三是要吃透每一個物理題目,因為每一個物理的題目都是一個「模型」,你一個題目不會,說明你這個模型沒有理解透徹,將這個題目理解透徹之後加以總結,你就比別人多掌握了一個類型的題目。
希望能幫得到你!
㈣ 物理學專業學什麼 主要課程有哪些
物理學專業主要學習高等數學、力學、熱學、光學、電磁學、原子物理學、數學物理方法、理論力學、熱力學與統計物理、電動力學、量子力學、固體物理學、結構和物性、計算物理學入門等。物理學是一門普通高等學校本科專業,屬物理學類專業,基本修業年限為四年,授予理學學位。
物理學專業課程有高等數學、力學、熱學、光學、電磁學、原子物理學、數學物理方法、理論力學、熱力學與統計物理、電動力學、量子力學、固體物理學、結構和物性、計算物理學入門等。
有人說,物理專業本科生轉行比不轉行要正常得多,而且越TOP的物理系越是這樣。這里的「轉行」指的是不去搞學術研究的東西,更恰當的說法應該是「沒有熱愛物理到以學術為工作的程度」。
表面上看,物理學專業出身的小夥伴們好像什麼都能做,又好像什麼都做不了。這是因為咱們學的東西太基礎,就業面太寬,看起來沒有什麼特別對口的職位,以致於咱們專業的就業率很難突破90%。事實上,物理學的專業背景在實際工作應用中很有優勢,既有不俗的數學基礎,又具備工程領域的根基。許多物理出身的前輩們都受益於這兩點。所以,不論做什麼,物理人都能得心應手。
㈤ 大學物理主要學什麼
大學物理,是大學理工科類的一門基礎課程,通過課程的學習,使學生熟悉自然界物質的結構,性質,相互作用及其運動的基本規律,為後繼專業基礎與專業課程的學習及進一步獲取有關知識奠定必要的物理基礎。但工科專業以力學基礎和電磁學為主要授課。
全書共13章,涉及力學、熱學、電磁學、振動和波、波動光學、狹義相對論和量子物理基礎等. 每章包括基本內容之外,還包括閱讀材料、復習與小結、練習題. 內容深淺適當,講解正確清晰,敘述引人入勝,例題指導詳盡,全書聯系實際,特別是注意介紹物理知識和物理思想在實際中的應用. 本書有電子教材和學習輔導書等配套資料。
物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。
該專業學生主要學習物質運動的基本規律,接受運用物理知識和方法進行科學研究和技術開發訓練,獲得基礎研究或應用基礎研究的初步訓練,具備良好的科學素養和一定的科學研究與應用開發能力。
㈥ 大學物理專業的,數學基礎需要有哪些
解答:
物理系的理論基礎有四大力學:
《理論力學》、《電動力學》、《統計力學》、《量子力學》
學好這幾門基本功的主要數學基礎是:
1、《微積分》,包括《積分變換》、《矢量分析與場論》、《常微分方程》、
《偏微分方程》、《復變函數》等(微積分是無論如何少不了的);
2、《概率統計》
3、《高等代數》,至少要學《線性代數》。
說明:
a、通常一般人所說的《高等數學》,只是《微積分》而已,廣義來說,上面的
這些都是屬於《高等數學》。
b、任何一本大學《微積分》教材上,都會有這些符號。
c、理工科的、農醫葯的、數學系的《微積分》,差別很大。雖然內容一樣,但
是嚴謹程度相差很大,如果自學數學系的《數學分析》,就很難很難看懂,
似乎看懂時,根本不知道如何解題。所以選書很重要。
d、樓上幾位多推薦同濟大學出版的《高等數學》,是因為寫得比較淺顯易懂。
㈦ 物理到底學什麼
初中物理是義務教育的基礎學科,一般從初二開始開設這門課程,教學時間為兩年。一般也是中考的必考科目。旨在培養學生的理科思維,對身邊的物理常識有定性的認識,同時也應用於生活,我們學習物理知識的主要目的是用物理知識去解釋生活中的各種現象,並運用物理知識去分析各種問題出現的原因,從而找出解決問題的方法與措施來解決相關問題。
物理學(Physics)主要包括以下部分:物理現象、物質結構、物質相互作用、物質運動規律。
物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。
物理學研究的領域可分為四大方面:
1.凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。
2.原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。
3.高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。
4.天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。
㈧ 學習物理需要什麼
物理是中學階段的重點科目之一。怎樣學好物理這門課呢�
第一要切實學懂每個知識點。懂的標準是每個概念和規律你能回答出它們「是什麼」「怎麼樣」「為什麼」等問題;對一些相近似易混淆的知識,要能說出它們的聯系和本質區別;能用學過的概念和規律分析解決一些具體的物理問題。
為了學懂,同學們必須做到以下三點:認真閱讀課本;認真聽講;理論聯系實際。課本知識是前人經驗的高度概括和總結,准確精練,不是隨便看一遍就可弄懂的,必須反復閱讀和揣摩,通過課前的閱讀了解知識重、難和疑點�以便上課時有目的聽講,提高學習效率。課堂上,老師的講解一般會比課本更具體更詳細。認真聽講,一方面能更好的掌握知識的來龍去脈,加深理解,另一方面,還要注意學習老師分析問題解決問題的思路和方法,提高思維能力;此外,重視實驗,理論聯系實際也是提高學習效果的重要途徑之一。這是因為物理知識都是從生產、生活、科學實驗中概括和總結出來的,是一門實驗性極強的學科。把理論知識與實際相聯系,不僅能提高動手能力,而且能加深對所學知識的印象,加深理解,鞏固記憶。
第二,學習物理,要掌握物理學科特有的思維方式。中學的物理規律並不多,但物理現象和過程卻千變萬化。只掌握了基本概念和規律是不夠的,還必須掌握科學的思維方式。如假設法,理想化法,等效替代法,隔離法與整體法,獨立作用原理以及迭加合成原理等等。掌握了科學的思維方法,才能提高推理能力,分析綜合能力,把復雜的問題分解為簡單問題的能力,靈活地運用所學知識去解決物理問題。
第三,要即時復習鞏固所學知識。對課堂上剛學過的新知識,課後一定要把它的引入、分析、概括、結論、應用等全過程進行回顧,並與大腦里已有的相近的舊知識進行對比,看看是否有矛盾,否則說明還沒有真正弄懂。這時就要重新思考,重新看書學習。在弄懂所學知識的基礎上,要即時完成作業,有餘力的同學還可適量地做些課外練習,以檢驗掌握知識的准確程度,鞏固所學知識。
第四,閱讀適量的課外書籍,豐富知識,開闊視野。實踐表明,物理成績優秀的同學,無不閱讀了大量的課外書籍。這是因為,不同的書籍,不同的作者會從不同角度用不同的方式來闡述問題,閱讀者可以從各方面加深對物理概念和規律的理解,學到很多巧妙更簡捷的解題思路和方法。在這方面我自己就有切身的體會,見識一多,思路當然就活了。
㈨ 一般大學物理系要學些什麼阿
外語、計算機基礎、力學、熱學、電磁學、光學、原子物理學、高等數學、線性代數、概率統計、微分方程、數學物理方法、模擬電子技術、數字電子技術、理論力學、電動力學、熱力學與統計物理學、量子力學、固體物理學、計算物理、大學物理實驗、近代物理實驗、電子線路實驗、物理學專業實驗、 感測器原理及應用、微機原理及應用、 C 語言、介面技術、單片機開發及實驗、高等量子力學、量子場論、計算物理、現代光學、光電子學與激光技術、固體光電子學、薄膜科學與技術
㈩ 物理需要怎麼學
學物理最重要的就是理解,在把基本概念和規律掌握清楚的基礎上,然後再去做題,才能理清做題思路,獨立做會物理難題。學物理還有一點特別重要,就是要懂得推理與分析、學會總結。
學物理最基本、最重要的一點就是理解,光背公式是沒有用的,物理公式既少又簡單,但是理解起來卻有一定困難。物理定義要逐字深入分析與理解,學物理公式要學會舉一反三,透徹理解每一個符號所代表的含義。
定義與公式學透以後就是獨立做題了,物理不做題是學不會的。做物理題目不能不會就放著,而是要要從題眼出發,逐步進行嚴謹的邏輯推理,根據所給條件推出結論來。做題時最好要獨立去做,不要直接看答案或者聽老師去講,那樣都是沒有效果的,對提高物理解題能力幫助不大。
學好物理還要學會分析物理過程,不能看答案很簡單,就以為物理不難。其實物理的難點不在於計算過程,而在於物理分析過程。只有學會分析才能把復雜問題簡單化,變抽象為具體,從而更精確的掌握物理過程。
學物理要會總結,不能做完題就丟到一邊,要把一類題目加以總結,最好提煉出固定的解題模式。對於做錯的題目要注意研究錯因,思考為什麼會做錯,並從中吸取經驗教訓,然後多找些類似的題目加以鞏固。