Ⅰ 簡述OSI中物理層、數據鏈路層、網路層的功能及特點
1.物理層
物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。
媒體和互連設備物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE即數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連接設備,如數據機等。數據傳輸通常是經過DTE
DCE,再經過DCE
DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜,T形接頭、插頭,接收器,發送器,中繼器等都屬於物理層的媒體和連接器。
2.數據鏈路層
數據鏈路可以粗略地理解為數據通道。物理層要為終端設備間的數據通信提供傳輸媒體及其連接。媒體是長期的,連接是有生存期的。在連接生存期內,收發兩端可以進行不等的一次或多次數據通信。每次通信都要經過建立通信聯絡和拆除通信聯絡兩過程。這種建立起來的數據收發關系就叫做數據鏈路。而在物理媒體上傳輸的數據難免受到各種不可靠因素的影響而產生差錯,為了彌補物理層上的不足,為上層提供無差錯的數據傳輸,就要能對數據進行檢錯和糾錯。數據鏈路的建立、拆除,對數據的檢錯、糾錯是數據鏈路層的基本任務。
3.網路層
網路層的產生也是網路發展的結果。在聯機系統和線路交換的環境中,網路層的功能沒有太大意義。當數據終端增多時。它們之間有中繼設備相連。此時會出現一台終端要求不只是與惟一的一台而是能和多台終端通信的情況,這就產生了把任意兩台數據終端設備的數據鏈接起來的問題,也就是路由或尋徑。另外,當一條物理信道建立之後,被一對用戶使用,往往有許多空閑時間被浪費掉了。於是人們自然會希望讓多對用戶共用一條鏈路。為解決這一問題,就出現了邏輯信道技術和虛擬電路技術。
在具有開放特性的網路中的數據終端設備,都要配置網路層的功能。現在市場上銷售的網路硬體設備主要有網關和路由器等。
Ⅱ 如何理解lte物理層
如何理解LTE物理層?有深度..還通俗易懂
1.機制的來源 ---- 哲學
1. 想出來的,協議或規定,特別是『恰當(中庸的思想),極端就是毀滅. 就像TDD沒有沿用3G的上下行隨便配置的方法,但也不能只有一種配置,這樣太死板,所以折中之後提取出了七種比較有意義的幀結構模型。
2. 具體問題具體分析。不能生搬硬套,要根據具體的情況訂出具體的策略。後面介紹每種信道的時候就能看出來,每種信道的處理幾乎都不一樣,沒有一種完全統一的方式。
3. 就像數學推論一樣,當問一個為什麼,不斷問下去的時候?最後要不是規定或者設計思想;就要不是『公理,定理』,根本沒法證明。
4. 任何事情都沒有完美的,有利有弊,只是看你有沒有發現而已。
5. 配置出來的
6. 潛規則,這是一種規則但並沒有顯示表示(在代碼中也有同樣的。由於潛規則不容易發現而且難於理解,最好少用)
註:也許這些看起來比較空洞,但當你看完了後面的信道實現再反過來看的時候,就能很好的感覺這些思想的意義了。
2.後面討論的一些限制
●只涉及TDD-LTE,TDD比較復雜些,想清楚了它,FDD自然也好理解
●只涉及子載波是15kz的情況
●只討論『一個時隙有7個symbol的情況』,也就是normal循環前綴(Normal cyclic prefix)的情況。不討論Extended cyclic
prefix的情況
●不討論半靜態調度,也許偶爾會涉及到
●不討論MIMO的情況
●看的都是860的協議,分別是36211-860,36212-860,36213-860
註:調制之後也產生符號,而一個資源塊RB也是時域上也是有符號的概念。所以為了兩者區別,『調制符號』就是指『調制之後也產生符號』;而正常的『符號』就是指『時域的符號』的概念。
3.LTE整體理解
3.1 生活交流就是LTE ----設計思想
讓我們從生活的角度來簡單理解下『通訊』,自己想出來的,有些也可能不太准確,只是想表達一種意思。假設eNodeb,UE都是人,是一個enodeb同時和多個UE進行交流。
加擾:由於enodeb和每個UE談話的時候,都不想別人聽得懂它們之間的談話的內容。所以enodeb和每個UE談話的時候,都用一種不同的語言,這也就相當於別的人雖然聽到了,但是聽不懂。相當於通訊中加擾。
功控:由於enodeb和多個UE都在一個環境談話。如果一個UE講得太小,enodeb聽不到,enodeb就會讓那個UE說話聲音大點;如果UE說話聲音太大了,又吵著了enodeb和其他人談話,所以太大了又會讓那個UE說話小聲點。就這樣不停的根據環境變化說話聲音的大小,這也就是『通訊中的功控了』,當然enodeb肯定也會控制自己說話的音量的。
編碼率(CQI決定):enodeb和UE之間談話,覺得UE說話太快了,聽不清楚,就會跟UE說,你說話慢點;這樣UE每一個分鍾說的話也就少了,表達的意思就少了,當然這也是根據環境不斷變化的;反過來也一樣。這也就是通訊中『編碼率』,表達了選擇到的那塊資源(時間頻域)所能攜帶的,由CQI(channel quality indication)決定的。由於只能讓聽的人來決定說話是否快慢,所以:通訊中下行就是通過UE上報的CQI—channel
quality indication決定下行編碼率,因為UE是聽者;上行enodeb自己來判斷CQI—channel quality indication決定上行編碼率,因為enodeb是聽者。
ASN編碼方式:就像人說話是否精練一樣。同樣的字數能傳遞的信息數是不一樣的,像電報就要求比較精煉。無線側的ASN編碼就像人說話很乾練;而有線側TLV的ASN編碼模式就相當於說話比較啰嗦。
資源位置的選擇(CQI決定):enodeb可以讓UE站在不同的地方,看看它聽enodeb說話的效果怎麼樣,或者讓UE站在各個地方說『事先訂好大家都知道的話』。哪裡enodeb聽得最清楚,最後enodeb就說你就站在那裡說話吧,那裡說話聽得最清楚。這也就是通訊中『資源位置的選擇』,就是通過『不同資源上返回的CQI,去選擇CQI最好的資源進行分配,當然這只是理想情況』。此時說話的內容都是事先訂好的,這也就是通訊中的RS(參考信號的作用),RS還有個作用『相干解調』,後面會介紹。
資源數目的選擇:用說話不好做比喻。就用貨物運送吧。UE說我有很多貨要送。Enodeb說我就給你多拍幾輛車來送貨把。這就是資源數目的意思了。
調度:一個enodeb和多個UE之間對話,每個人都有話要說,每個人可能要說好幾件事,每件事重要程度也是不一樣的(這也就是通訊中DRB的優先順序),每件事說多少話也是不一樣。而且有些UE的話重要,有些不太重要(這也就是UE的調度優先順序)。但enodeb又忙不過來,它就去決定什麼時候和某個UE對話,什麼時候又聽UE說話,分配多少時間給某個UE,分配多少車輛給UE送貨(因為總的車輛數是一定的,也就是上下行帶寬),最後調度就決定最後怎麼去做。
正交:想到一個比喻但不是太恰當。就像一盤有各種顏色的珠子混在一起,然後你用自己對應的顏色,就能從混在一起的珠子中選出你自己想要的顏色的珠子。顏色就相當於正交碼;用想要的顏色去匹配的動作就是正交運算。
3.2 一些設計基本原則----設計思想
●為了防止小區間干擾,通常通用的會通過PCI(physical cell id)進行偏移計算或者『參與加擾計算』來防止干擾;如果和時間(時隙0~19)的變化相關,還加上『時間』參與加擾。
●為了防止小區內不同UE的干擾或者決定UE的資源分配位置,通過一個與無線側UE相關的唯一標識--『RNTI』進行加擾或者定位資源分配的位置。考慮到,如果資源分配的位置還有沖突,可能還會加入一個系統內相對的子幀號(0~9)或者時隙號(0~19)來解決這種資源沖突,讓這種沖突再下一個時間點能得到解決,也就是資源分配的位置由RNTI和子幀號/時隙號共同決定。當然也會加上PCI來區分不同小區之間的不同UE。
●為了『離散化』數據,一般喜歡『橫放列取』的方法。
●由於『空口最大的一個缺陷就是資源少』,所以為了盡量節省資源,產生了很多潛規則,而且也有時會『1bit當2bit用,就是說不同的外部條件下,該1bit代表不同的意思』。這樣雖然節省了資源,但這樣的不利就是『演算法和限制條件太多了太煩了』。
●要是『沒有了TDD』,也許思路該清凈/清晰很多了。看物理層協議,TDD由於上下行配置的多樣性和不對稱性,產生了非常多的額外的處理問題,特別是HARQ ACK/NACK的處理。
3.3 基準時間單位-----規定
Ts = 1/30,720,000 S
這個的意思就是說『每1秒,每個天線埠都會發送出30 720 000個『調制符號』出去』。
3.4 FDD和TDD的幀結構 -- 規定
3.4.1 FDD幀的結構
FDD的配置,對稱的(上下行不同的頻點)
系統幀,子幀,時隙,符號(symbol)與時間單位的關系
Tframe(307 200 * Ts=10ms)-->10* Tsubframe(30 720*Ts=1ms) -->
2* Tslot(15 360*Ts = 0.5ms)-->7/6 symbol(2048*Ts = 66.7us).
3.4.2 TDD幀的結構
3.4.2.1思想
TDD的幾種配置,可以不對稱
●思想(折中):就像TDD沒有沿用3G的上下行隨便配置的方法,但也不能只有一種配置,這樣太死板,所以折中之後提取出了七種比較有意義的幀結構模型。
●參看:36211的Table 4.2-2
●0和5這兩個子幀都必須是下行,2必須是上行。
●0和5這兩個子幀都必須是下行,2必須是上行。
●幀結構的配置可以改變,但不能改變得太快,不能每個系統幀都變一下
●為了防止小區間干擾,相鄰小區的上下行配置最好一樣
●特殊子幀只有下行轉換到上行之間才有
●幀結構和特殊指針的DWPTS/GP/UPPTS的時長都是由系統信息通知給手機的
●使用那種時隙結構,是基於每個子幀都可以變化的。一般』擴展的CP』就是給MBMS子幀用的。
●後面就能知道由於『一個幀內的上下行子幀的數目不一樣』這種不對稱的配置,最後導致很多特殊的處理出來。也許現在還不太了解,看完後面的說明應該就了解了。
3.4.2.2 配置
RRC::SystemInformationBlockType1--> TDD-Config --> subframeAssignment
3.4.3 TDD特殊子幀的結構
RRC::SystemInformationBlockType1 àTDD-Config à specialSubframePatterns決定特殊子幀的配置。
注意上表的紅色部分,對應到的符號symbol數,因為PDCCH要佔用1~3(normal)符合,所以『也就會明白,後面提到的為什麼特殊子幀配置為0,5的時候,為什麼不能傳輸下行數據了,因為如果PDCCH佔3個符號就沒有資源給PDSCH用了(設計的人也是以PDCCH占最大情況來考慮的,一刀切。沒有根據PCFICH來判斷,如果根據PCFICH來判斷演算法會復雜。兩種方法各有利弊)。
3.4.4 問題
3.4.4.1 問題1: 既然說GP是為了上下行轉換提供空餘時間減少干擾,那為什麼說上行到下行轉換得地方都沒有GP呢?
因為下行到上行轉換時,UE根本不知道和enodeb之間的距離,如果提前量太早了,UE發送上行數據而enodeb還在發送下行數據,就會發生干擾,所以需要GAP。當上行到下行的轉換的時候,如果UE沒有TA(時間提前量),它肯定是在PRACH上發送,premable佔用的時間比較短,不會完全占滿上行子幀,所以後面還是留了點時間,不會發送上下行沖突;而當UE已經有TA的時候,時間已經對齊了,即使發送有點誤差也是落在了cyclic
prefix(每個時域上symbol前面的空白)裡面了,所以不會發生上下行干擾。
==》也進一步推出:為什麼PRACH的資源在時域上,為什麼在特殊子幀上要以『特殊子幀』的尾部進行對齊,而在正常的上行子幀上,要以『正常上行子幀的』開頭對齊了。因為特殊子幀後面肯定是上行子幀,所以要向後對齊;而正常的上行子幀後面可能是下行子幀,所以要向前對齊。
3.4.4.2 問題2:為什麼要有擴展的CP
●覆蓋范圍大的小區,可以解決延遲長的問題
●MBMS廣播,對於多個小區同時廣播一套節目給終端,必須考慮不同小區到終端的時間延遲不同,所以用擴展的長的CP比較好。
3.5一些基本概念--規定
3.5.1公式--拉斯變換
●變換的目的就是:讓乘法變得很簡單了。
3.5.2 資源塊的描述--規定
1 個資源塊(RB) = 12 subcarrier * 1 slot(正常7個符號)
●1 subcarrier = 15khz à 也就是說一秒鍾的發射載波頻率是15k
●RE = (頻域)15KZ * 1 symbol(時域),就是上面的一個『最小的方框』。
●REG = 4個頻域挨著的但不一定連續的,時域上相同的RE的集合。
注意: CCE只是一個邏輯上的概念,也就是說它物理上只是等於9個REG,並沒有實際的對應關系。為了PDCCH盲檢測用的。它和REG的順序不一樣,它的順序是先時域,再頻域的。
3.5.2.1 問題1:為什麼CCE要先時域後頻域?
因為這樣可以獲得時域分集(就是把一組完整的數據分在不連續的時間上發送),跟後面提到的交織一樣,都是為了錯誤隨機化。因為『射頻單元』會以(1/Ts = 30
720 000 S)的頻率『按照先頻域後時域發送『調制符號』。
3.5.3 調度的單位--規定
(個人覺得也是一種恰當不極端的思想)
●時間上:一個TTI(1ms),即2個TS調度一次
●頻域上:調度的最小資源單位卻是由一個subframe中的兩個資源塊為最小調度單位(一個時隙一個RB,但這兩個RB可能載頻不一樣),也就是所謂的時隙間跳頻,跳即『變化,不同的』意思。
3.5.3.1問題1:為什麼要不同時隙間的使用的載頻可能不一樣?
這樣應該是為了獲得良好的接收效果。如果在某個頻點的信號不好,而1個TTI內上下時隙的頻點不一樣,這樣另外一個頻點對應的信息還是能很好的解出來。
一個很特別的例子就是PUCCH資源回應HARQ ACK/NACK的時候:它對應的上下時隙的頻點就不一樣,但是它們傳輸的數據是有關聯的,只要一個時隙能解出來就行了,所以某個頻點的信號不好也不會受影響。具體我們後面談到PUCCH的時候再解釋。
3.5.4 符號和真實的BIT數據的對應關系
我們可以簡單的把符號理解成電磁波,接收端接收到的電磁波然後根據不同的相位可以認為代表不同的BIT.
記住:記住接收是指接收一個時間段的波形,而不是一個時間點的波形。
例如QPSK:1個符號代表2bit的情況。
●參考36211的7.1。注意:64QAM有些手機是不支持的,所以要從UE的信息中獲取是否支持,才能決定是否對該手機使用64QAM(RRC::UE-EUTRA-Capability->ue-Category能查到)
3.5.5 時域延遲等同於頻率相位偏移如何理解
●T1時間點應該發送波形,推遲到T2點發送,所以相對於接收端它不知道推遲,所以它還是在T1時間點進行接收,接收到的就是T2時間點的波形。所以相位不一樣,就相當於偏移。
Ⅲ 物理層原理
物理層的原理就是在物理概念理論基礎之上,根據這種層次的分析判斷我們的數據操作模式范圍。
Ⅳ 什麼是物理層
物理層(或稱物理層,Physical Layer)是計算機網路OSI模型中最低的一層。物理層規定:為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。區域網與廣域網皆屬第1、2層。
物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。
OSI採納了各種現成的協議,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理層協議。
Ⅳ 物理層功能和作用
物理層作用:
1、物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。
2、給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。
3、在兩個相鄰系統之間唯一地標識數據電路。
物理層主要功能:
1、為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成。一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接。所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路。
2、傳輸數據,物理層要形成適合數據傳輸需要的實體,為數據傳送服務。一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞。
傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要。
3、完成物理層的一些管理工作。
(5)如何理解物理層擴展閱讀:
物理層的主要特點:
由於在OSI之前,許多物理規程或協議已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備所採用。
加之,物理層協議涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套新的物理層協議,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械,電氣,功能和規程特性。
由於物理連接的方式很多,傳輸媒體的種類也很多,因此,具體的物理協議相當復雜。[2]
信號的傳輸離不開傳輸介質,而傳輸介質兩端必然有介面用於發送和接收信號。因此,既然物理層主要關心如何傳輸信號,物理層的主要任務就是規定各種傳輸介質和介面與傳輸信號相關的一些特性。
信號的傳輸離不開傳輸介質,而傳輸介質兩端必然有介面用於發送和接收信號。因此,既然物理層主要關心如何傳輸信號,物理層的主要任務就是規定各種傳輸介質和介面與傳輸信號相關的一些特性。
機械特性
也叫物理特性,指明通信實體間硬體連接介面的機械特點,如介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等。這很像平時常見的各種規格的電源插頭,其尺寸都有嚴格的規定。
已被ISO 標准化了的DCE介面的幾何尺寸及插孔芯數和排列方式。
DTE(Data Terminal Equipment,數據終端設備,用於發送和接收數據的設備,例如用戶的計算機)的連接器常用插針形式,其幾何尺寸與。
DCE(Data Circuit-terminating Equipment,數據電路終接設備,用來連接DTE與數據通信網路的設備,例如Modem數據機)連接器相配合,插針芯數和排列方式與DCE連接器成鏡像對稱。
電氣特性
規定了在物理連接上,導線的電氣連接及有關電路的特性,一般包括:接收器和發送器電路特性的說明、信號的識別、最大傳輸速率的說明、與互連電纜相關的規則、發送器的輸出阻抗、接收器的輸入阻抗等電氣參數等。
功能特性
指明物理介面各條信號線的用途(用法),包括:介面線功能的規定方法,介面信號線的功能分類--數據信號線、控制信號線、定時信號線和接地線4類。
規程特性
指明利用介面傳輸比特流的全過程及各項用於傳輸的事件發生的合法順序,包括事件的執行順序和數據傳輸方式,即在物理連接建立、維持和交換信息時,DTE/DCE雙方在各自電路上的動作序列。
以上4個特性實現了物理層在傳輸數據時,對於信號、介面和傳輸介質的規定。
參考資料來源:網路-物理層
Ⅵ 物理層和網路層
首先要明白各層的作用是什麼。
物理層是產生並傳輸信號的,沒有信號傳輸不同地點的設備不能相互感知;
鏈路層是用信號傳輸建立通信渠道的,一般規定特定的信號形式代表特定的具體意義,使不同的設備間可以相互溝通理解,物理層不同,信號產生的方式不同,對應的鏈路層也不同;
網路層的作用是不同的鏈路層之間也可以相互溝通理解,即屏蔽物理層和鏈路層的差別。
舉個通俗的例子,物理層好比各種動物,貓啊狗啊什麼的,貓會喵喵叫,狗會旺旺叫。鏈路層好比貓和貓之間,喵一下表示1,喵兩下表示2;狗和狗之間,旺一下表示1,旺兩下表示2,這樣貓和貓、狗和狗就能相互交流了。網路層好比貓和狗之間,他們無法直接交流,於是貓喵了一下畫一個1,喵兩下畫個2,狗旺一下畫個1,畫兩下畫個2,於是大家都明白了喵幾下和旺幾下都代表什麼意思,貓和狗之間也可以交流了。
Ⅶ 物理層要解決哪些問題物理層的主要特點是什麼
物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。
物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。
給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。在兩個相鄰系統之間唯一地標識數據電路。
(7)如何理解物理層擴展閱讀:
物理層的組成部分
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE即數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連接設備,如數據機等。
數據傳輸通常是經過DTE──DCE,再經過DCE──DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。
Ⅷ 物理層 是什麼
物理層(physical
layer)是計算機網路osi模型中最低的一層。
物理層規定:為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。
物理層是osi的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。
物理層的功能是實現原始數據在通信通道上傳輸,它是數據通信的基礎功能。物理層四個特性是機械特性、電氣特性、功能特性和規程特性,內容包括eiars-232c、eiars-449介面標准和ccitt
x.21建議;通信硬體中常用的通信適配器(網卡)和數據機(modem)的功能特性;非同步通信適配器和modem的通信編程方法。
物理層考慮的是怎樣才能在連接各種計算機的傳輸媒體上傳輸數據的比特流,而不是指連接計算機的具體的物理設備或具體的傳輸媒體。現有的計算機網路中的物理設備和傳輸媒體的種類繁多,而通信手段也有許多不同方式。物理層的作用正是要盡可能地屏蔽掉這些差異,使物理層上面的數據鏈路層感覺不到這些差異,這樣可使數據鏈路層只需要考慮如何完成本層的協議和服務,而不必考慮網路具體的傳輸媒體是什麼。這里,用於物理層的協議也常稱為物理層規程。