㈠ 物理里都有什麼定律 主要是力學的
牛頓第一定律:一切物體在任何情況下,在不受外力的作用時,總保持靜止或勻速直線運動狀態。
牛頓第二定律:物體的加速度跟物體所受的合外力F成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。ΣF=ma
牛頓第三定律:兩個物體之間的作用力和反作用力,在同一條直線上,大小相等,方向相反。
二力平衡定律:當一個物體同時受到兩個力,如果物體靜止不動或做勻速直線運動,那麼這兩個力相等。
㈡ 古代物理學時期的標志性事件
經典物理學發展史
古希臘時代的阿基米德已經在流體靜力學和固體的平衡方面取得輝煌成就,但當時將這些歸入應用數學,並沒有將他的成果特別是他的精確實驗和嚴格的數學論證方法汲入物理學中。從希臘、羅馬到漫長的中世紀,自然哲學始終是亞里士多德的一統天下。到了文藝復興時期,哥白尼、布魯諾、開普勒和伽利略不顧宗教的迫害,向舊傳統挑戰,其中伽利略把物理理論和定律建立在嚴格的實驗和科學的論證上,因此被尊稱為物理學或科學之父。
伽利略的成就是多方面的,僅就力學而言,他以物體從光滑斜面下滑將在另一斜面上升到同一高度,推論出如另一斜面的傾角極小,為達到同一高度,物體將以勻速運動趨於無限遠,從而得出如無外力作用,物體將運動不息的結論 。他精確地測定不同重量的物體以同一加速度沿光滑斜面下滑,並推論出物體自由下落時的加速度及其運動方程,駁倒了亞里士多德重物下落比輕物快的結論,並綜合水平方向的勻速運動和垂直地面方向的勻加速運動得出拋物線軌跡和45°的最大射程角,伽利略還分析「地常動移而人不知」,提出著名的「伽利略相對性原理」(中國的成書於1800年前的《尚書考靈曜》有類似結論)。但他對力和運動變化關系的分析仍是錯誤的。全面、正確地概括力和運動關系的是牛頓的三條運動定律,牛頓還把地面上的重力外推到月球和整個太陽系,建立了萬有引力定律。牛頓以上述的四條定律並運用他創造的「流數法」(即今微積分初步),解決了太陽系中的二體問題,推導出開普勒三定律,從理論上解決了地球上的潮汐問題。史稱牛頓是第一個綜合天上和地上的機械運動並取得偉大成就的物理學家。與此同時,幾何光學也有很大發展,在16世紀末或17世紀初,先後發明了顯微鏡和望遠鏡,開普勒、伽利略和牛頓都對望遠鏡作很大的改進。
法國在大革命的前後,人才輩出,以P.S.M.拉普拉斯為首的法國科學家(史稱拉普拉斯學派)將牛頓的力學理論發揚光大,把偏微分方程運用於天體力學,求出了太陽系內三體和多體問題的近似解,初步探討並解決了太陽系的起源和穩定性問題,使天體力學達到相當完善的境界。在牛頓和拉普拉斯的太陽系內,主宰天體運動的已經不是造物主,而是萬有引力,難怪拿破崙在聽完拉普拉斯的太陽系介紹後就問 :你把上帝放在什麼地位?無神論者拉普拉斯則直率地回答 :我不需要這個假設。
拉普拉斯學派還將力學規律廣泛用於剛體、流體和固體,加上W.R.哈密頓、G.G.斯托克斯等的共同努力,完善了分析力學,把經典力學推進到更高階段。該學派還將各種物理現象如熱、光、電、磁甚至化學作用都歸於粒子間的吸引和排斥,例如用光子受物質的排斥解釋反射,光微粒受物質的吸引解釋折射和衍射,用光子具有不同的外形以解釋偏振,以及用熱質粒子相互排斥來解釋熱膨脹、蒸發等等,都一度取得成功,從而使機械的唯物世界觀統治了數十年。正當這學派聲勢煊赫、如日中天時,受到英國物理學家T.楊和這個學派的後院法蘭西科學院及科學界的挑戰,J.B.V.傅里葉從熱傳導方面,T.楊、D.F.J.阿拉戈、A.-J.菲涅耳從光學方面,特別是光的波動說和粒子說(見光的二象性)的論爭在物理史上是一個重大的事件。為了駁倒微粒說,年輕的土木工程師菲涅耳在阿拉戈的支持下,製成了多種後以他的姓命名的干涉和衍射設備,並將光波的干涉性引入惠更斯的波陣面在介質中傳播的理論 ,形成惠更斯-菲涅耳原理,還大膽地提出光是橫波的假設,並用以研究各種光的偏振及偏振光的干涉,他創造了「菲涅耳波帶」法,完滿地說明了球面波的衍射,並假設光是以太的機械橫波解決了光在不同介質界面上反射、折射的強度和偏振問題,從而完成了經典的波動光學理論。菲涅耳還提出地球自轉使表面上的部分以太漂移的假設並給出曳引系數。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐測定光速在水中確比空氣中為小,從而確定了波動說的勝利,史稱這個實驗為光的判決性實驗。此後,光的波動說及以太論統治了19世紀的後半世紀,著名物理學家如法拉第、麥克斯韋、開爾文等都對以太論堅信不疑。另一方面,利用干涉儀內干涉條紋的移動,可以精確地測定長度、速度、曲率的極微細的變化;利用棱鏡和衍射光柵產生的光譜,可以確定地上和天上的物質的成分及原子內部的變化。因此這些光學儀器已成為物理學、分析化學、物理化學和天體物理學中的重要實驗手段。
蒸汽機的發明推動了熱學的發展 ,18世紀60年代在 J.瓦特改進蒸汽機的同時,他的摯友J.布萊克區分了溫度和熱量,建立了比熱容和潛熱概念,發展了量溫學和量熱學,所形成的熱質說和熱質守恆概念統治了80多年。在此期間,盡管發現了氣體定律,度量了不同物質的比熱容和各類潛熱 ,但對蒸汽機的改進幫助不大,蒸汽機始終以很低的效率運行。1755年法國科學院堅定地否決了永動機 。1807年T.楊以「能」代替萊布尼茲的「活力」 ,1826年 J. V. 彭賽列創造了「功」這個詞。1798年和1799年,朗福德和H.戴維分析了摩擦生熱,向熱質說挑戰;J.P.焦耳從 19 世紀 40 年代起到1878年,花了近40年時間,用電熱和機械功等各種方法精確地測定了熱功當量 ;生理學家 J.R.邁爾和H.von亥姆霍茲 ,更從機械能、電能、化學能、生物能和熱的轉換,全面地說明能量既不能產生也不會消失,確立了熱力學第一定律即能量守恆定律。在此前後,1824年,S.卡諾根據他對蒸汽機效率的調查,據熱質說推導出理想熱機效率由熱源和冷卻源的溫度確定的定律。文章發表後並未引起注意。後經R.克勞修斯和開爾文分別提出兩種表述後,才確認為熱力學第二定律。克勞修斯還引入新的態函數熵;以後,焓、亥姆霍茲函數、吉布斯函數 等態函數相繼引入 ,開創了物理 化學 中的重要分支——熱化學。熱力學指明了發明新熱機、提高熱機效率等的方向,開創了熱工學;而且在物理學、化學、機械工程、化學工程 、冶金學等方面也有廣泛的指向和推動作用。這些使物理化學開創人之一W.奧斯特瓦爾德曾一度否認原子和分子的存在 ,而宣揚「唯能論」,視能量為世界的最終存在 。但另一方面,J.C.麥克斯韋的分子速度分布率(見麥克斯韋分布)和L.玻耳茲曼的能量均分定理把熱學和力學綜合起來,並將概率規律引入物理學,用以研究大量分子的運動,創建了氣體分子動力論(現稱氣體動理論),確立了氣體的壓強、內能、比熱容等的統計性質,得到了與熱力學協調一致的結論。玻耳茲曼還進一步認為熱力學第二定律是統計規律,把熵同狀態的概率聯系起來,建立了統計熱力學。任何實際物理現象都不可避免地涉及能量的轉換和熱量的傳遞,熱力學定律就成為綜合一切物理現象的基本規律。經過20世紀的物理學革命,這些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和無序乃至漲落和混沌等概念,已經從有關的自然科學分支中移植到社會科學中。
㈢ 物理學三大定律是什麼
1、質量守恆定律
質量守恆定律是俄國科學家羅蒙諾索夫於1756年最早發現的。拉瓦錫通過大量的定量試驗,發現了在化學反應中,參加反應的各物質的質量總和等於反應後生成各物質的質量總和。這個規律就叫做質量守恆定律(Law of conservation of mass)。也稱物質不滅定律。它是自然界普遍存在的基本定律之一。
2、電荷守恆定律
在物理學里,電荷守恆定律(law of conservation of electric charge)是一種關於電荷的守恆定律。電荷守恆定律有兩種版本,「弱版電荷守恆定律」(又稱為「全域電荷守恆定律」)與「強版電荷守恆定律」(又稱為「局域電荷守恆定律」)。弱版電荷守恆定律表明,整個宇宙的 總電荷量保持不變,不會隨著時間的演進而改變。
3、能量守恆定律
能量守恆定律(energy conservation law)即熱力學第一定律是指在一個封閉(孤立)系統的總能量保持不變。其中總能量一般說來已不再只是動能與勢能之和,而是靜止能量(固有能量)、動能、勢能三者的總量 。
能量守恆定律可以表述為:一個系統的總能量的改變只能等於傳入或者傳出該系統的能量的多少。總能量為系統的機械能、熱能及除熱能以外的任何內能形式的總和。
(3)古代時期物理有什麼定律擴展閱讀:
物理學基本定律
牛頓第一定律為慣性定律;牛頓第二定律建立起物體質量與加速度之間的聯系;牛頓第三定律為作用力與反作用力定律。
簡單理解三大定律的意義,其第一條就讓我們知道,滾動的皮球之所以能夠在地板上運動,必定是受到外力的推動。這外力可能是與地板之間的摩擦,也許是小孩子踢出的一腳。第二定律以F=ma這個公式表述,同時也意味著一個具有方向性的矢量。
那個皮球滾過地板時,因為加速度的原因,獲得了一個指向滾動方向的矢量。通過它便能夠計算出皮球所受到的作用力。第三定律相當簡潔,也最為人們所熟知,其意思無外乎,用手指隨便戳戳哪個物體的表面,它們都將用同等的力量進行回應。
㈣ 十大物理學定律
1、牛頓力學第一定律——慣性定律(空間重力場平衡律)。
2、牛頓力學第二定律——重力加速度定律(空間重力場變化律)。
3、牛頓力學第三定律——力相互作用定律(重力斥力對應律)。
4、牛頓力學第四定律——萬有引力定律(重力分布律)。
5、熱力學第零定律——溫度律、熱平衡律(能量場平衡律)。
6、熱力學第一定律——能量守恆定律(能量分布空間律)。
7、熱力學第二定律——熵增加定律、熱不可逆定律(能量變化時間律)。
8、熱力學第三定律——絕對零度不可達定律(能量利用人力極限律)。
9、相對性原理(普適律)。
10、光速不變原理(運動極限律)。
(4)古代時期物理有什麼定律擴展閱讀:
一、物理定律的概述:
物理定律是從特別事實推導出的理論學科。物理定律是以經過多年重復實驗和觀察為基礎並在科學領域內普遍接受的典型結論。用定律形式歸納描述我們環境是科學的基本目的。並非所有作者對物理定律用法相同。
二、物理定律的性質
1、物理定律有下列性質:
2、普遍,它在宇宙任何地方都適用。
3、絕對,宇宙中無任何東西能影晌它。
4、一般有量的守恆關系。
㈤ 物理學上10大科學定律及理論
科學定律常常可以被精簡成數學表達式,比如偉大的E=mc2。這類公式是基於大量實驗數據上的一種特定表述,並且一般只有在某些特定條件存在時才能成立。我在這里整理了相關資料,希望能幫助到您。
物理學上10大科學定律及理論
10、眾理論的敲磚石:大爆炸理論
標准釋義:大爆炸是描述宇宙誕生初始條件及其後續演化的宇宙學模型,其得到了當今科學研究和觀測最廣泛且最精確的支持。目前一般所指的大爆炸觀點為:宇宙是在過去有限的時間之前,由一個密度極大且溫度極高的太初狀態演變而來的(根據2010年所得到的最佳觀測結果,這些初始狀態大約存在於133億年至139億年前),並經過不斷的膨脹到達今天的狀態。
當有誰想要試著觸碰一下深奧的科學理論,那麼,從宇宙下手就對了,而解釋宇宙如何發展至今的大爆炸理論就是最好選擇。這條理論的基礎架構在埃德溫·哈勃、喬治斯·勒梅特、阿爾伯特·愛因斯坦以及許多其他人士的研究之上,該理論說白了,就是假設宇宙開始於幾乎140億年前的一次重量級的爆炸。當時的宇宙局限於一個奇點,包含了宇宙中的所有物質,宇宙原始的運動:保持向外擴張,在今天仍在進行著。
大爆炸理論能得到如此廣泛的支持,離不開阿諾·彭齊亞斯和羅伯特·威爾遜的功勞。他們架設的一台喇叭形狀的天線,接收到了一種怎麼都消除不掉的雜訊信號,那就是宇宙的電磁輻射,即宇宙微波背景輻射。正是最初的大爆炸使得現在整個宇宙都充滿了這種可以檢測到的微弱輻射,對應溫度大約為3K。9、推算出宇宙年齡:哈勃定律
標准釋義:來自遙遠星系光線的紅移與它們的距離成正比。該定律由哈勃和米爾頓·修默生在將近十年的觀測之後,於1929年首先公式化,Vf=Hc×D(遠離速率=哈勃常數×相對地球的距離),其在今天經常被援引作為支持大爆炸的一個重要證據,並成為宇宙膨脹理論的基礎。
這里涉及一個前文提到的人,埃德溫·哈勃。此人對宇宙學的貢獻值得讓人來回溯下他的事跡:在20世紀20年代呼嘯掠過、大蕭條蹣跚而至的歲月里,哈勃卻演繹了突破性的天文研究。他不僅證明,除了銀河系外還有其他星系的存在,還發現了那些星系正以遠離銀河系的方向運動,而他公式中的遠離速率就是星系後退的速度。哈勃常數指的是宇宙膨脹速率的參數,而相對地球的距離主體也是這些星系。但據說,被尊為星系天文學創始人的哈勃本人卻非常不喜歡「星系」一詞,堅稱其為「河外星雲」。
隨著時間流逝,斗轉星移,哈勃常數值也發生著變化,但這並沒很大關系。重要的是,正是該定律幫助量化了宇宙各星系的運動,推算遙遠星系的距離。而「宇宙是由許多星系組成」的概念的提出,以及發現這些星系的運動可以追溯至大爆炸,它們都使哈勃定律就像同樣以此人命名的天文望遠鏡般著名。8、改變整個天文學:開普勒三定律
標准釋義:即行星運動定律,由開普勒發現的行星移動所遵守的三條簡單定律。
第一定律:每一個行星都沿各自的橢圓軌道環繞太陽運行,而太陽則處在橢圓的一個焦點中;
第二定律:在相等時間內,太陽和運動著的行星的連線所掃過的面積都是相等的;
第三定律:各個行星繞太陽公轉周期的平方和它們的橢圓軌道的半長軸的立方成正比。
圍繞著行星的運行軌道,尤其是它們是否以太陽為中心,科學家與宗教領袖以及自己的同行進行了長達數個世紀的爭斗。16世紀時,哥白尼提出了在當時引發巨大爭議的日心說理論,認為行星是以太陽而不是地球為中心進行運行的。此後第谷·布拉赫等人也相繼有所論述。但真正為行星運動學建立明確科學基礎的,是約翰內斯·開普勒。
開普勒於17世紀早期提出的行星運動三大定律,描述了行星是如何圍繞太陽運動的。第一定律,又被稱為橢圓定律;第二定律,又被稱面積定律,換句話解釋該定律,就是說如果你連續30天跟蹤測算地球與太陽之間連線隨地球運動所形成面積,就會發現不管地球在軌道的哪個位置,也不管何時開始測算,結果都是一樣的。至於第三定律,也稱調和定律,它使得我們能夠建立起一個行星軌道周期與距太陽遠近之間的明確關系。比如金星這樣非常靠近太陽的行星,就有著比海王星短得多的軌道運行周期。正是這三條定律,徹底摧毀了托勒密復雜的宇宙體系。7、大部分理論的基石:萬有引力定律
標准釋義:牛頓的普適萬有引力定律表示為,任意兩個質點通過連心線方向上的力相互吸引。該引力的大小與它們的質量乘積成正比,與它們距離的平方成反比,與兩物體的化學本質或物理狀態以及中介物質無關。該理論能夠由一個已經寫進今天高中物理課本的公式進行表述:F=G×[(m1m2)/r2]
盡管今天人們將其看作是理所當然的事情,但當艾薩克·牛頓在300多年前提出萬有引力學說的時候,無疑是當時最具有革命性的重大事件。牛頓提出的理論可以簡單表述為:任何兩個物體,不管各自質量如何,相互之間都會發生作用力,而質量越大的東西產生的引力越大。公式中,F指兩個物體之間的萬有引力,用「牛頓」作為計量單位;m1和m2分別代表兩個物體的質量;r為兩者之間的距離;G是引力常數。
這是多種實踐條件下都相當精確的定律,但物理學發展至今,人們已經知道牛頓對重力描述的不完美性。然而,該定律仍不失為迄今所有科學中最實用的概念之一,它簡單、易學、且涵蓋面很廣,以至於在廣義相對論初問世的一段時間內都甚少有人問津。更有意義的是,萬有引力定律讓渺小的人類獲得了計算龐大星球之間引力的能力,並且在發射軌道衛星與測繪探月航線等方面尤其有用。6、物理科學有了基本定理:牛頓運動定律
標准釋義:牛頓第一定律為慣性定律;牛頓第二定律建立起物體質量與加速度之間的聯系;牛頓第三定律為作用力與反作用力定律。
還是牛頓。每當我們談論起這位人類歷史上最傑出的科學家之一,總不由得從他最著名的力學三大定律開始。因為這些簡潔而優雅的定律,奠定了現代物理學的基礎。
簡單理解三大定律的意義,其第一條就讓我們知道,滾動的皮球之所以能夠在地板上運動,必定是受到外力的推動。這外力可能是與地板之間的摩擦,也許是小孩子踢出的一腳。第二定律以F=ma這個公式表述,同時也意味著一個具有方向性的矢量。那個皮球滾過地板時,因為加速度的原因,獲得了一個指向滾動方向的矢量。通過它便能夠計算出皮球所受到的作用力。第三定律相當簡潔,也最為人們所熟知,其意思無外乎,用手指隨便戳戳哪個物體的表面,它們都將用同等的力量進行回應。5、熱力學基礎基本完備:熱力學三定律
標准釋義:熱力學第一定律,熱可以轉變為功,功也可以轉變為熱,也就是能量守恆和轉換定律;第二定律有幾種表述方式,其中之一是不可能把熱從低溫物體傳到高溫物體而不引起其他變化;第三定律,在熱力學溫度零度(即T=0開)時,一切完美晶體的熵值等於零。
英國物理學家和小說家查爾斯·珀西·斯諾曾經有一段非常著名的論述:「不懂得熱力學第二定律的科學家,就像一個從沒讀過莎士比亞的科學家一樣。」斯諾的言語意在批評科學與人文之間「兩種文化」的隔絕與分裂,但卻無意中在文人圈裡「捧紅」了熱力學第二定律。其實,斯諾的論述確實強調並呼籲人文學者都應該去了解一下它的重要性。
熱力學是研究系統中能量運動的科學。這里的系統既可以是一台發動機,也可以是熾熱的地核。斯諾運用自己的聰明才智將其精簡成為以下若干條基本規則:你贏不了、你無法實現收支平衡、你無法退出遊戲。
該如何理解這些說法呢?首先來看所謂的「你贏不了」。斯諾的意思是指既然物質與能量是守恆關系,在能量轉換過程中,我們無法實現一種能量形式到另一種的對等轉換,而不損失一部分能量。就像如果要發動機做功,就必須提供熱能一樣。即便是在一個完美極致的封閉空間中,部分熱量依然將不可避免地散逸到外部世界中去。
而這就引發了第二定律「你實現不了收支平衡」。鑒於熵的無限增加,我們無法返回或保持相同的能量狀態。因為熵總是從濃度高的地方向濃度低的區域流動。而有熵的存在,也是永動機不可能出現的原因。
最後是第三定律「無法退出的游戲」。這里要涉及到絕對零度,即理論上可能達到的最低溫度,一般指零開爾文(零下273.15攝氏度或零下459.67華氏度)。第三定律的表述為,當系統達到絕對零度時,分子將停止一切運動,即沒動能,熵也能達到理論上的最低值。但現實世界中,即使在宇宙的深處,達到絕對零度也是不可能的。你只能無限地接近所謂的終點。4、公元前200年的大智慧:阿基米德定律
標准釋義:物理學中的阿基米德定律,即阿基米德浮力原理,是指浸在靜止流體中的物體受到流體作用的合力大小等於物體排開的流體的重力,這個合力稱為浮力。數學表達式為:F浮=G排
關於阿基米德是如何發現浮力原理這一物理學重大突破的,有個傳說:阿基米德某次洗澡的時候,看到浴缸里的水會隨著自己身體的浸入而上升,便受到啟發開始思考。而當他最終確定發現了浮力理論之後,這位古希臘最偉大的哲人一邊興奮地大喊「找到了!找到了!」,一邊裸露著身體狂奔在錫拉丘茲城的大街小巷。
古希臘學者阿基米德的古老發現已經被廣泛應用在人類社會生產的各個領域。根據浮力原理,施加在一個部分或整體淹沒於液體中的物體的作用力,等於該物體液內體積所排出的液體重量。這對於計算物體的密度,進而進行潛艇和遠洋輪船的設計建造,具有關鍵性意義。3、我們自身的探討:進化與自然選擇
標准釋義:進化,即演化,在生物學中是指種群里的遺傳性狀在世代之間的變化。自然選擇,也稱為天擇,指生物的遺傳特徵在生存競爭中,具有了某優勢或某劣勢,進而在生存能力上產生差異,並導致繁殖能力的差異,使得這些特徵被保存或是淘汰。
既然我們已經建立起關於宇宙何以從無到有,以及物理學在日常生活中是如何發揮作用的若干基礎概念體系,下一步便可以開始關注我們人類自己的形式問題,即我們是如何成為今天這番模樣的。
我們知道,基因是會復制給下一代的,但基因突變會讓其情況出現變化,這種變化了的新情況,可能隨著物種遷徙等在種群中傳遞。
那麼按照當今大多數科學家的觀點,所有地球生物曾經擁有一個共同的祖先。後來隨著時間的發展,部分開始進化成為特徵鮮明的特定物種。久而久之,生物多樣性便逐漸在所有有機生物中增加與擴展開來。
從最基本的意義上說,基因突變等變異機制在生物進化的過程中一直發生著。而每一階段的這些細節變化都會通過世代的遺傳而得以保留。相應的,生物種群也因此發展出了不同的特徵,並且這些特徵往往能夠幫助生物更好地繁衍生存下來。比如棕色皮膚的青蛙,顯然比其它顏色的同類更適宜以偽裝的方式在泥濘的沼澤地區生存。這便是所謂的自然選擇。
當然,對於進化與自然選擇理論,我們還可以將其應用到更廣泛的生物范圍。但是達爾文在19世紀提出的「地球生命豐富的多樣性,來源於進化中的自然選擇」,無疑依舊是最基礎和最具開創性的。2、永遠轉變了理解宇宙的方式:廣義相對論
標准釋義:引力在此被描述為時空的一種幾何屬性(曲率),而這種時空曲率與處於時空中的物質與輻射的能量,動量張量直接相聯系,其聯系方式即是愛因斯坦的引力場方程(一個二階非線性偏微分方程組)。
對於任何一個不曾學習或研究它的人來說,廣義相對論的標准釋義看了和沒看一個樣。因為它在解釋該詞條時,至少又用了4組不被人理解的詞彙。
它的內涵和外延涉及甚廣,似乎非論文形式不能描述。在此,我們且看看被稱為現代引力理論研究的最高水平的廣義相對論在論什麼。作為比牛頓萬有引力更具有一般性的理論,質量還是一個決定引力的重要屬性,但是不再是引力的唯一來源。
在愛因斯坦這里,引力已不再是牛頓所描述的一種力,甚至可以說,已沒有了原來引力的概念。因為愛因斯坦把它看成物體周圍的時空彎曲,以前所說的「物體受引力作用所作的運動」,被歸結為物體在一個彎曲時空中,沿短程線的自由運動。
如果讓「彎曲時空」的概念更明朗化些,可以想像環繞地球飛行的太空梭里的宇航員,對他們而言,他們是按直線方式在太空中飛行,但實際上太空梭周圍的時空,已經被地球的引力所彎曲,這使太空梭成為又能向前飛行,又能圍繞地球轉的物體。
按美國相對論研究的首席專家約翰·惠勒解釋,這種所謂時空的幾何屬性可以這樣概述:時空告訴物質如何運動,物質告訴時空如何彎曲。因而,其可以展現出宇宙星光受大天體影響的彎曲方式,並且為研究黑洞奠定了理論基礎。1、上帝擲骰子嗎?:海森堡測不準原理
標准釋義:德國物理學家海森堡於1927年提出,表明量子力學中的不確定性,指在一個量子力學系統中,一個粒子的位置和它的動量(粒子的質量乘以速度)不可被同時確定。
「測量!在經典理論中,這不是一個被考慮的問題。」《量子物理史話》如是說。
那是因為在經典物理學里,你、我,或作為觀測者的任何一人,對這個等待被測量的客觀物體是沒有影響,或影響甚微以致可忽略不計的。那時就算我們弄不懂個中道理,也不妨礙原理待在那,等著我們慢慢參詳。
但現在就要踏入量子世界的魔潭了,此處我們作為觀測者會給實驗現象帶來一定的擾動,因此如果測一個電子的動量,所得值只是相對你這個觀測者而言的。微觀世界中,要以「概率」來論,所謂上帝擲骰子。
當年的華納·海森堡就在此中有了突破性的發現,人們無法同時得到粒子的兩種變數精確信息,哪怕再精密的儀器都不行。具體講,你或者可以准確地知道電子的位置,但無法同時知道其動量,或者反之,得此失彼。而類似的不確定性也存在於能量和時間、角動量和角度等許多物理量之間。
或許你沒明白這件事的詭異性,就像之前提到的,量子世界裡的量既然是相對性,那隻要它存在,就應該可以被測量出來。既然無論如何不能測量到,那它就不復存在。因此,在你沒確定測量這個物理量的手段時,談論它毫無意義。一個電子的動量,只有當你測量時,也才有意義。
這更像是一個哲學話題了。而「海森堡測不準原理」與其說是實驗中發現的,倒不如說是海森堡和他老師玻爾等人討論出來的。到了玻爾發現電子同時具有粒子和波的雙重性質(量子物理的柱石,波粒二象性),當我們測量電子的位置時,我們將其當作粒子,波長不定;而當我們要測量動量時,我們將其當作波,知道波長的量值卻失去它的位置。
即便你現在無比混亂,這依然沒什麼大不了的。玻爾的名言就是:「如果誰不為量子論而困惑,那他一定沒有理解量子論。」類似的話費曼也說過。所以我們沒啥好郁悶的,愛因斯坦和我們一個狀況。
提升物理成績的五個關鍵點和三條主線
一、研究《考綱》,通讀教材
《考綱》是教學的基本要求,它規定了中考的范圍和要求,是中考命題的依據之一,對於中考復習具有重要的作用。通過對《考綱》的研究,明確考試的要求,了解題型和對學生的能力要求,使自己的復習有方向、有目標,使自己的復習能有一個明確的評價依據,從而有利於把握復習的廣度和深度,使復習更有的放矢。在研究《考綱》的同時,還要仔細閱讀教材,因為教材是課堂教學的根本依據,也是中考命題的依據之一。學生一定要仔細閱讀教材,特別要注意教材中以下幾個方面:
(1)物理概念和規律形成的過程和伴隨的科學方法。在最近幾年的中考物理試題中,此類題目的分值要佔到10%左右。在初中物理教材中,物理概念和規律形成的過程經常採用的是「控制變數法」。如:速度、密度、壓強、比熱容等概念的形成過程,歐姆定律、影響液體蒸發快慢的因素、影響電阻大小的因素、液體內部壓強的規律、阿基米德定理等物理規律的得到等,都是採用「探制變數法」來進行研究的。近幾年的中考物理試題中除了考核「控制變數法」,也考核了「等效替代法」,如作用在物體上的兩個力的作用效果可以由一個力的作用來替代;串並聯電路中,總電阻與各電阻的關系等。
(2)教材中的實例分析(包括各類插圖、生活及有關科技發展的實例等)。
(3)各種實驗的原理、研究方法、過程。
(4)相關的物理學史。筆者在多年的物理教學中發現,許多學生在復習迎考過程中埋頭苦做習題,忽視了最根本的、最必要的工作―――閱讀教材,在升學考中造成不該有的失分而後悔莫及。
二、整理知識內容,歸類掌握
中考物理試卷中的各知識點覆蓋率較高,最近幾年都在80%―90%左右,但對十個重點知識點的覆蓋率則為100%。這十個重點知識是:比熱容和熱量的計算、光的反射定律和平面鏡成像特點、凸透鏡成像規律、歐姆定律、串並聯電路的特點、電功率、力的概念、密度、壓強、二力平衡。物理知識涉及的面很廣,基本概念、理論更是體現在不同的教學內容中。學生要對每個部分中的知識,按知識結構進行歸類、整理,形成各知識點之間的聯系,並擴展成知識面,做到基本概念牢固掌握,基本理論相互聯系,如:在對速度這一知識進行復習的時候,就可以把研究得到這一物理概念的思想方法遷移到密度、壓強、功率、比熱容等其它物理概念的形成過程中去,舉一反三,即要做到「書越讀越厚(知識內容多)―――書越讀越薄(概括整理、總結)―――知識越來越豐富」,這樣才能在考試時思維敏捷,得心應手。
三、題型歸類,掌握方法
目前學生已做了大量的模擬考試題,許多學生仍然在題海中奮力拚搏,許多學生和家長認為,題目一定要多做,才能熟能生巧、才能觸類旁通。
筆者認為「精神可嘉,方式不當」。當前在有限的時間內做大量的題目,並不是明智之舉。學生應把所做的練習中的各類題型進行分析、比較、歸類,發現其中的異同點,掌握解決問題的方法。只有掌握了方法,才能在解決問題時多角度地理解題意,拓寬解決問題的思路和方法,才能在考試中充分發揮自己的能力。
四、加強實驗研究能力的訓練
物理是以實驗為基礎的學科,新的教學改革中很重要的一點就是注重學生研究能力的培養。教材和歷年中考試題中都十分注重對學生實驗研究能力的考核。近幾年來,中考物理中實驗考核的分值在上升,而從試題內容上看,已從單純的記憶型趨向實驗探求設計的模型。而這方面恰恰是學生較薄弱的方面,歷年來失分較多。因此,在復習中學生要加強訓練。一般在實驗研究中,學生尤其要注意題目中提供的信息,明確研究的目的、實驗原理、實驗器材的作用和選擇、實驗操作步驟、對實驗現象的觀察分析和對實驗結果的分析歸納。
五、關注熱點問題,把握考試動態
近幾年的中考物理中有五大類熱點問題:(1)估計、估算題主要涉及學生實際生活中與所學知識直接相關的實際事例。(2)動態、故障分析(3)科學方法題主要考核物理概念、規律形成中的思想方法;(4)情景信息題即在考題中提供較多的情景信息,根據題目要求,從中篩選出有用的相關信息。(5)開放性試題(包括結果開放、條件開放、過程開放等)即在研究中可以多角度、多方面地進行研究的方法、手段可以多種多樣,沒有固定的模式和定勢,研究的結果並不唯一,表達的形式可以豐富多彩。
㈥ 物理定律有哪些
物理定律有:牛頓第一定律、光的反射定律、光的折射定律、能量守恆定律、電流定律、歐姆定律等。物理定律和「物理學定律」不同,它包含其它科學(如生物)的在內。
物理定律是從特別事實推導出的理論學科。物理定律是以經過多年重復實驗和觀察為基礎並在科學領域內普遍接受的典型結論。用定律形式歸納描述我們環境是科學的基本目的。並非所有作者對物理定律用法相同,一些哲學家,如諾曼·斯沃茨認為這是自然的定律,而不是由科學家推導出來。
㈦ 我國古代的物理學成就有哪些
中國是世界文明發達最早的國家之一,物理學在中國有悠久的歷史。
一 中國古代物理學史概述
二 力學
1 杠桿原理
2 滑輪與轆轤
3 尖劈與斜面
4 重心與平衡
5 力
6 刻舟求劍
7 浮力與比重
8 陀螺與平衡環
9 彈性變形與彈性定律
10 橫梁的學問
11 大氣壓
12 空氣動力學及飛行幻想
三 聲學
四 光學
五 電與磁
六 熱
先秦時期的偉大哲學家墨翟(約公元前468-前376)及其墨家學派 (公元前4世紀-公元前3世紀)在他們的論著《墨經》中記述了大量的物理知識,這是春秋戰國時期物理學成就最大的學派,《墨經》的主要成就在力學與光學方面。它探討了力的定義,敘述了慣性運動,研究了杠桿、滑輪、輪軸、斜面等裝置省力的原因,以及浮力與平衡原理,指出了光的直線傳播及反射規律以及小孔、平面鏡、凹凸面鏡的成像情況;觀察了溫度與火色的關系。同時期的《考工記》是應用力學、聲學方面的書,記載了滾動摩擦、斜面運動、慣性現象、拋物軌道、水的浮力、材料強度以及鍾、鼓、磬的發音、頻率、音色、響度及樂器形狀的關系。這時期的《管子·地數篇》、《鬼穀子》、《呂氏春秋》等書中還記載了天然磁石的吸鐵現象以及最早的指南針「司南」。
漢代王充(27~約97)的《論衡》是中國中古時期的網路全書。在力學方面指出外力能改變物體的運動狀態,改變運動速度。而內力不能改變物體的運動,還討論了相對運動,在聲學方面研究了聲的發生、傳播與衰減,並用水波做比喻。在熱學方面研究了熱的平衡、傳導及物態變化。在光學方面闡述了光的強度、光的直線傳播及球面聚焦現象。在電磁學方面記錄了摩擦起電及磁指南器。
在唐代,《玄真子》中記敘了人造虹的簡單實驗:「背日噴水」。唐人將風力分為八個等級。了解到共鳴的道理並應用於音樂中,並指出了雷與電的關系。
宋代沈括(1031-1095)的《夢溪筆談》具有很高的科學價值,被稱為 「中國科學史上的坐標」,其主要成就是在聲學、光學、磁學方面。他研究了聲音的共振現象、針孔成像與凹凸鏡成像規律,形象地說明了焦點、焦距、正倒像等問題;研究了人工磁化方法,指出了把磁場的磁偏角,討論了指南針的裝置方法,為航海用指南針的製造奠定了基礎。他還研究了大氣中的光、電現象。
元代的趙友欽(1279-1368)在《革象新書》中研究了光的直進、針孔成像,利用模擬實驗研究月亮盈虧以及日、月蝕。他擅長用比喻解釋自然現象,使之生動、形象,易於被人們理解。
在明、清時代,朱載堉(1536-1610)在《樂律全書》中用精密方法首次闡明了音樂中的十二平均律。方以智(1611-1671)兼取古今中外知識精華,在《物理小識》中涉及力、光、磁、熱學,研究了比重、濃度、表面張力及杠桿原理,螺旋原理,研究了光的反射、折射、光學儀器,進行了分光實驗解釋虹,還研究了磁偏角隨地域的變化以及金屬導熱問題。《物理小識》是300年前的一部科學著作。
我國是對磁現象認識最早的國家之一,公元前4世紀左右成書的《管子》中就有「上有慈石者,其下有銅金」的記載,這是關於磁的最早記載。類似的記載,在其後的《呂氏春秋》中也可以找到:「慈石召鐵,或引之也」。東漢高誘在《呂氏春秋注》中談到:「石,鐵之母也。以有慈石,故能引其子。石之不慈者,亦不能引也」。在東漢以前的古籍中,一直將磁寫作慈。相映成趣的是磁石在許多國家的語言中都含有慈愛之意。
㈧ 伽利略發現了什麼物理學定律
一、自由落體定律
二、鍾擺定律。
拓展資料:
伽利略,義大利物理學家、天文學家和哲學家,近代實驗科學的先驅者。
伽利略生涯重大事件
1590年,伽利略在比薩斜塔上做了「兩個鐵球同時落地」的著名實驗,從此推翻了亞里斯多德「物體下落速度和重量成比例」的學說,糾正了這個持續了1900年之久的錯誤結論。
1609年,伽利略創制了天文望遠鏡(後被稱為伽利略望遠鏡),並用來觀測天體,他發現了月球表面的凹凸不平,並親手繪制了第一幅月面圖。
1610年1月7日,伽利略發現了木星的四顆衛星,為哥白尼學說找到了確鑿的證據,標志著哥白尼學說開始走向勝利。藉助於望遠鏡,伽利略還先後發現了土星光環、太陽黑子、太陽的自轉、金星和水星的盈虧現象、月球的周日和周月天平動,以及銀河是由無數恆星組成等等。這些發現開辟了天文學的新時代。
㈨ 物理著名的17個定理分別是什麼
初中物理有牛頓第一定律、光的反射定律、光的折射定律、能量守恆定律、電流定律、歐姆定律等定律,具體分析如下:
牛頓第一定律也稱為慣性定律其內容是:一切物體在不受外力作用時,總保持靜止或勻速直線運動狀態;光的反射定律:一面二側三等大。入射光線和法線間的夾角是入射角。反射光線和法線間夾角是反射角;光的折射定律:一面二側三隨大四空大;
能量守恆定律:能量既不會憑空產生,也不會憑空消失,它只會從一種形式轉化為其它形式,或者從一個物體轉移到另一個物體,而能的總量保持不變;電流定律:電量Q、電壓U、電阻R;歐姆定律的公式:I=U/R,U=IR,R=U/I;
所以可以看出,初中物理有牛頓第一定律、光的反射定律、光的折射定律、能量守恆定律、電流定律、歐姆定律等定律。
從對稱原理推導出的物理定律
許多基本物理定律是時間,空間或自然其它性質各種對稱性數學的結果。特別是牛頓的一些守恆定律與一些對稱性有關;例如:能量守恆是時間移動對稱性的結果(時間的任一瞬間都是相同的),而動量守恆是空間(空間無特殊點)對稱性(均勻性)的結果。
各種基本類型的所有粒子(如,電子,或光子)的不可區別性導致狄拉克(Dirac)和玻色量子統計,它導致費米子的泡利不相容原理。時間和空間之間坐標軸轉動對稱性(把某一當虛軸,另一就是實軸),導致了洛倫茲變換。進而得出特殊相對論。慣性質量和引力質量間的對稱性得出廣義相對論。
以上內容參考:網路-物理定律