1. 近代物理學進展主要包括什麼內容
近代物理學進展分21個專題介紹了近代物理學多方面的概念、方法以及研究前沿和成果。
內容包括近年業備受重視的研究方向,多數與諾貝爾物理獎有關,涉及凝聚態物理、原子分子物理與近代光學、核物理、粒子物理、天體物理與宇宙學等領域。在論述中不著重於技術性細節而著重於物理實質,並介紹近代物理學中一些思想方法、研究方法和研究過程中的經驗教訓。
2. 經典物理學與近代物理學的區別是什麼
經典物理學(包括經典力學,經典電磁學,統計物理,熱力學)近代物理學的兩個分支相對論和量子力學在低速和宏觀情況下的極限近似。對以太說和自然界無跳躍的信條的否定使人們認識到了相對時空(四維時空),波粒二象性和不確定性原理。這是一次巨大的飛躍。同時對於原子內部結構的研究使粒子物理學得以創建,物理學再不同於經典物理學時代通過簡單的實驗總結規律然後得出結論,而是進入了全新的時代。
3. 近代西方物理學發展史
1、 近代物理學時期又稱經典物理學時期,這一時期是從16世紀至19世紀,是經典物理學的誕生、發展和完善時期。
近代物理學是從天文學的突破開始的。早在公元前4世紀,古希臘哲學家亞里士多德就已提出了「地心說」,即認為地球位於宇宙的中心。公元140年,古希臘天文學家托勒密發表了他的13卷巨著《天文學大成》,在總結前人工作的基礎上系統地確立了地心說。
這一學說從表觀上解釋了日月星辰每天東升西落、周而復始的現象,又符合上帝創造人類、地球必然在宇宙中居有至高無上地位的宗教教義,因而流傳時間長達1300餘年。
公元15世紀,哥白尼經過多年關於天文學的研究,創立了科學的日心說,寫出「自然科學的獨立宣言」——《天體運行論》,對地心說發出了強有力的挑戰。
16世紀初,開普勒通過從第谷處獲得的大量精確的天文學數據進行分析,先後提出了行星運動三定律。開普勒的理論為牛頓經典力學的建立提供了重要基礎。從開普勒起,天文學真正成為一門精確科學,成為近代科學的開路先鋒。
近代物理學之父伽利略,用自製的望遠鏡觀測天文現象,使日心說的觀念深入人心。他提出落體定律和慣性運動概念,並用理想實驗和斜面實驗駁斥了亞里士多德的「重物下落快」的錯誤觀點,發現自由落體定律。
16世紀,牛頓總結前人的研究成果,系統的提出了力學三大運動定律,完成了經典力學的大一統。16世紀後期創立萬有引力定律,樹立起了物理學發展史上一座偉大的里程碑。
之後兩個世紀,是電學的大發展時期,法拉第用實驗的方法,完成了電與磁的相互轉化,並創造性地提出了場的概念。19世紀,麥克斯韋在法拉第研究的基礎上,憑借其高超的數學功底,創立了了電磁場方程組,在數學形式上完成了電與磁的完美統一,完成了電磁學的大一統。
與此同時,熱力學與光學也得到迅速發展,經典物理學逐漸趨於完善。
(3)近代物理學講的什麼擴展閱讀:
近代物理學發展越發緩慢,主要是因為數學模型的復雜度和詮釋的難度的提高造成的吧,或者換句話說,並不是物理學的發展變慢了,只是想把它簡單的表述給人們變得越來越難。人們無從了解,自然就覺得是學科不發展。
早在經典物理比如經典力學和熱力學,雖然數學模型也不簡單但是詮釋是很直觀的。就是說數學符號對應的物理實際是很顯而易見的。
而現代的,比如量子場論和弦論,甚至廣義相對論的數學模型比經典物理要復雜的多。而且很多數學模型還不完備,這些其實都不是大問題。關鍵是如何詮釋,如何理解量子場論中的量子場的物理實際,甚至更低級別一些,量子力學中的波函數是什麼,目前雖有一些公認的解釋但是很不令人滿意。
而且對於物理過程的概率詮釋從一方面直接從理論層面阻礙了對更基礎的物理結構的研究,這也跟我們的實驗觀察能力的限制有關。我們不能建立超越我們觀察能力的理論,或者我們可以建立任何理論但是對於超越觀察能力的部分我們不能做任何研究。
綜上所述,其實物理學現在的發展並不慢,只是人們的認知問題而已。
4. 大學物理主要講什麼
大學物理主要講的內容:分兩部分:經典物理和近代物理
經典物理包括:運動,流體,熱,聲,光,電,磁
近代物理包括:相對論,原子結構,量子論,核物理,基本粒子學,天體物理學
經典物理學半年,近代物理學半年
5. 近代物理學與現代物理學的本質區別是什麼
嚴格來說,這個問題科學的描述應該是:經典物理學和現代物理學的本質區別是什麼。
下面就來進行簡要分析。
什麼是現代物理學?現代物理學是後牛頓時代的物理概念。「現代」一詞描述的是一種需要結合量子力學理論、愛因斯坦相對論理論亦或是兩者兼而有之的一種概念。一般來說,現代物理學用於指代在20世紀初期和之後開發的物理學領域的所有分支,同時我們也習慣將受20世紀早期物理學影響較大的物理分支劃分在現代物理學的領域范疇。
結論作為物理學的兩大支柱,經典物理學和現代物理學都有著極為重要的科研地位和研究價值,事實也證明,兩者在科學研究中共同發揮著不可磨滅的作用,並未現代社會的發展做出了突出的貢獻。
相信未來量子衛星和量子通訊的全面普及,必將為物理領域帶來新的研究熱潮。
6. 談一談你對近代物理學的認識
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。
其次,物理又是一種智能。
7. 近代物理學,現代物理學都包括哪些內容
現代物理學以相對論和量子力學為基礎,它的研究范圍已經擴展為從基本粒子到宇宙天體的各個領域,形成了許多分支學科和邊緣學科。
1.相對論
愛因斯坦(Albert Einstein,1879—1955)創建的相對論主要是時空的理論,它放棄了牛頓的絕對時間和絕對空間,建立了相對論時空觀,使物理觀念發生了一場根本的變革。在相對論中,局限於慣性參考系的理論稱為狹義相對論,推廣到一般參考系和包括引力場在內的理論稱為廣義相對論。
(1)狹義相對論。
1905年,愛因斯坦建立了狹義相對論。狹義相對論有兩個基本假設:
① 相對性原理:所有慣性參考系都是等價的,物理規律對於所有慣性參考系都可以表述為相同形式;
② 光速不變原理:真空中的光速相對於任何慣性系沿任一方向恆為c,並與光源運動無關。
愛因斯坦從這兩個假設出發,推導出兩個慣性坐標系的時空變換關系即洛侖茲變換。從而徹底否定了「以太」的存在,並導出了運動剛體的「長度收縮」、運動時鍾的「時間延緩」、同時的相對性及新的速度合成法則等。狹義相對論的時空觀表明:第一,時間、空間和物質的運動是有密切聯系的,時間和空間的特性是相對的,時間間隔和空間間隔的量度並不具有不變性,而是隨物質運動狀態的變化而變化的;第二,時間和空間存在著不可分割的聯系,它們不能分割開來而獨立存在,一切物理現象和過程都是在X、Y、Z和t的統一的四維連續區中存在著。
愛因斯坦把狹義相對論用於電動力學,證明了麥克斯韋方程組符合相對性原理,建立了相對論電動力學。在這里,電場和磁場已不再各自是一個矢量,而是一個反對稱的四維張量,這個張量在不同的慣性系裡按一定的規律變換。電場和磁場是這個統一的張量的不同分量,它們對於不同的慣性系表現出來的效應是不同的。在某一個慣性系中表現出的是一個純粹的電場或磁場;在另一個慣性系中將同時表現出電場和磁場。這就是說,電磁場劃分為電場部分和磁場部分,只具有相對意義,它與觀察者所在的慣性系有關。
愛因斯坦還把相對論用於力學,建立了相對論力學。相對論力學能夠正確地描述高速運動的規律,並且,當速度v<<c時,相對論力學能夠過渡到經典力學。在相對論力學中,動量守恆和能量守恆這兩條定律被統一成一條定律,給出了物體質量隨速度增長的關系式以及質能關系式E=mc2,後者反映了質量與能量的等效關系。
(2)廣義相對論。
從1907到1915年,愛因斯坦提出並建立了廣義相對論。這個理論的出發點是引力質量和慣性質量相等這一事實,由此可以提出等效原理的假設:引力場同參照系的相當的加速度在物理上完全等價。根據廣義相對論,萬有引力效應是空間、時間彎曲的一種表現。空間、時間的彎曲結構,決定於物質的能量密度與動量密度在空間、時間中的分布;而空間、時間的彎曲結構,又反過來決定物體的運行軌道。愛因斯坦由廣義相對論作出的譜線紅移、光線彎曲、行星軌道近日點運動的預言,已經被一些實驗證實。
2.量子力學
量子力學是研究微觀粒子基本運動規律的理論。1923年,德布羅意(Louis de Broglie,1892—)提出物質波理論,開創了量子力學的時代。德布羅意認為,不僅光有波粒二象性,實物粒子也有波粒二象性。他還把描寫物質粒子性的物理量與描寫物質波動性的物理量聯系起來,寫出了以他的名字命名的關系式。1926年,薛定諤(1887--1961)根據德布羅意物質波思想,引入波函數,得出了量子力學的基本方程--薛定諤方程(波動方程),還進而建立了微擾理論,詳細計算了散射等問題,完成了波動力學的創建工作。
差不多同時,海森伯(Werner Karl Heisenberg,1901—1976)等人從量子化條件出發建立了矩陣力學,並成功地解決了氫原子能級、斯塔克效應、氫原子在電場和磁場中能級的移動等問題。波動力學和矩陣力學是從兩個不同的方面研究一個共同的問題,它們的效果是相同的,可以通過數學變換從一個理論轉換為另一理論。人們把波動力學和矩陣力學合在一起,統稱為量子力學。1925—1930年,狄拉克(Paul Adrien Maurice Dirac,1902—1984)對量子力學理論作了全面總結,還建立了相對論量子力學。
3.現代物理學的各個領域
(1)量子光學和現代光學。
1900年,普朗克(Max Planck,1858—1947)在解釋黑體輻射時提出了能量子假說,認為各種頻率的電磁波只能以一定的能量子方式從振子發射,能量子是不連續的,其大小隻能是電磁波(或光)的頻率與普朗克常數乘積的整數倍。1905年愛因斯坦發展了普朗克的能量子假設,把量子論貫穿到整個輻射和吸收過程中,提出了光量子(光子)理論,圓滿解釋了光電效應。其後的康普頓效應進一步證明了光量子理論。
量子力學的理論表明,光既具有波的性質,也具有粒子的性質,即波粒二象性。但光子不同於17世紀微粒說中的粒子,光子是和光的頻率聯系著的。
20世紀60年代前後,激光器的問世、全息攝影技術的應用、光纖通訊的發展、紅外技術和遙感技術的出現,使光學進入現代光學的新時代,形成一些新的分支學科或邊緣學科,如傅里葉光學、非線性光學、激光光譜學、集成光學等。
(2)原子物理。
1911年,盧瑟福(Ernst Rutherford,1871—1937)通過實驗提出原子的有核模型,但在經典物理下,該模型同原子的穩定性發生了矛盾。1913年,玻爾(Niels Bohr,1885—1962)將量子觀念引入原子系統,通過定態假設和頻率假設兩個假說建立了他的原子結構理論,並成功地解釋了氫原子光譜規律。後來,人們又提出空間量子化的概念,研究了原子的殼層結構,發現了電子的自旋,不斷修正了原子結構理論。
這種在量子力學之前形成的原子理論,是有很大局限性的,其關鍵在於未能用波粒二象性去考慮原子問題。在這個理論中,研究范圍每擴大一步,一般都要附帶進若干新的假設或某些經驗公式,因此它不是一種完整的理論。只有以量子力學為基礎對原子結構進行研究,才能得到原子結構的精確描述。
(3)原子核物理。
原子核物理研究原子核的特性、結構和變化。1920年以前,盧瑟福等人發現了質子,1932年查德威克(James Chadwick,1891—1974)發現中子,從此人們認識到原子核是由質子和中子構成的。此後,人們曾提出各種核模型假設來解釋原子核的某些運動規律和現象。這些模型比較重要的有液滴模型、α粒子模型、費米氣體模型、殼層模型、單粒子殼模型、多粒子殼模型、集體運動模型、統一模型等等。但直到目前還沒有一個模型能夠解釋所有的實驗事實,原子核結構仍然是人們正在進行探索的一個重大課題。
早在1896年,人們就發現了天然放射性現象,使傳統的元素不變的觀念受到巨大沖擊。從1919年起,人們又實現了原子核的人工蛻變,這是實現人工核反應的重大突破。1938年,用中子轟擊鈾導致了核裂變的發現,根據相對論的質能關系,核裂變的質量虧損會產生巨大的能量。1942年,第一座原子反應堆在美國芝加哥大學建成並開始運轉,開始了人類利用原子能的新紀元。1952年以後,人們又實現了輕核聚變,產生了比裂變大得多的能量。
(4)粒子物理。
目前實驗上所能探測到的物質結構最深層次的研究,稱為粒子物理學,也稱為高能物理學。1932年安德森(Carl Darid Ander-son,1905—)在宇宙射線中發現了正電子,標志著粒子物理學的誕生。隨後逐步發現了一系列新的粒子。早期發現的粒子,都是來自宇宙射線,50年代以後,由於各種加速器相繼問世,大批粒子不斷地被發現。到目前為止,已經發現的粒子有幾百種之多,而且看來還會不斷有新的發現。
①粒子之間的四種相互作用。
粒子之間存在著復雜的相互作用,能夠產生和消滅。粒子之間有四種相互作用:引力相互作用、弱相互作用、電磁相互作用和強相互作用。四種相互作用都是隨著粒子之間距離的增加而減弱。引力作用和電磁作用是隨著距離的改變按照平方反比的規律變化,屬於長程力。弱作用和強作用隨著距離的增加,比平方反比的減弱還要快得多,屬於短程力。按照所參與相互作用的不同,可以把已發現的粒子分為三大類:規范粒子、輕子和強子。
② 對稱性及其對應的守恆定律。
對稱性的研究為建立粒子物理理論提供了線索。物理規律的某種對稱性對應著相應的守恆定律。在宏觀物理中成立的質能守恆、角動量守恆、動量守恆和電荷守恆,在粒子物理中仍舊有效。此外,粒子運動還遵守重子數守恆、電輕子數守恆和μ輕子數守恆等守恆定律。粒子物理中還有一些在某種相互作用中受到破壞的守恆定律,如宇稱守恆定律在弱相互作用下就不成立。
③ 強子的內部結構。
從本世紀50年代開始,人們意識到強子具有內部結構並得到了實驗證實。1964年,蓋爾曼(Murry Gell-Mann,1929—)提出強子結構的誇克模型。1974年,丁肇中(1936—)和里希特(Burton Richter,1931—)同時發現了J/ψ粒子,為誇克模型的真實性提供了有力的證據。理論上預言有六種誇克,現在已經發現了五種,第六種誇克的實驗發現還有待於進一步的證實。雖然誇克在強子內部可以相當自由的運動,但即使用目前最大的加速器也沒能將誇克打出來。很多人認為這是「誇克禁閉」造成的。因為誇克之間的相互作用是通過交換膠子實現的,膠子在強子內部起「粘膠」作用,有八種不同色荷的膠子以不同形式把誇克粘合在一起,在誇克之間傳遞相互作用。1979年,丁肇中等人在實驗中證實了膠子的存在,給研究強相互作用的量子色動力學以有力的支持。
④量子場論。
波粒二象性,以及粒子的產生和消滅,是微觀、高速物理中的普遍現象。在高能情況下,不可能像在非相對論情況中那樣來區分粒子和場。把粒子和場統一處理並能反映粒子轉化的基本理論叫做量子場論。從1927年起經過二十多年時間由狄拉克等人建立的量子電動力學是最早的量子場論。在量子電動力學中,各種粒子均用相應的量子場來描述。空間、時間中的每一點的量子場均以算符來表示,稱為場算符。場算符滿足正則對易關系與形式上的哈密頓方程。在薛定諤方程的基礎上,加進產生與湮滅算符,叫做二次量子化。重整化方法的引入,使量子電動力學成為一個完整的描繪微觀電磁相互作用的精確理論,理論和實驗之間的符合達到驚人的程度。但是,量子電動力學本身在邏輯上不夠自洽,其研究方法在向弱相互作用和強相互作用擴展時也遇到了難以克服的困難。
⑤規范場論。
最有可能把四種相互作用統一起來的量子場論是近年來崛起的規范場論。該理論企圖在進行超對稱的局部變換時,讓方程中所涉及的每一種對稱性都引入一種規范場,從而將包括引力在內的四種相互作用都包含在一個共同的理論框架之中,實現全面的大統一。1961年格拉肖(Sheldon Lee Glashow,1932—)提出弱相互作用和電磁相互作用統一的理論模型。1967年和1968年,溫伯格(Steven Weinberg,1933—)和薩拉姆(Abs Salam,1926—)在規范場論基礎上實現了弱相互作用和電磁相互作用的統一,並為一系列實驗所證明。
(5)量子統計物理。
1900年普朗克提出能量子假設,也標志著初期量子統計的開端。在經典統計方法中加進能量量子化的假設,可以成功地推導出與黑體輻射實驗相符的普朗克公式,還可以推導出與實驗符合得很好的固體比熱公式和多原子氣體比熱公式。量子力學的建立改變了經典統計力學的統計方法,形成了量子統計物理。
量子統計與經典統計的區別,主要反映在以下四點:
① 由於能量的變化是不連續的,能量在相空間中的代表點不是充滿各處,而僅僅存在於某一些區域中,因此經典統計中的相空間積分應當改為直接求各能級的分配數的總和;
② 由於全同粒子的不可辨別性,相同粒子的互換不能算作一個新的微觀態;
③ 由於測不準關系的限制,相空間的小體積不能取得任意小;
④ 費米子由於受泡利不相容原理的限制,每一相格只容許至多一個粒子,而對於玻色子,每一相格所容許的粒子數目沒有限制,因此對費米子和玻色子要用不同的方法進行統計。
用量子統計,能夠精確地解釋黑體輻射、金屬中自由電子的比熱等問題,並可導出熱力學第三定律。
(6)凝聚態物理。
凝聚態物理研究凝聚態(固態與液態)物質的微觀結構、物理性質及其內部運動規律。它是由固體物理學發展起來的,是現代物理學中最龐大的一個分支。它包括了固體物理學、晶體學、金屬物理學、半導體物理學、超導體物理學,還包括近年來興起的表面物理學、非晶態物理學等等。下面簡單介紹一下其中的固體物理學、半導體物理學和超導體物理學。
①固體物理。
固體物理學主要的研究對象是晶態固體。19世紀,人們就已經積累了關於晶體幾何結構的大量知識。20世紀初,實驗和理論都為固體物理學的建立提供了堅實的基礎。1912年,勞厄(Maxvon Lane,1879—1960)首先指出晶體可以作為X射線的衍射光柵,使人們通過實驗觀測對晶體結構有了較深入的了解。量子理論的發現,使人們能夠更加深入和比較正確地描述晶體內部微觀粒子的運動過程。在這個基礎上,1928年布洛赫(F.BLoch,1905—)提出,晶體中原子的周期排列形成了對自由電子運動有影響的周期性勢場,在這種勢場中,電子占據的、彼此相隔很近的可能能級形成能帶,能帶間有一定的間隙,稱為禁帶。這個能帶理論為固體提供了一個普遍適用的微觀模型。固體能帶論和晶格動力學使固體物理學成為一門系統的基礎學科,在處理晶體性能方面獲得了重大成功。例如,這些理論得出了區分導體、半導體和絕緣體的微觀判據,形成了位錯、晶體缺陷等方面系統的理論。
②半導體物理。
能帶理論為半導體物理的發展奠定了基礎。半導體是依靠導帶中的電子或價帶中的空穴導電的,其導電性能可通過摻入雜質原子取代原來的原子而進行控制。近年來,半導體物理的研究已經深入和擴展到半導體能帶超精細結構的研究、半導體發光機制及半導體光導性質的研究等領域,表面物理也成為半導體物理學的一個重要研究內容。半導體物理的研究導致了1947年晶體管的發明和1959年集成電路的發明。當代集成電路技術與計算機技術的結合,已從根本上改變了整個工業、甚至整個社會的面貌,促進了新的世界技術革命的到來。
③超導物理。
超導體物理學研究超導現象和超導體材料的特性。當溫度下降到臨界溫度時金屬突然失去電阻的現象稱為超導現象。它是1911年由昂內斯(H.K.Onnes,1853—1926)首先發現的。1933年發現了超導體的完全抗磁性,即邁斯納效應。1958年巴丁(Jhon Bardeen,1908—)等人提出了一個超導現象的微觀理論,大體上說明了超導現象的起源。1962年,人們發現了超導隧道效應,還提出了電子——聲子相互作用的強耦合超導理論。目前世界各國都在加緊對高溫超導材料的研究,已經研製出超導溫度為攝氏零下幾十度的高溫超導材料。
(7)天體物理。
天體物理研究天體的物質結構以及天體的形成和演化。從20世紀30年代到60年代,逐漸形成了關於恆星的比較統一的理論。恆星的前身(星胚)是由彌漫稀薄的星際物質通過引力塌縮而凝聚成密度較大的氣體和塵埃雲。在塌縮過程中星胚中心密度增大、溫度增高,逐漸發熱發光,形成星前天體。引力收縮是星前天體的能源。當星胚核心溫度升高到一千萬度時,氫核聚變開始成為主要能源,這時進入主星序階段,一個真正的恆星便形成了。據計算,恆星只用幾百萬年甚至幾十萬年就走完了星前階段,而主星序則長達10億年到100億年。恆星演化的末期,將出現三類天體:白矮星、中子星和黑洞。目前,白矮星和中子星已被大量發現,黑洞的發現尚有待於進一步證實。在宇宙整體的研究方面,人們提出了宇宙膨脹理論和大爆炸理論,並且找到了一些實驗證據。
(8)非平衡統計物理。
非平衡統計物理研究處於非平衡態的物質系統。經典統計力學認為,物質系統的演化是一種從有序到無序的不可逆過程。但生物界的有些現象卻與此相反,如生物的進化就是從低級到高級、從無序到有序乃至高度有序發展的。這樣,物理學和生物學這兩種演化觀就表現出尖銳的對立。這告訴我們,物理系統也應存在著從無序到有序的演化過程。1969年,普里高津(N.G.Pri- gogine,1917—)提出耗散結構理論,為尋找從無序到有序提供了新的思想。普里高津認為,處在遠離平衡態的不穩定狀態的開放系統,如果內部各要素間存在著非線性的相互作用,在穩定性被破壞後,可能向新的穩定狀態進行,在這個過程中,可以出現有序結構(耗散結構)。1973年,哈肯(Hermann Haken,1927—)從另一角度提出了一種研究從無序到有序的理論——協同學,它是一種產生自組織有序結構和功能行為的理論。
(9)生物物理。
生物物理學用物理學的理論和實驗技術研究生命現象。從20世紀30年代到50年代,一批物理學家在晶體分析技術的基礎上,逐步弄清了蛋白質的基本結構。1944年,薛定諤用量子力學的觀點討論了遺傳問題,他設想,基因是一種同分異構的連續體構成的非周期性晶體,在它的巨大數量的原子或原子群的排列組合中,蘊含著一種微型密碼,這種密碼形成遺傳信息。50年代初,一些物理學家開始對遺傳的物質基礎DNA(脫氧核糖核酸)進行結構細節的晶體研究。1953年,物理學家克里克(F.H.C.Crick,1916—)和病毒遺傳學家沃森(J.D.Watson,1928—)一起,提出了DNA雙螺旋結構的分子模型,並提出DNA分子結構的遺傳含義。他們認為,DNA雙螺旋結構就是攜帶著遺傳密碼的基因,一個DNA分子能夠復制出兩個完全相同的DNA分子。在DNA如何控制蛋白質合成的進一步探究中,物理學家伽莫夫(G.Gamov,1904—1968)根據排列組合提出「三聯體密碼子」假說,提出共有64種遺傳密碼。到1969年,這64種遺傳密碼已全部測出並被列成密碼表。遺傳信息之謎的破譯,是20世紀自然科學最偉大的成就之一。
8. 大學物理學近代物理基礎知識點
物理學科的特點:物理是一門科學學科,而不是工具學科,重視探索真理的方法。教學方法主要有:
1、實驗教學課 物理實驗教學的方式主要有四種,即演示實驗,學生實驗,隨堂實驗和課外實驗。
2、知識教學課 物理基礎知識中最重要最基本的內容是物理概念和物理規律。
3、習題教學課 習題教學,也是物理教學的一種重要形式。在講述若乾重要概念和規律,或者在重要的教學單元之後,一般要安排以解題指導為中心的習題課,及時而有重點地進行復習和解題訓練。
9. 近代物理學的三次理論大綜合是什麼
17世紀,伽利略研究地面上物體的運動,打開了通向近代物理學的大門。
牛頓「站在巨人們的肩膀上」,把地面上物體的運動和天體運動統一起來,揭示了天上地下一切物體的普遍運動規律,建立了經典力學體系,實現了物理學史上第一次大綜合。
18世紀,經過邁爾、焦耳、卡諾、克勞修斯等人的研究,經典熱力學和經典統計力學正式確立,從而把熱與能、熱運動的宏觀表現與微觀機制統一起來,實現了物理學史上的第二次大綜合。
19世紀,麥克斯韋在庫侖、安培、法拉第等物理學家研究的基礎上,經過深入研究,把電、磁、光統一起來,建立了經典電磁理論,預言了電磁波的存在,實現了物理學史上第三次大綜合。
至此,經典力學、經典統計力學和經典電磁理論形成了一個完整的經典物理學體系,一座金碧輝煌的物理學大廈巍然聳立。
10. 什麼是近代物理
以經典力學為基礎的近代物理
近代物理注重於實驗,在實驗的基礎上研究物理理論