❶ 物理層要解決哪些問題物理層的主要特點是什麼
物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。
物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。
給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。在兩個相鄰系統之間唯一地標識數據電路。
(1)物理層解決哪些關鍵問題擴展閱讀:
物理層的組成部分
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE即數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連接設備,如數據機等。
數據傳輸通常是經過DTE──DCE,再經過DCE──DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。
❷ 物理層要解決什麼問題
物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。主要性能: ⑴為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成.一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接.所謂激活,就是不管有中國物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路. ⑵ 傳輸數據.物理層要形成適合數據傳輸需要的實體,為數據傳送服務.一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞.傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要. ⑶ 完成物理層的一些管理工作. 特性:4個特性是機械特性、電氣特性、功能特性與規程特性。詳見: 中國ke.中國/link?url=_ISzudHpvwyltIr
❸ 常見網路設備的物理層故障與解決方法
物理層常見設備有:網卡光纖、CAT-5線(RJ-45接頭)、集線器有整波作用、Repeater加強信號、串口、並口等。
1,通信硬體包括通信適配器(也稱通信介面)和數據機(MODEM)以及通信線路。從原理上講,物理層只解決DTE和DCE之間的比特流傳輸,盡管作為網路節點設備主要組成部分的通信控制裝置,其本身內涵在物理層、數據鏈路層、甚至更高層,在內容上分界並不很分明,但它所包含的MODEM介面、比特的采樣發送、比特的緩沖等功能是確切屬於物理層范疇的。為了實現PC機與數據機或其它串列設備通信,首先必須使用電子線路將PC機內的並行數據轉成與這些設備相兼容的比特流。除了比特流的傳輸之外,還必須解決一個字元由多少個比特組成及如何從比特流中提取字元等技術問題,這就需要使用通信適配。通信適配器可以認為是用於完成二進制數據的串、並轉換及一其它相關功能的電路。通信適配器按通信規程來劃分可分為TTY(Tele Type Writer,電傳打字機)、BSC(Birary Synchronous Commuication,二進制同步通信)和HDLC(High-level Data link Control,高級數據鏈路控制)三種。
2,IBM PC 非同步通信適配器:使用TTY規程的非同步通信適配採用RS-232C介面標准。這種通信適配器除可用於PC機聯機通信外,還可以連接各種採用RS-232C介面的外部設備。例如,可連接採用RS-232C介面的滑鼠器、數字化儀等輸入設備;可連接採用RS-232C介面的列印機、繪圖儀及CRT顯示器等各種輸出設備。可見,非同步通信適配器的用途是很廣泛的。非同步通信規程將每個字元看成一個獨立的信息,字元可順序出現在比特流中,字元與字元間的間隔時間是任意的(即字元間採用非同步定時),但字元中的各個比特用固定的時鍾頻率傳輸。字元間的非同步定時和字元中比特之間的同步定時,是非同步傳輸規程的特徵。 非同步傳輸規程中的每個字元均由四個部分組成: 1位起始位:以邏輯「0」表示,通信中稱「空號」(SPACE)。 5~8位數據位:即要傳輸的內容。 1位奇/偶檢驗位:用於檢錯。 1~2位停止位:以邏輯「1」表示,用以作字元間的間隔。這種傳輸方式中,每個字元以起始位和停止位加以分隔,故也稱「起--止」式傳輸。串列口將要發送的數據中的每個並行字元,先轉換成串列比特串,並在串前加上起始位,串後加上檢驗位和停止位,然後發送出去。接收端通過檢測起始位,檢驗位和停止位來保證接收字元中比特串的完整性,最後再轉換成並行的字元。串列非同步通信適配器本身就象一個微型計算機,上述功能均由它透明地完成,不須用戶介入。早期的非同步通信適配器被做成單獨的插件板形成,可直接插在PC機的系統擴充槽內供使用,後來大多將非同步通信適配器與其他適配器(如列印機、磁碟驅動器等的適配器)做在一塊稱作多功能板的插件板上。也有一些高檔微機,已將非同步通信適配器做在系統主板上,作為微機系統的一個常規部件。
這些是最簡單的,還沒查找故障方面的資料,建議你先把這個採納了,再到「網路經驗」、「網路」、「網路知道」搜索相關資料,比你這樣問來得快!
如果需要咨詢如何查找更精確,請在採納後再追問,我會密你的!
❹ 物理層解決什麼問題介面有什麼特徵
物理層要解決的主要問題:
(1)物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。
(2)給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。
(3)在兩個相鄰系統之間唯一地標識數據電路。
特徵:
(1)機械特徵, 指明介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等。這很像平時常見的各種規格的電源插頭的尺寸都有嚴格的規定。
(2)電氣特徵, 指明在介面電纜的各條線上出現的電壓的范圍。
物理層的電氣特徵規定了在物理連接上傳輸二進制位流時線路上信號電壓高低、阻抗匹配情況、傳輸速率和距離的限制等.早期的電氣特性標準定義物理連接邊界點上的電氣特性,而較新的電氣特性標準定義的都是發送器和接收器的電器特性,同時還給出了互連電纜的有關規定.比較起來,較新的標准更有利於發送和接收線路的集成化工作.物理層介面的電氣特性主要分為三類:非平衡型,新的非平衡型和新的平衡型。
非平衡型的信號發送器和接收器均採用非平衡方式工作,每個信號用一根導線傳輸,所有信號共用一根地線.信號的電平是用+5V~+15V,表示二進制"0",用-5V~-15V,表示二進制"1".信號傳輸速率限於20Kbps以內,電線長度限於15M以內.由於信號線是單線,因此線間干擾大,傳輸過程中的外界干擾也很大。
在新的非平衡型標准中,發送器採用非平衡方式工作.接收器採用平衡方式工作(即差分接收器).每個信號用一根導線傳輸.所有信號共用兩根地線,即每個方向一根地線.信號的電平使用+4v~+6v表示二進制"0",用-4V~-6V表示二進制"1".當傳輸距離達到1000M時,信號傳輸速率在3kbps以下,隨著傳輸速率的提高,傳輸距離將縮短.在10M以內的近距離情況下,傳輸速率可達300kbps。由於接收器採用差分方式接收,且每個方向獨立使用信號地,因此減少了線間干擾和外界干擾.
新的平衡型標准規定,發送器和接收器均以差分方式工作,每個信號用兩根導線傳輸,整個介面無需共用信號就可以正常工作,信號的電平由兩根導線上信號的差值表示.相對於某一根導線來說,差值在+4V~+6V表示二進制"0",差值在-4V~-6V表示二進制"1".當傳輸距離達到1000M時,信號傳輸率在100kbps以下;當在10m以內的近距離傳輸時,速率可達10Mbps。由於每個信號均使用雙線傳輸,因此線間干擾和外界干擾大大削弱,具有較高的抗共模干擾能力。
(3)功能特徵,規定了介面信號的來源、作用以及其他信號之間的關系。即物理介面上各條信號線的功能分配和確切定義。物理介面信號線一般分為數據線、控制線、定時線和地線。
DTE/DCE標准介面的功能特性主要是對各介面信號線作出確切的功能定義,並確定相互間的操作關系。對每根介面信號線的定義通常採用兩種方法:一種方法是一線一義法,即每根信號線定義為一種功能,CCITT V24、EIA RS-232-C、EIA RS-449等都採用這種方法;另一種方法是一線多義法,指每根信號線被定義為多種功能,此法有利於減少介面信號線的數目,它被CCITT X。21所採用。
介面信號線按其功能一般可分為接地線、數據線、控制線、定時線等類型。對各信號線的命名通常採用數字、字母組合或英文縮寫三種形式,如EIA RS-232-C採用字母組合,EIA RS-449採用英文縮寫,而CCITT V。24則以數字命名。在CCITT V。24建議中,對DTE/DCE介面信號線的命名以1開頭,所以通常將其稱為100系列介面線,而用於DTE/ACE介面信號線命名以2開頭,故將它稱做200系列介面信號線。
(4)規程特徵, 定義了再信號線上進行二進制比特流傳輸的一組操作過程,包括各信號線的工作順序和時序,使得比特流傳輸得以完成。
DTE/DCE標准介面的規程特性規定了DTE/DCE介面各信號線之間的相互關系、動作順序以及維護測試操作等內容。規程特性反映了在數據通信過程中,通信雙方可能發生的各種可能事件。由於這些可能事件出現的先後次序不盡相同,而且又有多種組合,因而規程特性往往比較復雜。描述規程特性一種比較好的方法是利用狀態變遷圖。因為狀態變遷圖反映了系統狀態的變遷過程,而系統狀態遷移正是由當前狀態和所發生的事件(指當時所發生的控制信號)所決定的。
不同的物理介面標准在以上4個重要特性上都不盡相同。實際網路中比較廣泛使用的是物理介面標准有EIA-232-E、EIA RS-449和CCITT的X、21建議。EIA RS-232C仍是目前最常用的計算機非同步通信介面。
❺ 物理層要解決哪些問題物理層的主要特點是什麼
物理層要解決的問題:
1、物理層要盡可能屏蔽掉物理設備、傳輸媒體和通信手段的不同,使上面的數據鏈路層感覺不到這些差異的存在,而專注於完成本曾的協議與服務。
2、給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力。為此,物理層應解決物理連接的建立、維持和釋放問題。
3、在兩個相鄰系統之間唯一地標識數據電路。
物理層的主要特點:
由於在OSI之前,許多物理規程或協議已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備鎖採用。
加之,物理層協議涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套心的物理層協議,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械、電氣、功能和規程特性。
由於物理連接的方式很多,傳輸媒體的種類也很多,因此,具體的物理協議相當復雜。
規程與協議的區別:
在數據通信的早期,對通信所使用的各種規則都稱為「規程」(procere),後來具有體系結構的計算機網路開始使用「協議」(protocol)這一名詞,以前的「規程」其實就是「協議」,但由於習慣,對以前制定好的規程有時仍常用舊的名稱「規程」。
❻ 物理層的主要功能是什麼解決了什麼問題
物理層的主要功能⑴為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成.一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接.所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路.⑵
傳輸數據.物理層要形成適合數據傳輸需要的實體,為數據傳送服務.一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞.傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要.⑶
完成物理層的一些管理工作.
❼ 物理層的原理和技術
物理層(或稱物理層,Physical Layer)是計算機網路OSI模型中最低的一層。物理層規定:為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。區域網與廣域網皆屬第1、2層。
物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。
OSI採納了各種現成的協議,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理層協議。
物理層要解決的主要問題:
(1)物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。
(2)給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。 (3)在兩個相鄰系統之間唯一地標識數據電路。[2]
物理層主要功能:為數據端設備提供傳送數據通路、傳輸數據。
1.為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成。一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接。所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路。
2.傳輸數據,物理層要形成適合數據傳輸需要的實體,為數據傳送服務。一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞。傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要。
3. 完成物理層的一些管理工作。
❽ 物理層存在什麼問題怎麼解決的
1物理層要解決 的主要問題
①物理層要盡可能屏蔽掉物理設備、傳輸媒體和通信手段 的不同使上面
的數據鏈路層感覺不到這些差異 的存在而專注於完成本層 的協議與服務。
②給其服務用戶數據鏈路層在一條物理 的傳輸媒體上傳送和接收比特
流一般為串列按順序傳輸 的比特流 的能力。為此物理層應解決物理連接
的建立、維持和釋放問題。
③在兩個相鄰系統之間唯一地標識數據電路。
2物理層 的主要特點
①由於在OSI之前許多物理規程或協議已經制定出來了而且在數據通
信領域中這些物理規程已被許多商品化 的設備所採用。加之物理層協議涉
及 的范圍廣泛所以至今沒有按OSI 的抽象模型制定一套新 的物理層協議
而是沿用已存在 的物理規程將物理層確定為描述與傳輸媒體介面 的機械、電
氣、功能和規程特性。
②由於物理連接 的方式很多傳輸媒體 的種類也很多因此具體 的物
理協議相當復雜。
❾ 物理層存在什麼問題怎麼解決的
1物理層要解決 的主要問題
①物理層要盡可能屏蔽掉物理設備、傳輸媒體和通信手段 的不同使上面
的數據鏈路層感覺不到這些差異 的存在而專注於完成本層 的協議與服務。
②給其服務用戶數據鏈路層在一條物理 的傳輸媒體上傳送和接收比特
流一般為串列按順序傳輸 的比特流 的能力。為此物理層應解決物理連接
的建立、維持和釋放問題。
③在兩個相鄰系統之間唯一地標識數據電路。
2物理層 的主要特點
①由於在OSI之前許多物理規程或協議已經制定出來了而且在數據通
信領域中這些物理規程已被許多商品化 的設備所採用。加之物理層協議涉
及 的范圍廣泛所以至今沒有按OSI 的抽象模型制定一套新 的物理層協議
而是沿用已存在 的物理規程將物理層確定為描述與傳輸媒體介面 的機械、電
氣、功能和規程特性。
②由於物理連接 的方式很多傳輸媒體 的種類也很多因此具體 的物
理協議相當復雜。