導航:首頁 > 物理學科 > 高中物理有多少個基本概念

高中物理有多少個基本概念

發布時間:2022-12-28 15:22:04

A. 高中物理知識點歸納

高中物理公式總結

物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F´{負號表示方向相反,F、F´各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:
(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。

十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N•m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。

十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法:
電壓表示數:U=UR+UA

電流表外接法:
電流表示數:I=IR+IV

Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2]
選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小
便於調節電壓的選擇條件Rp>Rx

電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp<Rx
注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);
(6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。

十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A•m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀〔見第二冊P155〕 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);(c)解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:
(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握〔見圖及第二冊P144〕;(3)其它相關內容:地磁場/磁電式電表原理〔見第二冊P150〕/迴旋加速器〔見第二冊P156〕/磁性材料
十三、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,∆t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕;(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。(4)其它相關內容:自感〔見第二冊P178〕/日光燈〔見第二冊P180〕。

十四、交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失損´=(P/U)2R;(P損´:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)〔見第二冊P198〕;
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);
S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。

B. 高中物理知識點有哪些

1、大的物體不一定不能看成質點,小的物體不一定能看成質點。
2、平動的物體不一定能看成質點,轉動的物體不一定不能看成質點。

3、參考系不一定是不動的,只是假定為不動的物體。

4、選擇不同的參考系物體運動情況可能不同,但也可能相同。

5、在時間軸上n秒時指的是n秒末。第n秒指的是一段時間,是第n個1秒。第n秒末和第n+1秒初是同一時刻。

6、忽視位移的矢量性,只強調大小而忽視方向。

7、物體做直線運動時,位移的大小不一定等於路程。

8、位移也具有相對性,必須選一個參考系,選不同的參考系時,物體的位移可能不同。

9、打點計時器在紙帶上應打出輕重合適的小圓點,如遇到打出的是短橫線,應調整一下振針距復寫紙的高度,使之增大一點。

10、使用計時器打點時,應先接通電源,待打點計時器穩定後,再釋放紙帶。

11、使用電火花打點計時器時,應注意把兩條白紙帶正確穿好,墨粉紙盤夾在兩紙帶間;使用電磁打點計時器時,應讓紙帶通過限位孔,壓在復寫紙下面。

12、"速度"一詞是比較含糊的統稱,在不同的語境中含義不同,一般指瞬時速率、平均速度、瞬時速度、平均速率四個概念中的一個,要學會根據上、下文辨明"速度"的含義。平常所說的"速度"多指瞬時速度,列式計算時常用的是平均速度和平均速率。

13、著重理解速度的矢量性。有的同學受初中所理解的速度概念的影響,很難接受速度的方向,其實速度的方向就是物體運動的方向,而初中所學的"速度"就是現在所學的平均速率。

14、平均速度不是速度的平均。

15、平均速率不是平均速度的大小。

16、物體的速度大,其加速度不一定大。

17、物體的速度為零時,其加速度不一定為零。

18、物體的速度變化大,其加速度不一定大。

19、加速度的正、負僅表示方向,不表示大小。

20、物體的加速度為負值,物體不一定做減速運動。

21、物體的加速度減小時,速度可能增大;加速度增大時,速度可能減小。

22、物體的速度大小不變時,加速度不一定為零。

23、物體的加速度方向不一定與速度方向相同,也不一定在同一直線上。

24、位移圖象不是物體的運動軌跡。

25、解題前先搞清兩坐標軸各代表什麼物理量,不要把位移圖象與速度圖象混淆。

26、圖象是曲線的不表示物體做曲線運動。

27、由圖象讀取某個物理量時,應搞清這個量的大小和方向,特別要注意方向。

28、v-t圖上兩圖線相交的點,不是相遇點,只是在這一時刻相等。

29、人們得出"重的物體下落快"的錯誤結論主要是由於空氣阻力的影響。

30、嚴格地講自由落體運動的物體只受重力作用,在空氣阻力影響較小時,可忽略空氣阻力的影響,近似視為自由落體運動。

31、自由落體實驗實驗記錄自由落體軌跡時,對重物的要求是"質量大、體積小",只強調"質量大"或"體積小"都是不確切的。

32、自由落體運動中,加速度g是已知的,但有時題目中不點明這一點,我們解題時要充分利用這一隱含條件。

33、自由落體運動是無空氣阻力的理想情況,實際物體的運動有時受空氣阻力的影響過大,這時就不能忽略空氣阻力了,如雨滴下落的最後階段,阻力很大,不能視為自由落體運動。

34、自由落體加速度通常可取9.8m/s?或10m/s?,但並不是不變的,它隨緯度和海拔高度的變化而變化。

35、四個重要比例式都是從自由落體運動開始時,即初速度v0=0是成立條件,如果v0≠0則這四個比例式不成立。

36、勻變速運動的各公式都是矢量式,列方程解題時要注意各物理量的方向。

37、常取初速度v0的方向為正方向,但這並不是一定的,也可取與v0相反的方向為正方向。

38、汽車剎車問題應先判斷汽車何時停止運動,不要盲目套用勻減速直線運動公式求解。

39、找准追及問題的臨界條件,如位移關系、速度相等等。

40、用速度圖象解題時要注意圖線相交的點是速度相等的點而不是相遇處。

41、產生彈力的條件之一是兩物體相互接觸,但相互接觸的物體間不一定存在彈力。

42、某個物體受到彈力作用,不是由於這個物體的形變產生的,而是由於施加這個彈力的物體的形變產生的。

43、壓力或支持力的方向總是垂直於接觸面,與物體的重心位置無關。

44、胡克定律公式F=kx中的x是彈簧伸長或縮短的長度,不是彈簧的總長度,更不是彈簧原長。

45、彈簧彈力的大小等於它一端受力的大小,而不是兩端受力之和,更不是兩端受力之差。

46、桿的彈力方向不一定沿桿。

47、摩擦力的作用效果既可充當阻力,也可充當動力。

48、滑動摩擦力只以μ和N有關,與接觸面的大小和物體的運動狀態無關。

49、各種摩擦力的方向與物體的運動方向無關。

50、靜摩擦力具有大小和方向的可變性,在分析有關靜摩擦力的問題時容易出錯。

51、最大靜摩擦力與接觸面和正壓力有關,靜摩擦力與壓力無關。

52、畫力的圖示時要選擇合適的標度。

53、實驗中的兩個細繩套不要太短。

54、檢查彈簧測力計指針是否指零。

55、在同一次實驗中,使橡皮條伸長時結點的位置一定要相同。

56、使用彈簧測力計拉細繩套時,要使彈簧測力計的彈簧與細繩套在同一直線上,彈簧與木板面平行,避免彈簧與彈簧測力計外殼、彈簧測力計限位卡之間有摩擦。

57、在同一次實驗中,畫力的圖示時選定的標度要相同,並且要恰當使用標度,使力的圖示稍大一些。

58、合力不一定大於分力,分力不一定小於合力。

59、三個力的合力最大值是三個力的數值之和,最小值不一定是三個力的數值之差,要先判斷能否為零。

60、兩個力合成一個力的結果是惟一的,一個力分解為兩個力的情況不惟一,可以有多種分解方式。

61、一個力分解成的兩個分力,與原來的這個力一定是同性質的,一定是同一個受力物體,如一個物體放在斜面上靜止,其重力可分解為使物體下滑的力和使物體壓緊斜面的力,不能說成下滑力和物體對斜面的壓力。

62、物體在粗糙斜面上向前運動,並不一定受到向前的力,認為物體向前運動會存在一種向前的"沖力"的說法是錯誤的。

63、所有認為慣性與運動狀態有關的想法都是錯誤的,因為慣性只與物體質量有關。

64、慣性是物體的一種基本屬性,不是一種力,物體所受的外力不能克服慣性。

65、物體受力為零時速度不一定為零,速度為零時受力不一定為零。

66、牛頓第二定律

F=ma中的F通常指物體所受的合外力,對應的加速度a就是合加速度,也就是各個獨自產生的加速度的矢量和,當只研究某個力產生加速度時牛頓第二定律仍成立。

67、力與加速度的對應關系,無先後之分,力改變的同時加速度相應改變。

68、雖然由牛頓第二定律可以得出,當物體不受外力或所受合外力為零時,物體將做勻速直線運動或靜止,但不能說牛頓第一定律是牛頓第二定律的特例,因為牛頓第一定律所揭示的物體具有保持原來運動狀態的性質,即慣性,在牛頓第二定律中沒有體現。

69、牛頓第二定律在力學中的應用廣泛,但也不是"放之四海而皆準",也有局限性,對於微觀的高速運動的物體不適用,只適用於低速運動的宏觀物體。

70、用牛頓第二定律解決動力學的兩類基本問題,關鍵在於正確地求出加速度a,計算合外力時要進行正確的受力分析,不要漏力或添力。

71、用正交分解法列方程時注意合力與分力不能重復計算。

72、注意F合=ma是矢量式,在應用時,要選擇正方向,一般我們選擇合外力的方向即加速度的方向為正方向。

73、超重並不是重力增加了,失重也不是失去了重力,超重、失重只是視重的變化,物體的實重沒有改變。

74、判斷超重、失重時不是看速度方向如何,而是看加速度方向向上還是向下。

75、有時加速度方向不在豎直方向上,但只要在豎直方向上有分量,物體也處於超、失重狀態。

76、兩個相關聯的物體,其中一個處於超(失)重狀態,整體對支持面的壓力也會比重力大(小)。

77、國際單位制是單位制的一種,不要把單位制理解成國際單位制。

78、力的單位牛頓不是基本單位而是導出單位。

79、有些單位是常用單位而不是國際單位制單位,如:小時、斤等。

80、進行物理計算時常需要統一單位。

81、只要存在與速度方向不在同一直線上的合外力,物體就做曲線運動,與所受力是否為恆力無關。

82、做曲線運動的物體速度方向沿該點所在的軌跡的切線,而不是合外力沿軌跡的切線。請注意區別。

83、合運動是指物體相對地面的實際運動,不一定是人感覺到的運動。

84、兩個直線運動的合運動不一定是直線運動,兩個勻速直線運動的合運動一定是勻速直線運動。兩個勻變速直線運動的合運動不一定是勻變速直線運動。

85、運動的合成與分解實際上就是描述運動的物理量的合成與分解,如速度、位移、加速度的合成與分解。

86、運動的分解並不是把運動分開,物體先參與一個運動,然後再參與另一運動,而只是為了研究的方便,從兩個方向上分析物體的運動,分運動間具有等時性,不存在先後關系。

87、豎直上拋運動整體法分析時一定要注意方向問題,初速度方向向上,加速度方向向下,列方程時可以先假設一個正方向,再用正、負號表示各物理量的方向,尤其是位移的正、負,容易弄錯,要特別注意。

88、豎直上拋運動的加速度不變,故其v-t圖象的斜率不變,應為一條直線。

89、要注意題目描述中的隱蔽性,如"物體到達離拋出點5m處",不一定是由拋出點上升5m,有可能在下降階段到達該處,也有可能在拋出點下方5m處。

90、平拋運動公式中的時間t是從拋出點開始計時的,否則公式不成立。

91、求平拋運動物體某段時間內的速度變化時要注意應該用矢量相減的方法。用平拋豎落儀研究平拋運動時結果是自由落體運動的小球與同時平拋的小球同時落地,說明平拋運動的豎直分運動是自由落體運動,但此實驗不能說明平拋運動的水平分運動是勻速直線運動。

92、並不是水平速度越大斜拋物體的射程就越遠,射程的大小由初速度和拋射角度兩因素共同決定。

93、斜拋運動最高點的物體速度不等於零,而等於其水平分速度。

94、斜拋運動軌跡具有對稱性,但彈道曲線不具有對稱性。

95、在半徑不確定的情況下,不能由角速度大小判斷線速度大小,也不能由線速度大小判斷角速度大小。

96、地球上的各點均繞地軸做勻速圓周運動,其周期及角速度均相等,各點做勻速圓周運動的半徑不同,故各點線速度大小不相等。

97、同一輪子上各質點的角速度關系:由於同一輪子上的各質點與轉軸的連線在相同的時間內轉過的角度相同,因此各質點角速度相同。各質點具有相同的ω、T和n。

98、在齒輪傳動或皮帶傳動(皮帶不打滑,摩擦傳動中接觸面不打滑)裝置正常工作的情況下,皮帶上各點及輪邊緣各點的線速度大小相等。

99、勻速圓周運動的向心力就是物體的合外力,但變速圓周運動的向心力不一定是合外力。

100、當向心力有靜摩擦力提供時,靜摩擦力的大小和方向是由運動狀態決定的。

101、繩只能產生拉力,桿對球既可以產生拉力又可以產生壓力,所以求作用力時,應先利用臨界條件判斷桿對球施力的方向,或先假設力朝某一方向,然後根據所求結果進行判斷。

C. 高中物理哪些知識點重要

一、運動學的基本概念

1、參考系: 運動是絕對的,靜止是相對的。一個物體是運動的還是靜止的,都是相對於參考系在而言的。通常以地面為參考系。

2、質點:

(1)定義:用來代替物體的有質量的點。質點是一種理想化的模型,是科學的抽象。

(2)物體可看做質點的條件:研究物體的運動時,物體的大小和形狀對研究結果的影響可以忽略。且物體能否看成質點,要具體問題具體分析。

(3)物體可被看做質點的幾種情況:

①平動的物體通常可視為質點。

②有轉動但相對平動而言可以忽略時,也可以把物體視為質點。

③同一物體,有時可看成質點,有時不能.當物體本身的大小對所研究問題的影響不能忽略時,不能把物體看做質點,反之,則可以。

【注】質點並不是質量很小的點,要區別於幾何學中的「點」。

3、時間和時刻:

時刻是指某一瞬間,用時間軸上的一個點來表示,它與狀態量相對應;時間是指起始時刻到終止時刻之間的間隔,用時間軸上的一段線段來表示,它與過程量相對應。

4、位移和路程:

位移用來描述質點位置的變化,是質點的由初位置指向末位置的有向線段,是矢量;

路程是質點運動軌跡的長度,是標量。

5、速度:

用來描述質點運動快慢和方向的物理量,是矢量。

(1)平均速度:是位移與通過這段位移所用時間的比值,其定義式為

3、平行四邊形定則:

兩個互成角度的力的合力,可以用表示這兩個力的有向線段為鄰邊,作平行四邊形,它的對角線就表示合力的大小及方向,這是矢量合成的普遍法則。

求、的合力公式:

注意:

(1)力的合成和分解都均遵從平行四邊行法則。

(2)兩個力的合力范圍:

(3)合力可以大於分力、也可以小於分力、也可以等於分力

(4)兩個分力成直角時,用勾股定理或三角函數。

注意事項:

(1)力的合成與分解,體現了用等效的方法研究物理問題

(2)合成與分解是為了研究問題的方便而引入的一種方法,用合力來代替幾個力時必須把合力與各分力脫鉤,即考慮合力則不能考慮分力,同理在力的分解時只考慮分力,而不能同時考慮合力

(3)共點的兩個力合力的大小范圍是:|F1-F2|≤F合≤Fl+F2

(4)共點的三個力合力的最大值為三個力的大小之和,最小值可能為零

(5)力的分解時要認准力作用在物體上產生的實際效果,按實際效果來分解

(6)力的正交分解法是把作用在物體上的所有力分解到兩個互相垂直的坐標軸上,分解最終往往是為了求合力(某一方向的合力或總的合力)

易錯現象:

1. 對含靜摩擦力的合成問題沒有掌握其可變特性

2. 不能按力的作用效果正確分解力

3. 沒有掌握正交分解的基本方法

七、受力分析

1、受力分析:

要根據力的概念,從物體所處的環境(與多少物體接觸,處於什麼場中)和運動狀態著手,其常規如下:

(1)確定研究對象,並隔離出來;

(2)先畫重力,然後彈力、摩擦力,再畫電、磁場力;

(3)檢查受力圖,找出所畫力的施力物體,分析結果能否使物體處於題設的運動狀態(靜止或加速),否則必然是多力或漏力;

(4)合力或分力不能重復列為物體所受的力

2、整體法和隔離體法

(1)整體法:就是把幾個物體視為一個整體,受力分析時,只分析這一整體之外的物體對整體的作用力,不考慮整體內部之間的相互作用力。

(2)隔離法:就是把要分析的物體從相關的物體系中假想地隔離出來,只分析該物體以外的物體對該物體的作用力,不考慮物體對其它物體的作用力。

(3)方法選擇

所涉及的物理問題是整體與外界作用時,應用整體分析法,可使問題簡單明了,而不必考慮內力的作用;當涉及的物理問題是物體間的作用時,要應用隔離分析法,這時原整體中相互作用的內力就會變為各個獨立物體的外力。

3、注意事項:

正確分析物體的受力情況,是解決力學問題的基礎和關鍵,在具體操作時應注意:

(1)彈力和摩擦力都是產生於相互接觸的兩個物體之間,因此要從接觸點處判斷彈力和摩擦力是否存在,如果存在,則根據彈力和摩擦力的方向,畫好這兩個力

(2)畫受力圖時要逐一檢查各個力,找不到施力物體的力一定是無中生有的.同時應只畫物體的受力,不能把對象對其它物體的施力也畫進去

易錯現象:

1. 不能正確判定彈力和摩擦力的有無;

2. 不能靈活選取研究對象;

3. 受力分析時受力與施力分不清。

八、共點力作用下物體的平衡

1、物體的平衡:

物體的平衡有兩種情況:一是質點靜止或做勻速直線運動;二是物體不轉動或勻速轉動(此時的物體不能看作質點)

2、共點力作用下物體的平衡:

①平衡狀態:靜止或勻速直線運動狀態,物體的加速度為零

②平衡條件:合力為零,亦即F合=0或∑Fx=0,∑Fy=0

a、二力平衡:這兩個共點力必然大小相等,方向相反,作用在同一條直線上。

b、三力平衡:這三個共點力必然在同一平面內,且其中任何兩個力的合力與第三個力大小相等,方向相反,作用在同一條直線上,即任何兩個力的合力必與第三個力平衡

c、若物體在三個以上的共點力作用下處於平衡狀態,通常可採用正交分解,必有:

F合x= F1x+ F2x + ………+ Fnx =0

F合y= F1y+ F2y + ………+ Fny =0 (按接觸面分解或按運動方向分解)

③平衡條件的推論:

當物體處於平衡狀態時,它所受的某一個力與所受的其它力的合力等值反向;

當三個共點力作用在物體(質點)上處於平衡時,三個力的矢量組成一封閉的三角形按同一環繞方向。

3、平衡物體的臨界問題:

當某種物理現象(或物理狀態)變為另一種物理現象(或另一物理狀態)時的轉折狀態叫臨界狀態。可理解成「恰好出現」或「恰好不出現」。

臨界問題的分析方法:

極限分析法:通過恰當地選取某個物理量推向極端(「極大」、「極小」、「極左」、「極右」)從而把比較隱蔽的臨界現象(「各種可能性」)暴露出來,便於解答。

易錯現象:

(1)不能靈活應用整體法和隔離法;

(2)不注意動態平衡中邊界條件的約束;

(3)不能正確制定臨界條件。

九、牛頓運動三定律

1、牛頓第一定律:

(1)內容:一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止

(2)理解:

①它說明了一切物體都有慣性,慣性是物體的固有性質.質量是物體慣性大小的量度(慣性與物體的速度大小、受力大小、運動狀態無關)

②它揭示了力與運動的關系:力是改變物體運動狀態(產生加速度)的原因,而不是維持運動的原因

③它是通過理想實驗得出的,它不能由實際的實驗來驗證

2、牛頓第二定律:

內容:物體的加速度a跟物體所受的合外力F成正比,跟物體的質量m成反比,加速度的方向跟合外力的方向相同

公式:

理解:

①瞬時性:力和加速度同時產生、同時變化、同時消失

②矢量性:加速度的方向與合外力的方向相同

③同體性:合外力、質量和加速度是針對同一物體(同一研究對象)

④同一性:合外力、質量和加速度的單位統一用SI制主單位⑤相對性:加速度是相對於慣性參照系的

3、牛頓第三定律:

(1)內容:

兩個物體之間的作用力和反作用力總是大小相等,方向相反,作用在一條直線上

(2)理解:

①作用力和反作用力的同時性。它們是同時產生,同時變化,同時消失,不是先有作用力後有反作用力。

②作用力和反作用力的性質相同,即作用力和反作用力是屬同種性質的力。

③作用力和反作用力的相互依賴性:它們是相互依存,互以對方作為自己存在的前提。

④作用力和反作用力的不可疊加性。作用力和反作用力分別作用在兩個不同的物體上,各產生其效果,不可求它們的合力,兩力的作用效果不能相互抵消。

4、牛頓運動定律的適用范圍:

對於宏觀物體低速的運動(運動速度遠小於光速的運動),牛頓運動定律是成立的,但對於物體的高速運動(運動速度接近光速)和微觀粒子的運動,牛頓運動定律就不適用了,要用相對論觀點、量子力學理論處理。

易錯現象:

(1)錯誤地認為慣性與物體的速度有關,速度越大慣性越大,速度越小慣性越小;另外一種錯誤是認為慣性和力是同一個概念。

(2)不能正確地運用力和運動的關系分析物體的運動過程中速度和加速度等參量的變化。

(3)不能把物體運動的加速度與其受到的合外力的瞬時對應關系正確運用到輕繩、輕彈簧和輕桿等理想化模型上。

十、牛頓運動定律的應用(一)

1、運用牛頓第二定律解題的基本思路

(1)通過認真審題,確定研究對象

(2)採用隔離體法,正確受力分析

(3)建立坐標系,正交分解力

(4)根據牛頓第二定律列出方程

(5)統一單位,求出答案

2、解決連接體問題的基本方法是:

(1)選取最佳的研究對象。選取研究對象時可採取「先整體,後隔離」或「分別隔離」等方法.一般當各部分加速度大小、方向相同時,可當作整體研究,當各部分的加速度大小、方向不相同時,要分別隔離研究

(2)對選取的研究對象進行受力分析,依據牛頓第二定律列出方程式,求出答案

3、解決臨界問題的基本方法是:

(1)要詳細分析物理過程,根據條件變化或隨著過程進行引起的受力情況和運動狀態變化,找到臨界狀態和臨界條件

(2)在某些物理過程比較復雜的情況下,用極限分析的方法可以盡快找到臨界狀態和臨界條件

易錯現象:

(1)加速系統中,有些同學錯誤地認為用拉力F直接拉物體與用一重力為F的物體拉該物體所產生的加速度是一樣的。

(2)在加速系統中,有些同學錯誤地認為兩物體組成的系統在豎直方向上有加速度時支持力等於重力。

(3)在加速系統中,有些同學錯誤地認為兩物體要產生相對滑動拉力必須克服它們之間的最大靜摩擦力。

十一、牛頓運動定律的應用(二)

1、動力學的兩類基本問題:

(1)已知物體的受力情況,確定物體的運動情況,基本解題思路是:

①根據受力情況,利用牛頓第二定律求出物體的加速度

②根據題意,選擇恰當的運動學公式求解相關的速度、位移等

(2)已知物體的運動情況,推斷或求出物體所受的未知力.基本解題思路是:

①根據運動情況,利用運動學公式求出物體的加速度

②根據牛頓第二定律確定物體所受的合外力,從而求出未知力

(3)注意點:

①運用牛頓定律解決這類問題的關鍵是對物體進行受力情況分析和運動情況分析,要善於畫出物體受力圖和運動草圖.不論是哪類問題,都應抓住力與運動的關系是通過加速度這座橋梁聯系起來的這一關鍵

②對物體在運動過程中受力情況發生變化,要分段進行分析,每一段根據其初速度和合外力來確定其運動情況;某一個力變化後,有時會影響其他力,如彈力變化後,滑動摩擦力也隨之變化

2、關於超重和失重:

在平衡狀態時,物體對水平支持物的壓力大小等於物體的重力。當物體在豎直方向上有加速度時,物體對支持物的壓力就不等於物體的重力。當物體的加速度方向向上時,物體對支持物的壓力大於物體的重力,這種現象叫超重現象。

當物體的加速度方向向下時,物體對支持物的壓力小於物體的重力,這種現象叫失重現象。對其理解應注意以下三點:

(1)當物體處於超重和失重狀態時,物體的重力並沒有變化

(2)物體是否處於超重狀態或失重狀態,不在於物體向上運動還是向下運動,即不取決於速度方向,而是取決於加速度方向

(3)當物體處於完全失重狀態(a=g)時,平常一切由重力產生的物理現象都會完全消失,如單擺停擺、天平失效、浸在水中的物體不再受浮力、液體柱不再產生向下的壓強等

易錯現象:

(1)當外力發生變化時,若引起兩物體間的彈力變化,則兩物體間的滑動摩擦力一定發生變化,往往有些同學解題時仍誤認為滑動摩擦力不變。

(2)些同學在解比較復雜的問題時不認真審清題意,不注意題目條件的變化,不能正確分析物理過程,導致解題錯誤。

(3)一些同學對超重、失重的概念理解不清,誤認為超重就是物體的重力增加啦,失重就是物體的重力減少了。

D. 求高中物理知識點大全

2009年高考物理知識點精要
八、分子動理論、熱和功、氣體
1.分子動理論
(1)物質是由大量分子組成的 分子直徑的數量級一般是10 -10 m.
(2)分子永不停息地做無規則熱運動.
①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去.溫度越高,擴散越快.②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映.顆粒越小,布朗運動越明顯;溫度越高,布朗運動越明顯.
八、分子動理論、熱和功、氣體
1.分子動理論
(1)物質是由大量分子組成的 分子直徑的數量級一般是10 -10 m.
(2)分子永不停息地做無規則熱運動.
①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去.溫度越高,擴散越快.②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映.顆粒越小,布朗運動越明顯;溫度越高,布朗運動越明顯.

E. 高中物理的基本概念

高中物理的概念是:...................以一個高中生的程度所能理解的關於自然界萬物變化的規律,為一門學科,這門學科就叫高中物理
力:力是物體與物體之間因某種關系,產生之間的壓力,摩擦力等等
加速度:由於物體接收的外力導致物體無法保持靜止或勻速直線運動,產生的速度變化就叫加速度
機械能守恆:物體只受到重力的狀態下,動能和重力勢能保持守恆,簡稱機械能守恆
功:物體接受外力,產生動能和重力勢能以及熱能等其它能量的變化,就叫做力對物體所做的功
能:物體本身所存在的動能,重力勢能,熱能等一切能量統稱能

F. 高中物理有哪些知識點

第一章 靜電場

電荷及其守恆定律

一、起電方法的實驗探究

1. 物體有了吸引輕小物體的性質,就說物體帶了電或有了電荷。

2. 兩種電荷

自然界中的電荷有2種,即正電荷和負電荷。如:絲綢摩擦過的玻璃棒所帶的電荷是正電荷;用乾燥的毛皮摩擦過的硬橡膠棒所帶的電荷是負電荷。同種電荷相斥,異種電荷相吸。

相互吸引的一定是帶異種電荷的物體嗎?不一定,除了帶異種電荷的物體相互吸引之外,帶電體有吸引輕小物體的性質,這里的「輕小物體」可能不帶電。

3. 起電的方法

摩擦起電、接觸起電、感應起電

(1)摩擦起電:兩種不同的物體原子核束縛電子的能力並不相同.兩種物體相互摩擦時,束縛電子能力強的物體就會得到電子而帶負電,束縛電子能力弱的物體會失去電子而帶正電.(正負電荷的分開與轉移)

(2)接觸起電:帶電物體由於缺少(或多餘)電子,當帶電體與不帶電的物體接觸時,就會使不帶電的物體上失去電子(或得到電子),從而使不帶電的物體由於缺少(或多餘)電子而帶正電(負電).(電荷從物體的一部分轉移到另一部分)

(3)感應起電:當帶電體靠近導體時,導體內的自由電子會向靠近或遠離帶電體的方向移動.(電荷從一個物體轉移到另一個物體)

三種起電的方式不同,但實質都是發生電子的轉移,使多餘電子的物體(部分)帶負電,使缺少電子的物體(部分)帶正電.在電子轉移的過程中,電荷的總量保持不變。

電荷守恆定律

1. 電荷量:電荷的多少。在國際單位制中,它的單位是庫侖,符號是C。

2. 元電荷:電子和質子所帶電荷的絕對值1.6×10-19C,所有帶電體的電荷量等於e或e的整數倍。(元電荷就是帶電荷量足夠小的帶電體嗎?提示:不是,元電荷是一個抽象的概念,不是指的某一個帶電體,它是指電荷的電荷量.另外任何帶電體所帶電荷量是1.6×10-19C的整數倍。)

3. 比荷:粒子的電荷量與粒子質量的比值。

4. 電荷守恆定律

表述1:電荷守恆定律:電荷既不能憑空產生,也不能憑空消失,只能從一個物體轉移到另一個物體,或從物體的一部分轉移到另一部分,在轉移的過程中,電荷的總量保持不變。

表述2:在一個與外界沒有電荷交換的系統內,正、負電荷的代數和保持不變。

庫侖定律

一、電荷間的相互作用

1. 點電荷:當電荷本身的大小比起它到其他帶電體的距離小得多,這樣可以忽略電荷在帶電體上的具體分布情況,把它抽象成一個幾何點。這樣的帶電體就叫做點電荷。點電荷是一種理想化的物理模型。VS質點

2. 帶電體看做點電荷的條件:

①兩帶電體間的距離遠大於它們大小;

②兩個電荷均勻分布的絕緣小球。

3. 影響電荷間相互作用的因素:①距離;②電量;③帶電體的形狀和大小

二、庫侖定律:在真空中兩個靜止點電荷間的作用力跟它們的電荷的乘積成正比,跟它們距離的平方成反比,作用力的方向在它們的連線上。

(靜電力常量——k=9.0×109N·m2/C2)

注意:

1. 定律成立條件:真空、點電荷

2. 靜電力常量——k=9.0×109N·m2/C2(庫侖扭秤)

3. 計算庫侖力時,電荷只代入絕對值

4. 方向在它們的連線上,同種電荷相斥,異種電荷相吸

5. 兩個電荷間的庫侖力是一對相互作用力

電場強度

一、電場——電荷間的相互作用是通過電場發生的

電荷(帶電體)周圍存在著的一種物質。電場看不見又摸不著,但卻是客觀存在的一種特殊物質形態。

其基本性質就是對置於其中的電荷有力的作用,這種力就叫電場力。

電場的檢驗方法:把一個帶電體放入其中,看是否受到力的作用。

試探電荷:用來檢驗電場性質的電荷。其電量很小(不影響原電場);體積很小(可以當作質點)的電荷,也稱點電荷。

二、電場強度

1. 場源電荷

2. 電場強度

放入電場中某點的電荷受到的電場力與它所帶電荷量的比值,叫做這一點的電場強度,簡稱場強。

(國際單位:N/C)

電場強度是矢量。規定:正電荷在電場中某一點受到的電場力方向就是那一點的電場強度的方向。即如果Q是正電荷,E的方向就是沿著PQ的連線並背離Q;如果Q是負電荷,E的方向就是沿著PQ的連線並指向Q。(「離+Q而去,向-Q而來」)

電場強度是描述電場本身的力的性質的物理量,反映電場中某一點的電場性質,其大小表示電場的強弱,由產生電場的場源電荷和點的位置決定,與檢驗電荷無關。數值上等於單位電荷在該點所受的電場力。
1V/m=1N/C

點電荷的場強公式

電場的疊加

在幾個點電荷共同形成的電場中,某點的場強等於各個電荷單獨存在時在該點產生的場強的矢量和,這叫做電場的疊加原理。

電場線

1. 電場線:為了形象地描述電場而在電場中畫出的一些曲線,曲線的疏密程度表示場強的大小,曲線上某點的切線方向表示場強的方向。

2. 電場線的特徵

(1)電場線密的地方場強強,電場線疏的地方場強弱。

(2)靜電場的電場線起於正電荷止於負電荷,孤立的正電荷(或負電荷)的電場線止無窮遠處點。

(3)電場線不會相交,也不會相切。

(4)電場線是假想的,實際電場中並不存在。

(5)電場線不是閉合曲線,且與帶電粒子在電場中的運動軌跡之間沒有必然聯系。

幾種典型電場的電場線

(1)正、負點電荷的電場中電場線的分布。
特點:

①離點電荷越近,電場線越密,場強越大。

②e以點電荷為球心作個球面,電場線處處與球面垂直,在此球面上場強大小處處相等,方向不同。

(2)等量異種點電荷形成的電場中的電場線分布

特點:

①沿點電荷的連線,場強先變小後變大。

②e兩點電荷連線中垂面(中垂線)上,場強方向均相同,且

總與中垂面(中垂線)垂直。

③在中垂面(中垂線)上,與兩點電荷連線的中點0等距離

各點場強相等。

(3)等量同種點電荷形成的電場中電場中電場線分布情況

特點:

①兩點電荷連線中點O處場強為0。

②兩點電荷連線中點附近的電場線非常稀疏,但場強並不為0。

③兩點電荷連線的中點到無限遠電場線先變密後變疏。

(4)勻強電場

特點:

①勻強電場是大小和方向都相同的電場,故勻強電場的電場線是平行等距同向的直線。

②e電場線的疏密反映場強大小,電場方向與電場線平行。

電勢能和電勢

一、電勢差:電勢差等於電場中兩點電勢的差值。電場中某點的電勢,就是該點相對於零勢點的電勢差。

(1)計算式

(2)單位:伏特(V)

(3)電勢差是標量。其正負表示大小。

電場力的功

電場力做功的特點:

電場力做功與重力做功一樣,只與始末位置有關,與路徑無關。

1. 電勢能:電荷處於電場中時所具有的,由其在電場中的位置決定的能量稱為電勢能.

注意:系統性、相對性

2. 電勢能的變化與電場力做功的關系

(1)電荷在電場中具有電勢能。

(2)電場力對電荷做正功,電荷的電勢能減小。

(3)電場力對電荷做負功,電荷的電勢能增大。

(4)電場力做多少功,電荷電勢能就變化多少。

(5)電勢能是相對的,與零電勢能面有關(通常把電荷在離場源電荷無限遠處的電勢能規定為零,或把電荷在大地表面上電勢能規定為零。)

(6)電勢能是電荷和電場所共有的,具有系統性。

(7)電勢能是標量。

3. 電勢能大小的確定

電荷在電場中某點的電勢能在數值上等於把電荷從這點移到電勢能為零處電場力所做的功。

電勢

電勢:置於電場中某點的試探電荷具有的電勢能與其電量的比叫做該點的電勢。是描述電場的能的性質的物理量。其大小與試探電荷的正負及電量q均無關,只與電場中該點在電場中的位置有關,故其可衡量電場的性質。

單位:伏特(V)標量

1. 電勢的相對性:某點電勢的大小是相對於零點電勢而言的。零電勢的選擇是任意的,一般選地面和無窮遠為零勢能面。

2. 電勢的固有性:電場中某點的電勢的大小是由電場本身的性質決定的,與放不放電荷及放什麼電荷無關。

3. 電勢是標量,只有大小,沒有方向.(負電勢表示該處的電勢比零電勢處電勢低.)

4. 計算時EP,q, 都帶正負號。

5. 順著電場線的方向,電勢越來越低。

6. 與電勢能的情況相似,應先確定電場中某點的電勢為零.(通常取離場源電荷無限遠處或大地的電勢為零.)

等勢面

1. 等勢面:電場中電勢相等的各點構成的面。

2. 等勢面的特點

①等勢面一定跟電場線垂直,在同一等勢面的兩點間移動電荷,電場力不做功;

②電場線總是由電勢高的等勢面指向電勢低的等勢面,任意兩個等勢面都不會相交;

③等差等勢面越密的地方電場強度越大。

電勢差

一、電勢差:電勢差等於電場中兩點電勢的差值

二、電場力的功

電場力做功的特點:電場力做功與重力做功一樣,只與始末位置有關,與路徑無關。

第6節 電勢差與電場強度的關系

一、場強與電勢的關系?

結論:電勢與場強沒有直接關系!

勻強電場中場強與電勢差的關系

勻強電場中兩點間的電勢差等於場強與這兩點間沿電場方向距離的乘積

在勻強電場中,場強在數值上等於沿場強方向每單位距離上降低的電勢.
電場強度的方向是電勢降低最快的方向.

G. 請問,高中物理基本知識

給了你提綱和題目 好好做

第一章力
力的概念
力是一個物體對另一個物體的作用,其中一個物體為施力物體,另一個物體為受力物體.力不能離開物體而獨立存在,力的作用效果是使物體發生形變和使物體產生加速度.
力的單位:在國際單位制中力的單位是牛頓,符號為N.
力的方向:力是有大小和方向的,是矢量.
力的三要素:大小,方向和作用點.
力的圖示:力可以用一有表示大小的刻度和表示方向的箭頭的有向線段來表示.如下圖所示.
6.力的測量:用彈簧秤測量.
力的種類:
重力:重力是由於地球的吸引而使物體產生的力(注:不能說重力就是地球對物體的吸引力).
重力的大小:重力大小等於mg,g是常數,等於9.8N/Kg.
重力的方向:總是豎直向下.
重心:重力總是作用在物體的各個點上,但為了研究問題簡單,我們認為一個物體的重力集中作用在物體的一點上,這一點稱為物體的重心.質量分布均勻的規則的物體的重心在物體的幾何中心.其它物體的重心可用懸掛法求出重心位置.
彈力:當相互接觸的物體發生形變時,發生形變的物體對使它發生形變的物體產生的力,叫做彈力.
彈力的大小:F=kx(胡克定律),k為彈簧的倔強系數.X為形變數.
彈力的方向:彈力的方向總是與形變的方向相反,且垂直於接觸面.
摩擦力:
滑動摩擦力:相互接觸的物體,當它們有相對滑動時,在它們的接觸面上產生的阻礙它們做相對運動的力,叫做滑動摩擦力.
滑動摩擦力的大小:f= N, 為滑動摩擦系數,N為壓力.滑動摩擦系數與物體的材料和物體表面的光滑程度有關.
滑動摩擦力的方向:總是與相對運動的方向相反.
靜摩擦力:相互相互接觸的物體,當它們有相對滑動的趨勢,但又保持相對靜止時在它們的接觸面上產生的阻礙它們做相對運動的力,叫做靜摩擦力.
靜摩擦力的大小:總是與跟它反方向的外力的大小相等.
靜摩擦力的方向:總是與相對滑動趨勢的方向相反.
物體受力分析:
物體受力分析的步驟:首先分析重力,其次分析是否的形變從而分析是否有彈力,第三,分析是否有相對運動或相對運動的趨勢,從而分析是否有摩擦力.
物體受力時,只要物體在地球表面或地球附近,就一定有重力,物體間有相互接觸,不一定有彈力,也不一定有摩擦力,有彈力不一定有摩擦力,但有摩擦力一定有彈力.
力的運算:
合力,分力,力的合成,力的分解的概念:
當一個力的作用效果與其它幾個力的作用效果
相同時,這一個力就叫做那幾個力的合力,反
過來那幾個力叫做這一個力的分力.已知合力
求分力的過程叫做力的分解;已知分力求合力的過程叫做力的合成.
力的合成:
圖解法:A.平形四邊形定則:
如右圖1所示.
B.三角形定則:利用三角形定則求
合力台下圖2所示.
C.多邊形定則:如圖3所示,將F1,F2,F3,……F6六
個力依次首尾相連,最後將
第一個力的起點到最後一個力的終點的有向線段,即為
合力.多邊形定則適用於多力合成.
計演算法:A.當分力在同一直線上且方向相同時,直接
相加.即F合=F1+F2
B.當分力在同一直線上且方向相反時,直接用大的力減去
小的力,且合力的方向與大力的方向相同.即F合=F1-F2 C.當分力互相垂直時,可以用勾股定理求出合力,即F= tgθ=
d.特殊情況的力的合成:如果兩個分力是大小相等的力,且兩分力的夾角為特殊角時,可以用解棱形的辦法求解.
3.力的分解:在進行力的分解時,只能求解:已知合力及兩個分力的方向,求兩分力的大小;已知合力及兩分力的方向,求兩分力的大小.
①圖解法:用力的合成的平行四邊形定則(或三角形定則)的逆過程求解.
正交分解法:適用於將一個已知力分解在互相垂直的兩個方向上.如圖4所示.
力的正交分解的典型例子:
如圖5所示,質量物體為m的物體位於水平面
上,受到一個與水平面成θ角的斜向上方的力作
用而保持向右勻速直線運動,則有
N=mg+Fsinθ f= (mg+Fcosθ)
如圖6所示,一物體質量為m位於頃角為θ的斜
面上,保持靜止,則有
f=mgsinθ N=mgcosθ
C.如圖7所示,一根細繩水平拉住
一個電燈,電線與豎直線的夾角為
θ,電燈保持靜止.則有:
T1=T2sinθ, T2cosθ=mg
第二章 直線運動
運動的基本概念:
機械運動:一個物體相對於別的物體位置的變動.
參考系:為了研究物體的運動,首先假定為不動的物體或物體系.同一物體的運動,選擇不同的參考系,描述的結果可能不同.
質點:用來代替物體的有質量而無大小的點.
位移(s):從初始位置到末位置的有向線段.是描述物體位置變化大小的物理量,它是矢量.
路程:物體運動軌跡的長度,它是標量.
時間和時刻:時間是一段,而時刻是一點.
直線運動:物體沿著直線的運動:
曲線運動:物體沿著曲線的運動.
注意:①只有當物體上各點的運動情況都相同或物體上有運動情況不同的點,但不影響物體的整體運動時,才能把物體看成質點.
②位移與路程的區別與聯系:位移是矢量,而路程是標量,只有在單方向直線運動中,路程才等於位移的大小.
運動的描述:
物理量描述:
位置變動的描述——位移s.
運動快慢的描述——速度v:物體的位移跟發生這段位移所用時間的比.即v=,在國際單位 制中速度的單位是m/s,非國際單位還有cm/s,km/h等.
平均速度:=,它粗略地描述了物體的平均運動快慢,是物體在一段位移或一段時間內的平均運動快慢.平均速度跟時間對應.
瞬時速度:是指物體在運動過程中經過某一點或某一時間的運動快慢.它精確地描述了物體在某一點或某一時刻的運動快慢.瞬時速度跟時刻對應.
速度變化快慢的描述——加速度a:在變速運動中,物體速度變化跟所用時間的比.即a==,在國際單位制中的單位為m/s2,它是一個矢量,其方向就是速度變化的方向.
圖像描述:①位移圖像(s-t):表示物體運動過程中位移隨時間變化關系的圖像.在位移圖像中,橫坐標表示時間t,縱坐標表示
位移s .如圖1中,水平直線a 表示物體在離原點s1處靜止不動;傾斜直線b表示物體從原點開始以速度v=tgθ做勻速直線運動;直線c表示物體從離原點s0處開始以速度v=tgα做勻速直線運動;直線d表示物體從離原點s2處開始以速度v=tgβ向原點方向做勻速直線運動,t0時刻到達原點; 曲線e表示物體做變速運動;直線f在位移圖像中無意義.
速度圖像(v-t):表示物體在運動過程中速度隨時間變化關系的圖像,速度圖像中縱坐標表示物體運動的速度,橫坐標表示物體運動的時間.如圖2所示,直線a表示物體以速度v1做勻速直線運動;傾斜直線b表示物體做初速度為0,加速度為a=tgθ的勻加速直線運動;直線c表示物體以初速度v1,加速度a=tgα做勻加速直線運動;直線d表示物體以初速度v2,加速度a=tgβ做勻減速直線運動,t0時刻速度達到0;曲線e表示物體做變速運動;直線f在速度圖像中無意義.
兩種直線運動:
勻速直線運動:
物體做直線運動,如果在任何相等的時間內經過和位移都相等,則這個物體的運動就叫做勻速直線運動.
勻速直線運動的特徵:速度的大小和方向都恆定不變(v = =恆量),加速度為零(a=0).
勻變速直線運動:
物體做直線運動,如果在任何相等的時間內速度的變化都相等,則這個物體的運動就叫做勻變速直線運動.
勻變速直線運動的特徵:速度的大小隨時間變化,加速度的大小和方向都不變
(a = = = 恆量).
勻變速直線運動的規律:如果物體的初速度為v0,t秒的速度為vt,經過的位移為s,加速度為a,則
vt=v0+at s = v0t+at2 vt2-v02 = 2as = = v
v=≠v
當初速度為0 時,vt=at s = at2 vt2 = 2as
推論:A.初速度為0的勻加速直線運動的物體的速度與時間成正比,即v1:v2=t1:t2
B. 初速度為0的勻加速直線運動的物體的位移與時間的平方成正比,即s1:s2=t12:t22
C. 初速度為0的勻變速直線運動的物體在連續相同的時間內位移之比為奇數比,即s1:s2:s3=1:3:5
D.勻變速直線運動的物體在連續相鄰相同的時間間隔內位移之差為常數,剛好等於加速度和時間間隔平方和乘積,即
E.初速度為0的勻加速直線運動的物體經歷連續相同的位移所需時間之比為1:
(-1):(-):……
F.將勻減速直線運動等效地看成反向的初速度為0的勻加速直線運動,有時對解題委方便.
④自由落體運動:不計空氣阻力,物體只受重力以初速度為0開始從某一高度自由下落的運動.其特徵為:v0=o, a = g,是初速度為0,加速度為g的勻加速直線運動.其規律為:vt = gt h = gt2 vt2 = 2gh
豎直上拋運動:不計空氣阻力,物體只受重力以一定的初速沿豎直向上的方向拋出,物體所做的運動叫做豎直上拋運動.其特徵為:v0≠0,a=g,是初速度不為0的勻變速直線運動.其規律為:vt=v0-gt h=v0t-gt2 vt2-v02=-2gh 上升的最大高度為hm= ,上升時間和下落時間相等,等於.
豎直上拋運動可分為兩段處理,上升過程看成是勻減速直線運動,下落過程看成是自由落體運動.
第三章牛頓運動定律
牛頓第一定律
牛頓第一定律:一切物體總保持勻速直線運動或靜止狀態,直到有外力迫使它改變這種狀態為止.
牛頓第一定律說明:①一切物體在不受力時總是保持勻速直線運動或靜止狀態是指物體;②當有外力作用在物體上時,物體的運動狀態就會改變,即從靜止到運動或從運動到靜止,或從某一速度到另一速度,因此,力是改變物體運動狀態的原因;③改變運動狀態,即是改變速度,所以運動狀態的改變就是速度的改變.
慣性:①慣性是物體保持靜止或勻速直線運動的性質.由於一切物體在不受力時都保持靜止或勻速直線運動,所以慣性是一切物體都有具有的.②慣性只跟物體的質量有關,跟物體的運動與否,速度大小無關.物體的質量越大慣性越大,所以質量是物體慣性大小的量度.
牛頓第二定律:
內容:物體的加速度,跟物體所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟外力的合力方向一致.其數學表達式為∑F=ma .
應用:①力學單位單位制:基本單位:長度:m 質量:kg 時間:s
導出單位:根據基本單位導出的單位.如:根據v=s/t,速度的單位為m/s,加速度的單位為m/s2 力的單位為:N,1N=1kg·m/s
②利用牛頓第二定律解題的類型及步驟:
已知受力求運動:a.利用隔離法對物體進行受力分析;b.求出合力;c.根據牛頓第二定律求出加速度;d.根據勻變速直線運動的規律求其它運動量.
已知運動求力:a.根據勻變速直線運動規律求出加速度;b.根據牛頓第二定律求出加速度;c.作物體的受力分析圖;d.根據合力與分力的關系求出其它力.
超重和失重:
超重:當物體加速上升或減速下降時,物體對支持物的壓力或對懸掛物的拉力大於物體所受重力的現象.即 N(或T)=mg + ma.
失重:當物體加速下降或減速上升時物體對支持物的壓力或對懸掛物的拉力小於物體所受重力的現象.即 N(或T)=mg - ma.
慣性系和非慣性系,牛頓運動定律的適用范圍:
慣性系和非慣性系:能使牛頓運動定律成立的參考系.不能使牛頓運動定律成立的參考系.在慣性系中可以直接運用牛頓第二定律進行計算,而在非慣性系中為了使牛頓第二定律成立,必須加一個假想的慣性力,F=-ma,其方向與非慣性系的加速度的方向相反.
牛頓運動定律的適用范圍:牛頓運動定律只適用於宏觀物體的低速問題,而不適用於微觀粒子和高速運動的物體.
3.典型應用
例題1一木箱裝貨物後質量為5kg,木箱與地面間的動摩擦因素為0.2,某人用200N的與水平面成300角的斜向下方的力拉木箱使之從靜止開始運動,g取10m/s2.求:①木箱的加速度;②第2秒末木箱的速度.
解:①作受力分析圖如圖示2-3所示
②求水平方向的合力:F舍=Fcos300-f
而f=μ(mg+Fsin300)
③根據牛頓第二定律a===1.12(m/s2)
④v2=at=1.12х2=2.24(m/s)
答:木箱的加速度為1.12m/s2,第2秒末木箱的速度為2.24m/s.
例題2以30m/s的初速度豎直向上拋出一個質量為100g的物體,2s後到達最大高度,空氣阻力始終不變,g取10m/s2.問:①運動中空氣對物體的阻力大小是多少 ②物體落回原地時的速度有多大
解:①根據勻變速直線運動的規律得上升過程中物體的加速度為a1===-15m/s2
②作受力圖如圖2-4所示
③根據牛頓第二定律得 -(f+mg)=ma1
所以 f=-m(g+a)=0.5N
④物體拋出後上升的最大高度為h=-v02/2a1=30m,
根據牛頓第二定律:下落過程中物體的加速度為
a2=-(mg-f)/m =-5m/s2(負號表示方向向下)
由勻變速度直線運動的規律得 v2=2a2(-h)
故v=-=-17.3(m/s) (負號表示方向向下)
答:運動中空氣對物體的阻力為0.5N,物體落回原地時的速度是17.3m/s.
牛頓第三定律
內容:兩個物體之間的作用力和反作用力總是大小相等,方向相反,作用在一條直線上,同時出現同時消失,作用在不同的兩個物體上.
2.作用力和反作用力與平衡力的聯系和區別:聯系:A.大小相等,方向相反,在一條直線上.
B.區別:作用力和反作用一定是作用在不同的兩個物體上,一定是同一種性質的力;而平衡力只作用在一個物體上,且不一定是同一種性質的力.
第四章物體的平衡
一.共點力作用下的物體平衡(平動平衡)
1.概念:①共點力:當物體受幾個力作用時,如果這幾個力的作用線的延長線交於一點,則這幾個力稱為共點力.
②(平動)平衡:如果物體保持靜止或勻速直線運動狀態,則稱這個物體平衡(這里指的是平動平衡).
2.共點力作用下的物體的平衡條件:
在共點力作用下的物體的平衡條件是物體所受外力的合力為零.即∑F=0(或F合=0)
推論1:當物體受到幾個共點力的作用而平衡時,其中的任一個力必定與餘下的其它力的合力等大反向;
推論2:當物體受到幾個共點力的作用而平衡時,這些力在任一方向上的合力必為零;
推論3:當物體受到幾個共點力的作用而平衡時,利用正交分解法將這些力分解,則必有∑Fx=0,∑Fy=0.
推論4:三個共點力作用的物體平衡時,這三個力必處於一個平面內,且三力首尾順次相連,自成封閉的三角形,且每個力與所對角的正弦值成正比.
3.用共點力的平衡條件解題的步驟:
①確定研究對象;
②用隔離法作物體的受力分析,並畫出受力圖;
③對於受力簡單的物體,可直接利用平衡條件∑F=0列出方程,對於較復雜的可先將力用正交分解法進行分解,然後用∑Fx=0,∑Fy=0列出方程組.
④求解方程,必要時還要對解進行討論.
4.應用舉例:
①利用平衡條件進行受力分析
如圖4-1所示一根細繩子掛著一個小球小球與粗糙的斜面
接觸,細線豎直,則小球與斜面間( ).
A.一定存在摩擦力;B.一定存在彈力;C.若有彈力必有摩擦力;
D.一定有彈力,但不一定有摩擦力.
答案:C
②二力平衡問題
質量為50g的磁鐵吸緊在豎直放置的鐵板上,它們間的動摩擦因數為0.3.要使磁鐵勻速下滑,需豎直向下加1.5N的拉力.那麼,如果要使磁鐵勻速向上滑動,應豎直向上用多大的力 答案:2.5N.
③三力平衡問題
④多力平衡問題
二.有固定轉軸物體的平衡條件:
1.基本概念:①轉動平衡:一個有固定轉軸的物體,在力的作用下,如果保持靜止或勻速轉動狀態,則該物體處於轉動平衡狀態.
②力臂:從轉動軸到力的作用線的垂直距離.
③力矩:力和力臂的乘積,力矩的作用效果是使物體的轉動狀態發生改變.M=FL 單位是N·m 當力矩的作用效果是使物體沿逆時針轉動時取為正值;當力矩的作用效果是使物體沿順時針轉動時取為負值.
2.有固定轉軸物體的平衡條件:
有固定轉軸物體的平衡條件是力矩的代數和為零,即∑M=0或M1+M2+M3+……=0
3.力矩平衡條件的應用及解題步驟:
①確定研究對象,選定轉軸,對物體進行受力分析;
②用M=FL求出各力的力矩,注意區分正負力矩;
③根據有固定轉軸物體的平衡條件列出平衡方程或方程組.(注意:當物體既處於平動平衡狀態,又處於轉動平衡狀態時,還可以利用平動平衡條件列出方程,與轉動平衡方程一起解出未知量.)
④解方程,求出未知量.

H. 高一物理概念梳理

高一物理基本概念
第一章 力

(一)、力的概念
1.力是 。
2.力的物質性是指 。
3.力的相互性是 ,施力物體必然是受力物體,力總是成對的。
4.力的矢量性是指 ,形象描述力用 。
5.物體之間發生相互作用,不一定要相互接觸,如 .
6.力可以按其 和 分類。
舉例說明:
(二)、重力
1.概念:
2.大小:公式G=mg g稱為重力加速度,它的數值在地球上的 最大, 最小;在同一地理位置,離地面越高,g值 。一般情況下,在地球表面附近我們認為重力是恆力。
3.方向: 。
4.作用點—-重心:質量均勻分布、有規則形狀的物體重心在物體的 ,物體的重心 物體上(填一定或不一定)。
質量分布不均或形狀不規則的薄板形物體的重心可採用 粗略確定。
5.重力的大小可以用 進行測量.物體 時對彈簧秤的拉力或壓力大小等於重力.
(三)、彈力
1.概念:
2.產生條件(1) ;
(2) 。
3.大小:(1)與形變有關,一般用平衡條件或動力學規律求出。
(2)表示彈簧彈力大小胡克定律:Ff=kx
式中的k被稱為彈簧的勁度系數,它的單位是 ,它由 決定;式中的x是彈簧的 。
4.方向:與形變方向相反。
(1)輕繩只能產生拉力,方向沿繩子且指向 的方向;
(2)堅硬物體的面與面,點與面接觸時,彈力方向 接觸面(若是曲面則是指其切面),且指向被壓或被支持的物體。
(3)球面與球面之間的彈力沿半徑方向,且指向 。
(四)、摩擦力
1.產生條件:(1)兩物體接觸面 ;②兩物體間存在 ;
(2)接觸物體間有相對運動( 摩擦力)或相對運動趨勢( 摩擦力)。
2.方向:(1)滑動摩擦力的方向沿接觸面和 相反,與物體運動方向 相同。
(2)靜摩擦力方向沿接觸面與物體的 相反。可以根據平衡條件或牛頓運動定律判斷。
3.大小:
(1)滑動摩擦力的大小: Ff = μFN 式中的FN是指 ,不一定等於物體的重力;式中的μ被稱為動摩擦因數,它的數值由 決定。
(2)靜摩擦力的大小: 0< Ff靜 ≤Ffm 除最大靜摩擦力以外的靜摩擦力大小與正壓力 關,最大靜摩擦力近似等於 ,靜摩擦力的大小應根據平衡條件或牛頓運動定律來進行計算。
(五)力的合成與分解
1.合力、分力、力的合成:一個力產生的效果如果能跟原來幾個力共同產生的 這個力就叫那幾個力的合力,那幾個力就叫這個力的 .求幾個力的合力叫 .力的合成實際上就是要找一個力去代替幾個已知的力,而不改變其 .
2.共點力:幾個力如果都作用在物體的 ,或者它們的 相交於同一點,這幾個力叫做共點力.
3.力的平行四邊形定則:求兩個互成角度的共點力的合力,可以用表示這兩個力的線段為
作 , 就表示合力的大小和方向,這就是力的平行四邊形定則.
力這種既有大小又有方向的物理量,進行合成運算時,一般不能用代數加法求合力,而必須用平行四邊形定則.
4.矢量和標量: 的物理量叫矢量, 的物理量叫標量.標量按代數求和.矢量按 求和,
5.一個力,如果它的兩個分力的作用線已經給定,分解結果可能有 種(注意:兩分力作用線與該力作用線不重合)
6.一個力,若它的兩個分力與該力均在一條直線上,分解結果可能有 種。
7.一個力,若它的一個分力作用線已經給定(與該力不共線),另外一個分力的大小任意給定,分解結果可能有 種。
8.有一個力大小為100N,將它分解為兩個力,已知它的一個分力方向與該力方向的夾角為30°,那麼,它的另一個分力的最小值是 N,與該力的夾角為 。
9.(1)兩個力合力的取值范圍是
(2)共點的三個力,最大值是 ,最小值是
(3)合力可能比分力大,也可能比分力小,也可能等於某一個分力。

第二章 直線運動
(一)幾個基本概念
1.參考系: (參考系的選取是自由的)
(1)比較兩個物體的運動必須選用同一參考系。
(2)參照物不一定靜止,但被認為是靜止的。
2.質點:
可以把物體看成質點的條件: ,
3.時間、時刻
(1)時刻:對應時間軸上
(2)時間:對應時間軸上
4.位置、位移與路程
(1)位置與時刻相對應,一個時刻對應一個 。
(2)位移:
(3)位移與路程的區別
路程: ,是 量
位移: ,是 量,與 無關。
位移的大小與路程相等。
5.速度、加速度
(1)速度: 與 的比值,用來描述物體運動的
①公式 : v=s/t 單位:
②速度為 量,其方向與 相同
③瞬時速度指
(2)加速度: 的物理量,它等於 與 的比值。
①公式:用v0表示物體在開始時刻的速度(初速度),用vt表示經過一段時間t末了時刻的速度(末速度)速度的改變數為 ,用a表示加速度,那麼:a=
②國際單位: ,讀作: ;
③物理意義:加速度是表示速度變化快慢的物理量,數值上等於 ;
④加速度的方向:與 的方向相同。
在直線運動中,加速度的方向可以用「+」、「-」來表示,如果規定初速度的方向為正方向,「+」表示: ,「-」表示 .
⑤a與Δv、v的關系:
是速度的變化率,即單位時間里速度的改變數,它只是一個量度式,不是決定式,其大小反映速度改變的快慢,與Δv、v都沒有必然的聯系。Δv表示速度的改變數,即速度改變的大小和方向;v是物體運動的速度,表示物體運動的快慢。V大時,a可大可小也可以為零,Δv大時,a也可以很小。
⑥加速度方向和運動關系:
1/當a與v0方向相同時,v隨時間增大而 ,物體做 ;
2/當a與v0方向相反時,v隨時間增大而 ,物體做 ;
3/當a=0時,速度隨時間不發生變化,物體做 ;

(二)兩種基本運動
1.勻速直線運動:物體做直線運動時, 都相等,則物體做的是勻速直線運動.勻速直線運動是 不變的運動.

2.勻變速直線運動:物體做直線運動時, 都相同,則物體做的是勻變速直線運動.勻變速直線運動是 不變的運動.
勻變速直線運動的規律:速度公式vt=
位移公式:(s-t式) (s-v式)
注意:若物體做勻減速直線運動,則加速度取 號

(三)自由落體運動
1.定義:物體 作用下 的運動。(不計空氣阻力)
自由落體運動的兩個基本特徵: ; 。
我們常見的物體的自由下落的運動不是嚴格意義上的自由落體運動,因為物體都受到
的影響。只有在物體所受的 與物體的重力相比很小,可以忽略不計時,物體的下落才可近似地看作自由落體運動。
2.自由落體運動的規律。
由於自由落體運動是初速度為零的勻加速直線運動,所以勻變速直線運動的基本公式及它們的推論都適用於自由落體運動,只要把這些公式中的v0取作零,並且用g來代替加速度a就行了。它們之間的關系如下:

以下幾個比例式對自由落體運動也成立:
①連續時間後總位移的比
S1:S2:S3:……=
②連續相同時間內的位移比
SI:SII:SIII:……=
③連續相同時間內的位移之差為:
SII-SI = SIII-SII= SIV- SIII……=
④連續相同位移內的時間之比
t1:t2:t3:……=

(三)運動圖像
1.勻速直線運動的圖像
(1)位移-時間圖像(s-t圖)如圖1。
①圖像特點:
②圖像上的一個點對應的是: ,如圖所示P點表示在 ,物體的位置為
③從圖中可確定物體在任意時間內的 ,
④圖線的斜率表示 ,從圖可知物體的速度為
(2)速度-時間圖象(v-t圖)如圖2。
①圖像特點:做勻速直線運動的物體的速度-時間圖象是
②圖像與橫軸所包圍的面積表示:

2.勻變速直線運動的速度時間圖像(v-t圖)如圖3
①圖像特點:
②圖像與縱坐標的交點表示:
③圖線的斜率表示:
④圖像與橫軸所包圍的面積表示:
圖4所示,Ⅰ表示 的運動,Ⅰ、Ⅱ圖線傾斜程度相同表示 相同,Ⅲ圖線的斜率比Ⅰ、Ⅱ圖線的斜率 ,說明了 ,圖線Ⅳ與Ⅰ、Ⅱ、Ⅲ不同之處是: ,說明做 運動

一下是網址,可以下載,是些概念梳理的練習

I. 高中物理學的內容有哪些

高中物理學的內容有如下:

一、運動學。

二、力學。

三、牛頓運動定律。

四、共點力平衡。

五、平拋運動。

六、圓周運動。

七、天體運動。

八、功和能。

九、動量。

十、動量守恆。

十一、恆定電流。

十二、磁場。

十三、電磁感應。

十四、交變電流。

十五、振動和波。

十六、光學。

十七、近代物理。

閱讀全文

與高中物理有多少個基本概念相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:969
武大的分析化學怎麼樣 瀏覽:1247
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057