導航:首頁 > 物理學科 > 學物理有什麼用論文

學物理有什麼用論文

發布時間:2023-01-02 00:32:19

A. 物理學在生活中的應用論文

我先寫,晚上給你回答哈,絕對原創,明天早上前絕對可以完工,這個最佳答案給我預留下哈,明天我絕對可以給你個滿意的答案。

物理學作為一門最基礎的自然學科,貫穿著人類文明的發展歷程,從遠古燧人氏鑽木生火到如今的信息化社會的建設,都少不了物理的參與。燧人鑽木取火的基本原理正是摩擦生熱原理,在熱量積蓄到一定程度時就可以使木頭與氧氣發生劇烈反應產生火焰。而物理在如今的生活中擁有著更加廣泛的應用,比如說一個人的起居,早上從床上爬起來,刷牙,洗漱,刷牙時利用牙刷凹凸不平的表面增大摩擦,可以把牙刷得更干凈徹底。洗漱完畢,來一頓豐盛的西式早餐,鋒利的刀子切麵包更容易,利用的原理是在力一定下,接觸面越小,壓強越大,這樣更容易切開物體。飽餐之後,開著心愛的跑車去公司,發動時利用電火花點燃氣缸中的氣體,使活塞帶動軸承轉動,從而使汽車前進。
到達公司,坐電腦前開始一天的工作。最初發明的電腦很大,而如今一台電腦桌就足夠放電腦的所有部件,正是因為量子力學促使半導體硅晶元的發明,使電路集成化,在一張小小的晶元上承載大量電路,大大縮小了其佔有的空間。
中午在辦公室用泡麵充飢下,筷子自然是必不可少的。簡簡單單兩根木條,動一動手腕就可以把食物送入口中。這里運用的是杠桿原理,較大力作用在較小的力臂上就可以舉起較大力臂上的較輕物體。
下班後呼朋喚友,一起吃一頓火鍋,其樂也融融。現在流行電磁爐,電磁爐的基本原理是電磁感應原理,利用形成渦流產生的熱量為火鍋供熱。
吃完火鍋出來時已然天黑,夜市的霓虹燈五顏六色,利用的正是量子力學對原子能級的研究,不同能級間電子發生躍遷時發出的光子的頻率不同,所以看上去絢麗無比,如夢似幻。
回家打開電視放鬆下,家中的彩電顏色艷麗,利用的是電子束磁偏轉原理,然後不斷變化,掃描,形成一幅幅動作畫面。
……………
物理學在生活中的運用由此可見一斑。不僅是日常生活,物理學在其它領域有著更廣泛的應用。
比如在國防領域,如今的提高打擊精度,引入了相對論進行計算,使導彈的誤差不超過方圓5米;人類終極武器原子彈,氫彈,利用的是愛因斯坦的質能方程,將物質轉化為能量,使一顆小小的原子彈爆發出驚人的破壞力。
物理學對近代生物學的發展更是起決定性作用。X射線衍射技術的應用敲開了通向DNA結構的一扇大門;波粒二相性的發現使得顯微技術突破瓶頸,發明了電子顯微鏡,為人們揭開了細胞亞顯微結構的神秘面紗;放射性同位素標記技術的使用為我們展示了各種有機物具體存在位置以及其生產流程。這些幫助我們更加深入地認識生命的本質。
網路的建立更是將全世界聯系起來,成為一個整體,地球村不再是虛言。首先是貝爾發明電話,利用電流進行傳播聲音信號,形成初步的有線網路。而後加以完善,形成了互聯網。再後來以電磁波為基本原理的無線技術的發明建立起全球性的無線網路,真正實現了隨時隨地聯系的地步。
由此可見,物理學如今幾乎已滲透到所有領域當中,在人類的發展中起著中流砥柱的作用。總之一句話,人類社會離不開物理。

……………
不知道我這答案你可滿意?時間緊迫,我也有些心有餘而力不足的感覺啊…所有物理的應用只是寫了最基本的理論基礎,重在應用嘛!就算你不能全部用,用到十之一二問題還是不大的,呵呵。例子還有很多,不一一列舉,相信你能舉出好多的:)
要體諒我的辛苦啊…完全原創…

B. 學習物理到底有什麼意義

1、物理是一門自然科學,它能幫助解決、認識生活中很多現象。如電學,光學,力學的應用。在平時的日常生活,我們也應該掌握有關的用電知識,對用電器的用電環境,電路,功率等都需要有一定的認識,通過學習物理才能完善我們這一方面的知識,才能做到安全用電。

2、由於物理涉及的范圍廣,有很多職業是和物理有關的,學好物理也為就業提供了比較好的條件。

3、學好物理也能培養自己的邏輯思維能力,對事物的理解認識也會有一定的幫助的。總之,學好物理能讓你更好的生活。
物理涉及到生活的方方面面,也許會很枯燥,但是不能放棄

C. 物理學論文範文

物理學給人類提供了大量的物質財富,同時也提供了精神財富。物理學的高技術和強滲透性也使之成為社會發展的重要推動力。下面是我為大家整理的物理學論文,供大家參考。

物理學論文範文一:物理學在科技創新中的效用

摘要:論述了X射線的發現,不僅對醫學診斷有重大影響,還直接影響20世紀許多重大發現;半導體的發明,使微電子產業稱雄20世紀,並促進信息技術的高速發展,物理學是計算機硬體的基礎;原子能理論的提出,使原子能逐步取代石化能源,給人類提供巨大的清潔能源;激光理論的提出及激光器的發明,使激光在工農業生產、醫療、通信、軍事上得到廣泛應用;藍光LED的發明,將點亮整個21世紀.事實告訴我們,是物理學推動科技創新,由此得出結論:物理學是科技創新的源泉.昭示人們,高校作為培養人才的場所,理工科要重視大學物理課程.

關鍵詞:X射線;半導體;原子能;激光;藍光LED;科技創新;大學物理

1引言

物理學是一門研究物質世界最基本的結構、最普遍的相互作用以及最一般的運動規律的科學[1-3],其內容廣博、精深,研究方法多樣、巧妙,被視為一切自然科學的基礎.縱觀物理學發展歷史可以發現:其蘊含的科學思維和科學方法能夠有效促進學生能力的培養和知識的形成,同時,其每一次新的發現都會帶動人類社會的科技創新和科技發展.正因如此,大學物理成為了高等學校理、工科專業必修的一門基礎課程.按照教育部頒發的相關文件要求[4-5],大學物理課程最低學時數為126學時,其中理科、師范類非物理專業不少於144學時;大學物理實驗最低學時數為54學時,其中工科、師范類非物理專業不少於64學時.然而調查顯示,眾多高校(尤其是新建本科院校)並沒有嚴格按照教育部頒發的課程基本要求開設大學物理及其實驗課程.他們往往打著“寬口徑、應用型”的晃子,大幅壓縮大學物理和大學物理實驗課程的學時,如今,大學物理及其實驗課程的總學時數實際僅為32-96學時,遠遠低於教育部要求的最低標准(180學時).試問這么少的課時怎麼講豐富、深奧的大學物理?怎麼能夠真正發揮出大學物理的作用?於是有的院、系要求只講力學,有的要求只講熱學,有的則要求只講電磁學,…面對這種情況,大學物理的授課教師在無奈狀態下講授大學物理.從《大學物理課程報告論壇》上獲悉,這不是個別學校的做法,在全國具有普遍性.殊不知,力、熱、光、電磁、原子是一個完整的體系,相互聯系,缺一不可.這種以消減教學內容為代價,解決課時不足的做法,就如同削足適履,是對教育規律不尊重,是管理者思想意識落後的一種體現.本文且不論述物理學是理工科必修的一門基礎課,只論及物理學是科技創新的源泉這一命題,以期提高教育管理者對大學物理課程重要性的認識.

2物理學是科技創新的源泉

且不說力學和熱力學的發展,以蒸汽機為標志引發了第一次工業革命,歐洲實現了機械化;且不說庫倫、法拉第、楞次、安培、麥克斯韋等創立的電磁學的發展,以電動機為標志引發了第二次工業革命,歐美實現了電氣化.這兩次工業革命沒有發生在中國,使中國近代落後了.本文著重論述近代物理學的發展對科學技術的巨大推動作用,從而得出結論:物理學是科技創新的源泉.1895年,威廉•倫琴(WilhelmR魻ntgen)發現X射線,這種射線在電場、磁場中不發生偏轉,穿透能力很強,由於當時不知道它是什麼,故取名X射線.直到1912年,勞厄(MaxvonLaue)用晶體中的點陣作為衍射光柵,確定它是一種光波,波長為10-10m的數量級[6].倫琴獲1901年諾貝爾物理學獎,他發現的X射線開創了醫學影像技術,利用X光機探測骨骼的病變,胸腔X光片診斷肺部病變,腹腔X光片檢測腸道梗塞.CT成像也是利用X射線成像,CT成像既可以提供二維(2D)橫切面又可以提供三維(3D)立體表現圖像,它可以清楚地展示被檢測部位的內部結構,可以准確確定病變位置.當今,各醫院都設置放射科,X射線在醫學上得到充分利用.X射線的發現不僅對醫學診斷有重大影響,還直接影響20世紀許多重大科學發現.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•勞侖斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d為晶格常數,α為入射光與晶面夾角,λ為X射線波長.布拉格父子提出使用X射線衍射研究晶體原子、分子結構,創立了X射線晶體結構分析這一學科,布拉格父子獲1915年諾貝爾物理學獎.當今,X射線衍射儀不僅在物理學研究,而且在化學、生物、地質、礦產、材料等學科得到廣泛應用,所有從事自然科學研究的科研院所和大多數高等學校都有X射線衍射儀,它是研究物質結構的必備儀器.1907年,威廉•湯姆孫(W•Thomson)發現電子,電子質量me=9.11×10-31kg,電子荷電e=-1.602×10-19C.電子的荷電性引發了20世紀產生革命.1947年,美國的巴丁、布萊頓和肖克利研究半導體材料時,發現Ge晶體具有放大作用,發明了晶體三極體,很快取代電子管,隨後晶體管電路不斷向微型化發展.1958年,美國的工程師基爾比製成第一批集成電路.1971年,英特爾公司的霍夫把計算機的中央處理器的全部功能集成在一塊晶元上,製成世界上第一個微處理器.80年代末,晶元上集成的元件數已突破1000萬大關.微電子技術改變了人類生活,微電子技術稱雄20世紀,進入21世紀微電子產業仍繼續稱雄.到各個工業區看看,發現電子廠比比皆是,這真是小小電子轉動了整個地球啊!電子不僅具有荷電性,還具有荷磁性.

1925年,烏倫貝克—哥德斯密脫(Uhlenbeck-Goudsmit)提出自旋假說,每個電子都具有自旋角動量S軋,它在空間任意方向上的投影只可能取兩個數值,Sz=±h2;電子具有荷磁性,每個電子的磁矩為MSz=芎μB(μB為玻爾磁子)[7].電子的荷磁性沉睡了半個多世紀,直到1988年阿貝爾•費爾(AlberFert)和彼得•格林貝格爾(PeterGrünberg)發現在Fe/Cr多層膜中,材料的電阻率受材料磁化狀態的變化呈顯著改變,其機理是相臨鐵磁層間通過非磁性Cr產生反鐵磁耦合,不加磁場時電阻率大,當外加磁場時,相鄰鐵磁層的磁矩方向排列一致,對電子的散射弱,電阻率小.利用磁性控制電子的輸運,提出巨磁電阻效應(giantmagnetoresistance,GMR),磁電阻MR定義MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)為零場下的電阻率,ρ(H)為加場下的電阻率[8].GMR效應的發現引起科技界強烈關注,1994年IBM公司依據巨磁電阻效應原理,研製出“新型讀出磁頭”,此前的磁頭是用錳鐵磁體,磁電阻MR只有1%-2%,而新型讀出磁頭的MR約50%,將磁碟記錄密度提高了17倍,有利於器件小型化,利用新型讀出磁頭的MR才出現筆記本電腦、MP3等,GMR效應在磁感測器、數控機庫、非接觸開關、旋轉編碼器等方面得到廣泛應用.阿爾貝?費爾和彼得?格林貝格爾獲2007年諾貝爾物理學獎.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中觀察到MR高達105%,稱為龐磁電阻(Colossalmagnetoresistance,CMR),鈣鈦礦氧化物中有如此高的磁電阻,在磁感測、磁存儲、自旋晶體管、磁製冷等方面有著誘人的應用前景,引起凝聚態物理和材料科學科研人員的極大關注[10-12].然而,CMR效應還沒有得到實際應用,原因是要實現大的MR需要特斯拉量級的外磁場,問題出在CMR產生的物理機制還沒有真正弄清楚.1905年,愛因斯坦提出[13]:“就一個粒子來說,如果由於自身內部的過程使它的能量減小了,它的靜質量也將相應地減小.”提出著名的質能關系式△E=△m莓C2式中△m.表示經過反應後粒子的總靜質量的減小,△E表示核反應釋放的能量.愛因斯坦又提出實現熱核反應的途徑:“用那些所含能量是高度可變的物體(比如用鐳鹽)來驗證這個理論,不是不可能成功的.”按照愛因斯坦的這一重大物理學理論,1938年物理學家發現重原子核裂變.核裂變首先被用於戰爭,1945年8月6日和9日,美國對日本的廣島和長崎各投下一顆原子彈,迫使日本接受《波茨坦公告》,於8月15日宣布無條件投降.後來原子能很快得到和平利用,1954年莫斯科附近的奧布寧斯克原子能發電站投入運行.2009年,美國有104座核電站,核電站發電量占本國發電總量的20%,法國有59台機組,佔80%;日本有55座核電站,佔30%.截至2015年4月,我國運行的核電站有23座,在建核電站有26座,產能為21.4千兆瓦,核電站發電量占我國發電總量不足3%,所以我國提出大力發展核電,制定了到2020年核電裝機總容量達到58千兆瓦的目標.核能的利用,一方面減少了化石能源的消耗,從而減少了產生溫室效應的氣體———二氧化碳的排放,另一方面有力地解決能源危機.利用海水中的氘和氚發生核聚變可以產生巨大能量,受控核聚變正在研究中,若受控核聚變研究成功將為人類提供取之不盡用之不竭的能量.那時,能源危機徹底解除.

20世紀最傑出的成果是計算機,物理學是計算機硬體的基礎.從1946年計算機問世以來,經歷了第一至第五代,計算機硬體中的電子元件隨著物理學的進步,依次經歷了電子管、晶體管、中小規模集成電路、大規模集成電路、超大規模集成電路;主存儲器用的是磁性材料,隨著物理學的進步,磁性材料的性能越來越高,計算機的硬碟越來越小.近日在第十六屆全國磁學和磁性材料會議(2015年10月21—25日)上獲悉,中科院強磁場中心、中科院物理所等,正在對斯格明子(skyrmions)進行攻關,斯格明子具有拓撲納米磁結構,將來的筆記本電腦的硬碟只有花生大小,ipod平板電腦的硬碟縮小到米粒大小.量子力學催生出隧道二極體,量子力學指導著研究電子器件大小的極限,光學纖維的發明為計算機網路提供數據通道.

1916年,愛因斯坦提出光受激輻射原理,時隔44年,哥倫比亞大學的希奧多•梅曼(TheodoreMaiman)於1960製成第一台激光器[14].由於激光具有單色性好,相乾性好,方向性好和亮度高等特點,在醫療、農業、通訊、金屬微加工,軍事等方面得到廣泛應用.激光在其他方面的應用暫不展開論述,只談談激光加工技術在工業生產上的應用.激光加工技術對材料進行切割、焊接、表面處理、微加工等,激光加工技術具有突出特點:不接觸加工工件,對工件無污染;光點小,能量集中;激光束容易聚焦、導向,便於自動化控制;安全可靠,不會對材料造成機械擠壓或機械應力;切割面光滑、無毛刺;切割面細小,割縫一般在0.1-0.2mm;適合大件產品的加工等.在汽車、飛機、微電子、鋼鐵等行業得到廣泛應用.2014年,僅我國激光加工產業總收入約270億人民幣,其中激光加工設備銷售額達215億人民幣.

2014年,諾貝爾物理學獎授予赤崎勇、天野浩、中山修二等三位科學家,是因為他們發明了藍色發光二極體(LED),幫助人們以更節能的方式獲得白光光源.他們的突出貢獻在於,在三基色紅、綠、藍中,紅光LED和綠光LED早已發明,但製造藍光LED長期以來是個難題,他們三人於20世紀90年代發明了藍光LED,這樣三基色LED全被找到了,製造出來的LED燈用於照明使消費者感到舒適.這種LED燈耗能很低,耗能不到普通燈泡的1/20,全世界發的電40%用於照明,若把普通燈泡都換成LED燈,全世界每個節省的電能數字驚人!物理學研究給人類帶來不可估量的益處.2010年,英國曼徹斯特大學科學家安德烈•海姆(AndreGeim)和康斯坦丁•諾沃肖洛夫(Kon-stantinNovoselov),因發明石墨烯材料,獲得諾貝爾物理學獎.目前,集成電路晶體管普遍採用硅材料製造,當硅材料尺寸小於10納米時,用它製造出的晶體管穩定性變差.而石墨烯可以被刻成尺寸不到1個分子大小的單電子晶體管.此外,石墨烯高度穩定,即使被切成1納米寬的元件,導電性也很好.因此,石墨烯被普遍認為會最終替代硅,從而引發電子工業革命[14].2012年,法國科學家沙吉•哈羅徹(SergeHaroche)與美國科學家大衛•溫蘭德(DavidJ.win-land),在“突破性的試驗方法使得測量和操縱單個量子系統成為可能”.他們的突破性的方法,使得這一領域的研究朝著基於量子物理學而建造一種新型超快計算機邁出了第一步[16].

2013年,由清華大學薛其坤院士領銜、清華大學物理系和中科院物理研究所組成的實驗團隊從實驗上首次觀測到量子反常霍爾效應.早在2010年,我國理論物理學家方忠、戴希等與張首晟教授合作,提出磁性摻雜的三維拓撲絕緣體有可能是實現量子化反常霍爾效應的最佳體系,薛其坤等在這一理論指導下開展實驗研究,從實驗上首次觀測到量子反常霍爾效應.我們使用計算機的時候,會遇到計算機發熱、能量損耗、速度變慢等問題.這是因為常態下晶元中的電子運動沒有特定的軌道、相互碰撞從而發生能量損耗.而量子霍爾效應則可以對電子的運動制定一個規則,電子自旋向上的在一個跑道上,自旋向下的在另一個跑道上,猶如在高速公路上,它們在各自的跑道上“一往無前”地前進,不產生電子相互碰撞,不會產生熱能損耗.通過密度集成,將來計算機的體積也將大大縮小,千億次的超級計算機有望做成現在的iPad那麼大.因此,這一科研成果的應用前景十分廣闊[17].物理學的每一個重大發現、重大發明,都會開辟一塊新天地,帶來產業革命,推動社會進步,創造巨大物質財富.縱觀科學與技術發展史,可以看出物理學是科技創新的源泉.

3結語

論述了X射線,電子、半導體、原子能、激光、藍光LED等的發現或發明對人類進步的巨大推動作用,自然得出結論,物理學是科技創新的源泉.打開國門看一看,美國的著名大學非常注重大學物理,加州理工大學所有一、二年級的公共物理課程總學時為540,英、法、德也在400-500學時[18].國內高校只有中國科學技術大學的大學物理課程做到了與國際接軌,以他們的數學與應用數學為例,大一開設:力學與熱學80學時,大學物理—基礎實驗54學時;大二開設:電磁學80學時,光學與原子物理80學時,大學物理—綜合實驗54學時;大三開設:理論力學60學時,大學物理及實驗總計408學時.在大力倡導全民創業萬眾創新的今天,高等學校理所應當重視物理學教學.各高校的理工科要按照教育部高等學校非物理類專業物理基礎課程教學指導委員會頒發的《非物理類理工學科大學物理課程/實驗教學基本要求》給足大學物理課程及大學物理實驗課時.

參考文獻:

〔1〕祝之光.物理學[M].北京:高等教育出版社,2012.1-10.

〔2〕馬文蔚,周雨青.物理學教程[M].北京:高等教育出版社,2006.I-V1.

〔3〕倪致祥,朱永忠,袁廣宇,黃時中,大學物理學[M].合肥:中國科學技術大學出版社,2005.前言.

〔4〕教育部高等學校非物理類專業物理基礎課程教學指導分委員會.非物理類理工學科大學物理課程教學基本要求[J].物理與工程,2006,16(5)

〔5〕教育部高等學校非物理類專業物理基礎課程教學指導分委員會.非物理類理工學科大學物理實驗課程教學基本要求[J].物理與工程,2006,16(4):1-3.

〔6〕姚啟鈞,光學教程[M].北京;高等教育出版社,2002.138-139.

〔7〕張怪慈.量子力學簡明教授[M].北京:人民教育出版社,1979.182-183.

〔8〕孫陽(導師:張裕恆).鈣鈦礦結構氧化物中的超大磁電阻效應及相關物性[D].中國科學技術大學,2001.10-11.

物理學論文範文二:初中物理學科全息教學的運用

一、全息教學在初中物理教學中運用的策略

1.運用全息理論,對初中物理教學課型進行合理選擇與搭配

新課改以後,物理課堂教學由傳統的講授內容方面轉變到物理的過程方面,其核心是給學生提供機會、創造機會。因此,在物理教學中,教師要善於運用全息教學理論,並根據學生的生活經驗和已有的知識背景,對課型合理地選擇與搭配,帶領學生運用多種方法對物理知識進行重演在現,激勵學生發現並提出問題,進而激發學生學習物理的興趣,培養學生創新和探究能力。例如:在講靜電屏蔽時,首先帶領學生對靜電屏蔽進行了實驗,並得到了正確的結果。突然有一個學生提出問題“:用電吹風吹頭時,電吹風其對電視信號有影響,那麼是不是靜電屏蔽不完全成立?”於是帶領學生們又做了如下實驗:將一個手機放在一個密閉的紙盒內,用另一部手機呼叫,學生們聽到了響聲。再讓同學思考,如果將手機放在前面做過實驗的金屬籠內,是否能聽到鈴聲?多數學生根據靜電屏蔽原理猜測肯定不能。然而將手機放進鐵籠後,仍能聽到鈴聲。學生們都感到疑惑,難道靜電平衡理論有誤?針對這種現象讓大家思考了“靜電”二字,然後向學生們解釋手機信號是一種電磁波而不是靜電,其屬一種交變的電磁場,遇到金屬網時,金屬網會感應出同頻率的電磁波,只是強度變小,因此在仍能聽到籠中手機鈴聲,也解釋了,也就解釋了為什麼吹風機對電視信號有影響。這樣通過對物理知識重演再現與對比的方式,加深了學生對物理知識的理解,從而提高了教學質量。

2.運用全息理論,根據物理教材和學情選擇合適的教學方法

在進行物理教學時,物理教材中的安排的知識點難易程度不同,如果各個知識點都按照相同的教學方法去講解,容易理解的知識點學生會掌握的相對熟練,而對於相對較難的知識點,就可能會導致學生對其似懂非懂,這樣就會不利於學生的學習。這樣物理教師在運用全息理論時,不要一味的按照一個教學方法進行講解要注意對教學方法的改變,使學生能夠熟練地掌握知識點。另外,每個學生對於知識點的掌握情況不同,有些學生可能掌握的好一些,有些學生掌握的差一些,因此物理教師要根據學情來選擇教學方式,既要照顧那些掌握知識差的同學,也要讓掌握較好的同學能夠學到更多的知識。例如,在向同學講解“測量”的知識點時,對與學生來說這個相對知識點相對容易,在日常生活中很容易接觸到,因此教師在運用全息教學論時,可以先向學生對所要內容的主旨,主要思路進行講解,然後對主要知識點進行仔細講解,經過這樣的講解,學生會很容易對測量知識進行掌握。而在向學生講解“光學規律”時,學生對其中的規律和容易混淆,如果物理教師還按照講解“測量”方法向學生進行講解,學生就很難掌握。因此,教師要改變教學方法,既要向學生進行理論講解,也要帶領學生對個規律進行實驗,通過實驗加深學生對光學規律的理解,使學生對知識點能夠更好地掌握。3.運用全息理論,根據知識內容和特點選擇合適的評價方式在物理教學中,物理教師對學生的評價方式非常重要,有的評價方式會激發學生學習物理的知識的興趣,而有的評價方式可能使學生受到打擊,從而失去學習物理的興趣。因此教師要合理的運用全息理論,並且根據知識內容和特點選擇合適的評價方式,激發學生學習物理的興趣。例如,在課堂上讓學生回答問題時,學生回答對了要給與肯定的評價,而如果學生回答錯了,要用積極的評價方式去評價,用全息理論去告訴他,其在探討知識的過程中,沒有選擇正確的方式方法,讓其用正確的方式再去進行探討,這樣既讓學生知道了自己了不足,也對學生進行了鼓勵學生,這樣學生就會樂意去學習,從而大大地提高物理教學質量。

二、結束語

D. 學物理有什麼用

在物質層面,現在社會科技日新月異,掌握基本物理知識可以讓你走入社會不會有陌生和被動的感覺,不僅容易掌握現代的基本設備(如各種家電),而且也不容易上當受騙(現在偽科學和利用這些騙人的很多)!
在思想上,物理可以提升個人的唯物主義價值觀,可培養人實事求是的精神和理念,因此不大會迷信別人,而且做事判斷更容易成功,可以少走很多彎路!
在精神側面,學物理容易理解客觀決定主觀,理解宇宙自然的浩渺無邊,只有尊重科學規律才能得到應有的收獲,所以學物理可以防止人的思想走極端而產生心理疾病。還可以令人控制過多的慾望,道德高尚,不簡單追求物質而注重精神生活。會變得寬容,心態良好的度過一生。

E. 物理學有什麼用

物理學是研究自然界基本規律的科學.它的英文詞physics來源於希臘文,原義是自然,而中文的含義是「物」(物質的結構、性質)和「理」(物質的運動、變化規律).中文含義與現代觀點頗為吻合.現代觀點認為物理學主要研究:物質和運動,或物質世界及其各部分之間的相互作用,或物質的基本組成及它們的相互作用.
物質可以小至微觀粒子——分子、原子以至「基本」粒子(elementaryparticles).所謂基本粒子,顧名思義是物質的基本組成成分,本身沒有結構.然而基本與否與人們的認識水平以及科學技術水平有關,因此對「基本」的理解有階段性.有鑒於此,物理學家簡單地稱之為「粒子」.有時為了表達認識的層次,我們仍然可以說:「現階段的基本粒子為……」.當前我們認為基本粒子有輕於(lepton)、誇克(quark)、光子(photon)和膠子(gluon)等等.科學家們正在努力尋找自由誇克.此外,分數電荷、磁單極也在尋找之列.我們周圍的物體是物質的聚集狀態.人們可以用自己的感官感知大多數聚集狀態的物質,並稱它們為宏觀(macroscopic)物質以區別前面所說的微觀(microscopic)粒子.居間的尺度是介觀(mesoscopic),而更大的尺度是宇觀(cosmological).場(field)傳遞相互作用,電磁場和引力場就是例子.
在物理學的范圍內,物質的運動是指機械運動、熱運動、微觀粒子的運動、原子核和粒子間的反應等等.運動總是發生在一定的時間和空間.時間和空間首先是作為物質運動的舞台,但最後也成了物理學研究的對象.
現在知道物質之間的相互作用有四種,即萬有引力、弱相互作用、電磁相互作用和強相互作用.
愛因斯坦(A.Einstein,1879—1955)生前曾致力於統一場論的工作,試圖用統一的理論來描述各種相互作用.在60年代,走向統一有了突破性的進展.格拉肖(S.L.Glashow)、溫伯格(S.Weinberg)和薩拉姆(A.Salam)等人發現弱相互作用和電磁相互作用可以統一,用弱電相互作用(electroweak)來描述.魯比亞(1983[1],C.Rubbia)等提供了實驗支持.大統一理論(Grand Unification Theory,GUT)試圖將強相互作用也統一進去,而超對稱理論更企圖將引力也納入其中.還有人在尋求其他的相互作用.對此,在Physics Teacher期刊上曾有一篇文章題為「存在第五種基本力嗎?」專門討論這一命題[6].在高級的理論中,相互作用只不過是交換物質,如電磁作用交換光子、強作用交換膠子.
物理學的一個永恆主題是尋找各種序(orders)、對稱性(symmetry)和對稱破缺(symmetry-breaking)[10]、守恆律(conservation laws)或不變性(invariance).物質的有序狀態比我們想像的要廣泛得多.除了排列整齊的位置序以外,還可以有指向序.超導態也是一種有序狀態.對稱性通常指靜止的空間幾何對稱,如太極圖、八卦、晶體中的平移和旋轉對稱.實際上,對稱性還可以是動態的,可以是時間反演對稱、物質—反物質對稱以及更為抽象的規范對稱等等.
就物理學和其他科學的關系而言,我們可以說:
·物理學是最基本的科學.
·物理學是最古老、發展最快的科學.
·物理學提供最多、最基本的科學研究手段.
最基本的體現是在天文學、地學、化學、生命科學中都包含著物理過程或現象.在這些學科中用到不少物理學概念和術語是很自然的.最基本還意味著任何理論都不能和物理學的定律相抵觸.例如,如果某種理論破壞能量守恆定律,那麼這一理論就很成問題.當然,某些物理理論本身或一些階段性的工作本身也是在不斷地完善.
19世紀中葉之前,物理學曾是完完全全的實驗科學.力學中的理論問題被認為是數學家的事.19世紀末,在當時處於世界物理學中心的德國的大學里,開始設置理論物理學教授的席位.此後,隨著人類的認識能力逐步深入,逐步深入到不能靠直覺把握的微觀、高速、宇觀現象,20世紀初建立了狹義和廣義相對論,以及量子力學這些深刻的物理理論.到了20世紀中葉,物理學已經成為實驗和理論緊密結合的科學.20世紀後半葉由於電子計算機的發展,既改變了理論物理的工作方式,也擴大了實驗的涵義.目前物理學已經成為實驗物理、理論物理、計算物理三足鼎立的科學.實驗提供的條件比自然界出現的更富變化和更靈活可控,而物理理論則給出了對自然界的數學描述.計算物理學是重要的新分支,有自己獨特的研究方法.計算機實驗可以提供比通常的實驗更為變化豐富和靈活控制的條件.不過通常需要用到超級計算機.
物理學中最重大的基本理論有下面5個:
·牛頓力學或經典力學(Mechanics)研究物體的機械運動;
·熱力學(Thermodynamics)研究溫度、熱、能量守恆以及熵原理等等;
·電磁學(Electromagnetism)研究電、磁以及電磁輻射等等;
·相對論(Relativity)研究高速運動、引力、時間和空間等等;
·量子力學(Quantum mechanics)研究微觀世界.
後兩個理論主要是在20世紀發展起來的,通常認為是現代物理學的核心.以上理論中沒有一個被完全推翻過,也沒有一個是永遠正確的.例如,牛頓力學在高速情形下,應該用狹義相對論來代替;而對於強引力,它又偏離於廣義相對論,但在它的適用范圍內仍然是精確的.科學的理論總是要發展的,需要根據新發現的事實進行修正.在教科書中只介紹一種版本的做法很可能導致「理論是唯一的」這樣的觀念.事實上,理論決不是唯一的.科學理論往往在美學上令人賞心悅目,在數學上優雅而普適,但是僅僅有這些是決不可能流傳下來的.理論和思想必須經受實驗的檢驗和驗證.物理學中的理論和實驗在相互促進和豐富中得到發展.
一個沒有思想的實驗工作者可以發現無窮無盡的事實,不過毫無用處.理論家如果不受實驗檢驗這一約束也可能產生出極其豐富的思想,不過與大自然毫無關系而已.
通常的科學研究方法是:
·通過觀測、實驗、計算機模擬得到事實和數據;
·用已知的可用的原理分析這些事實和數據;
·形成假說和理論以解釋事實;
·預言新的事實和結果;
·用新的事例修改和更新理論.
上述的後3步都是關於理論的.以上所說的科學研究的步驟是常規的.有時候,有的人可能並不遵循這樣的過程.常常直覺(intuition)或者預感(premonition)會起相當的作用.有時候,機遇(運氣或偶然)對於成功也會起作用,使你獲得一則重要的信息或發現一個特別簡單的解.要學會在恰當的時機提出恰當的問題,並找到問題的答案.有時還必須忽略一些「事實」,原因是這些並不是真正的事實或者它們無關緊要、自相矛盾;或者是由於它們掩蓋了更重要的事實或考慮它們使問題過於復雜化.據說,有一次有人問愛因斯坦:如果邁克耳孫-莫雷(Michelson-Morley)實驗並不導致光速不變你怎麼辦?他說:他將忽略那些實驗結果,他已經得到了結論,光速必須被認為是不變的.關於愛因斯坦1905年提出狹義相對論時是否知道邁克耳孫-莫雷實驗,曾發生過長時間的爭論.有人認為愛因斯坦在他的著作中沒有留下他知道邁克耳孫-莫雷實驗的絲毫痕跡,他可能純粹通過理論推理和他們(邁克耳孫與莫雷)得出了相同的結論.愛因斯坦的首席傳記作家培斯(Abraham Pais)篩選了許多歷史記載,得出結論說,愛因斯坦確實知道這一實驗.新近有一篇愛因斯坦在1922年的演說的英文翻譯稿刊登在Physics Today上[8].此文是根據原來的德語演講的日文記錄整理、翻譯的[見第九章參考文獻(13)].譯者讓愛因斯坦「本人」表示,他知道這一實驗.
在大學物理的學習中,除了學習事實、定律、方程和解題技巧外,還必須努力從整體上掌握物理學.要了解各分支間的相互聯系.現代觀點認為,應該從整體上邏輯地、協調地來把握物理學.學習中,對於基本物理定律的優美、簡潔、和諧以及輝煌應該有所體會,要學會鑒賞其普適程度,了解其適用范圍.還要學會區別理論和應用,物理思想和數學工具,一般規律和特殊事實,主要和次要效應,傳統的和現代的推理方式等等

F. 學物理有什麼用

物理能擴展著我們關於大自然知識的疆界。物理是現代技術進步所需的基本知識,而技術進步將持續驅動著世界經濟發動機的運轉。物理有助於技術的基本建設,它為科學進步和發明的利用,提供所需訓練有素的人才。物理在培養化學家、工程師、計算機科學家,以及其他物理科學和生物醫學科學工作者的教育中,是一個重要的組成部分。.物理學是自然科學中的一部分,是一門研究物質、能量和它們相互作用的學科,它既包含了對物質世界普遍而基本的規律的探索,又對其他自然科學以及科學技術社會生產力的發展具有強大的推動作用。物理學是一門基礎學科與其他自然科學有密切的聯系,如天文學、地理學、生物學、化學等。我們學習物理不僅僅是為了認識客觀世界,更重要是利用物理知識改造世界,科學技術的每一次重大突破都跟物理學分不開,為祖國的社會主義現代化建設服務,為人類文明做出貢獻。 目前很多中學生是為了高考,物理在理綜中物理占據很大的比例,但我認為還有一些其他原因 。其實,我們的日常生活中有多少物理問題呀!生活其實無時無該不與物理有著密切的聯系,像是坐電梯時的超重與失重,像是雞蛋碰石頭的不自量力,像是停車時身體不自主的向前傾倒等等,這些都是物理現象的客觀存在。有時看到學市場營銷的賣中學物理實驗用的感測器,卻苦於不懂實驗原理,不能親自展示實驗;儀器設備代理人天天抱著物理書,很多人後來意識到,自己總想躲開惱人的物理,沒想到未來的工作,總是擺脫不掉物理的影響。 物理與美也有著微妙的聯系。例如人體或一些動物的形體一邊與另一邊完全相同,可以折疊重合,它具有左右對稱,它也給人以勻稱和均衡的感覺。再例如竹節或串珠,平行移動一定的間隔,圖形完全重復,它具有平移對稱性,它給人以連貫、流暢的感受。久而久之,這些對稱性的感受逐慚成為一項美學准則,廣泛應用於建築、造型藝術、繪畫以及工藝美術的裝飾之中。你可以從許多中、外著名的建築、藝術珍品中看到。天壇的建築、天安門的建築、頤和園長廊的建築以及各種花瓶、古人飲酒的爵和各種花邊等等是旋轉對稱、左右對稱和平移對稱的典型例子。 當你對物理感興趣了,通過努力學好了物理,你會發現物理是很好學的一門課程,並能從中獲得樂趣!學好物理就理所當然的成為當代學生的重要使命。

G. 物理學有什麼用途

什麼是物理 這是一個十分基礎的問題.翻開任何一本物理教科書,都不難找到這樣的定義:物理學是研究物質結構、物質相互作用和運動規律的自然科學.但這只是對於物理這門科學在學術意義上的一種界定.而我們所面對的「物理」,它同時又是一門課程,於是就有必要從教育意義的層面上去進行一番再認識、再分析,以挖掘蘊含在其中的豐富內涵. 首先,物理是一門科學. 物理學是一門以實驗為基礎的自然科學,它是發展最成熟、高度定量化的精密科學,又是具有方法論性質、被人們公認為最重要的基礎科學.物理學取得的成果極大地豐富了人們對物質世界的認識,有力地促進了人類文明的進步.正如國際純粹物理和應用物理聯合會第23屆代表大會的決議《物理學對社會的重要性》指出的,物理學是一項國際事業,它對人類未來的進步起著關鍵性的作用:探索自然,驅動技術,改善生活以及培養人才. 上世紀初相對論和量子力學的建立,為物理學的飛速發展插上了雙翅,取得了空前輝煌的成就,以致於人們將20世紀稱譽為「物理學的世紀」.什麼21世紀呢?有一種流行的說法:21世紀是生命科學的世紀.其實,這句話更確切的表述應該是:21世紀是物理科學全面介入生命科學的世紀.生命科學只有與物理相結合,才有可能取得更大的發展. 展望物理學的未來,充滿著機遇與挑戰.李政道先生在《物理的挑戰》一文中,曾提出21世紀物理領域所面對的四大難題:為什麼一些物理現象在理論上對稱但實驗結果不對稱?為什麼一半的基本粒子不能單獨存在而且看不見?為什麼全宇宙90%以上的物質是暗物質?為什麼每個類星體的能量竟然是太陽能量的1015倍?這些問題極大地激勵著人們不懈探索的勇氣與熱情.可以預見,一旦撥去這幾朵籠罩在物理天空中的烏雲,物理學將會展現出更加燦爛的前景. 其次,物理又是一種智能. 誠如諾貝爾物理學獎得主、德國科學家玻恩所言:「如其說是因為我發表的工作里包含了一個自然現象的發現,倒不如說是因為那裡包含了一個關於自然現象的科學思想方法基礎.」物理學之所以被人們公認為一門重要的科學,不僅僅在於它對客觀世界的規律作出了深刻的揭示,還因為它在發展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系.正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶. 大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發展都有著重要的貢獻.有人統計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景;——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功.——反過來,卻從未發現有非物理專業出身的科學家問鼎諾貝爾物理學獎的事例.這就是物理智能的力量.難怪國外有專家十分尖銳地指出:沒有物理修養的民族是愚蠢的民族! 當今,物理學的觸角已經伸向眾多領域,並取得了越來越大的成就,以至我們很難再用傳統的眼光去界分什麼是物理學了.1995年在我國廈門舉行了第十九屆國際統計物理學大會,會上交流論文的涉及面十分廣泛,諸如植物的花序、DNA葯物系統、交通的流量、文字的存儲等等,光看這些篇目,似乎都不太象是物理.什麼,究竟什麼是物理呢?幾年前,美國《今日物理》雜志,曾就此問題向讀者廣泛徵求意見.最後,他們推崇的答案是:物理學家所做的就是物理學.這話乍聽似覺偏頗,其實不無道理.因為在今天看來,物理學更多的是體現出一種智能,「代表著一套獲取知識、組織和應用知識的有效步驟和方法,把這套方法用到什麼問題上,這問題就變成了物理學.」(趙凱華語) 再次,物理還是一種文化. 從廣義來說,文化指的是人類歷史實踐過程中創造的物質財富和精神財富的總和.它包括科學文化和人文文化.同樣地,物理學家在長期科學實踐中所創造的大量物質產品與精神產品,也就構成了物理文化.物理文化是科學文化的重要組成部分. 大家知道,物理學是以實驗為基礎的科學,它的基本研究方式就是實踐,因而在客觀性上表現為「真」;物理學創造的成果最終是為了造福於人類,它在目的性上體現出「善」;另外,物理學還在人的情感、意識等多方面反映了「美」.正因為物理學本身兼具真、善、美的三重屬性,我們完全有理由說,物理不僅是一種文化,而且是一種高層次、高品位的文化. 物理學是求真的.物理最講究實證,物理學家在科學研究活動中最基本的態度就是實事求是,堅守「實踐是檢驗真理唯一標准」的原則.正如物理學家費曼所說:「不論你的想法有多美,不論你什麼聰明,更不論你名氣有多大,只要與實驗不符便是錯了,簡簡單單,這就是科學」.可以說,物理學的發展史,就是一部不斷修正錯誤、不斷逼近真理的「求真」史. 物理學是從善的.物理學致力於將人從自然中解放出來,從必然王國走向自由王國,幫助人們不斷認識自己,促使人的生活趨於高尚.這是物理學的價值取向和終極目標,因而物理學的本質是從善的;另外,物理學家的行為也是從善的.愛因斯坦曾這樣評價居里夫人和以她為代表的傑出物理學家:「第一流人物對時代和歷史進程的意義,在其道德方面,也許比單純的才智成就更大」.他們那種嚴謹求實的態度、獻身科學的精神,熱愛人民的情懷等等,對於後人無疑是一份尤為珍貴的人文財富. 物理學是至美的.德國物理學家海森伯說過:美是真理的光輝;羅馬哲學家普洛丁又說過:善是美的本原.由此,物理學因真而美、因善而美就是十分自然的了.物理的美屬於科學美,主要體現於簡單、對稱和統一;對稱則統一,統一則簡單,它們構成了物理學的基本美學准則. 翻開物理學的篇章,可以發現到處都跳動著美的音符,體現了人們對美的追求與創造.僅以統一性為例.當代物理學的發展,正朝著兩個相反的研究方向延伸:最宏大的宇宙與最微小的粒子.令人感到驚訝的是,隨著研究的深入,它們兩者並非是分道揚鑣、越走越遠,反倒顯示出不少殊途同歸、相反相成的跡象.例如,粒子物理學的一些研究成果常被天體物理學家所借鑒,用來探尋宇宙早期演化的圖象;(正由於此,粒子物理學在某種意義上也被稱為「宇宙考古學」.) 反過來,宇宙物理學的研究也為粒子物理學家提供了豐實的信息與印證.於是,物理學中兩個截然相反的分支,就這般奇妙地銜接在了一起——猶如一條怪蟒咬住了自己的尾巴. 又如,英國物理學家狹拉克首先發現,在自然界的某些物理量之間存在著下列引人注目的關系: 宇宙半徑/電子半徑≈1040,宇宙年齡/強衰變粒子壽命≈1040, 氫核與電子的電力/氫核與電子的引力≈1040,…… 在上述比數中,宇宙這個最大的系統,與基本粒子這個最小系統之間,竟然珠聯璧合達到了如此完美的統一,讓我們再次領略到了物理世界的美,一種動人心弦的壯麗的美.正是這許多美不勝收的事例,激發起人們對大自然由衷的贊嘆與敬畏,難怪愛因斯坦會說:「宇宙間最不可理解的,就是宇宙是可以理解的」. 通過以上分析,我們對於物理有了一個較為全面的認識:它既是一門科學,又是一種智能,更是一種文化.作為一名物理教師,能對自己所任教的物理作一番全方位的審視與剖析,這是十分必要的.一方面可使我們看到,物理原來有著如此豐富的的內涵,從而會更自覺、有意識的去挖掘和開發它的育人功能,全面提升教學質量;另一方面又使我們看到,物理原來有著如此美好的稟性,從而會更加鍾愛物理,更有激情地去從事物理教學.我以為,只有真正熱愛物理的物理教師,才能做到不僅教會學生理解物理、應用物理,而且還進一步引導他們去感悟物理、欣賞物理. 二、為什麼教物理 這是一個看似簡單卻又十分根本的問題,要正確回答並非易事.筆者對此問題的認識,就經歷過從「知識本位」到「學科本位」,最後又回歸到「學生本位」這樣一個曲折漸進的過程. 有很長一段時期,我都把物理教學的目標鎖定在知識層面上,認為教物理就是要把物理知識盡可能多地傳授給學生,以供他們今後一生的受用.因為我信奉「知識就是力量」.然而令人困惑的是,我們授予學生什麼多的物理知識,其中不乏象「F=ma」這類極其重要的知識,但在他們往後的生活和工作中,卻很少顯示出有什麼直接的功用.以至過了若干年後,許多學生把所學的物理知識幾乎忘得一干二凈,用他們的話說,「全部都還給老師了」.我為此感到深深的失落;但每當我向他們提出「高中三年豈不白讀了」的反詰時,這些離開學校多年的學生,卻又都會異口同聲地作出否定的回答,一致認為高中階段的學習,對於他們的成長起到了重要的奠基作用,可又說不清究竟是哪些具體知識所起的作用.我想,這大概好比晚飯,誰都不會否認吃飯對於生存的意義,然而誰又都說不清楚,吃了這頓飯究竟是在身上的什麼地方長了塊肉. 一位畢業已有二十餘年的學生,曾與筆者聊起他「印象最深」的一堂物理課.原來那堂課講的是重力勢能.當時為了說明重力勢能的相對性,我曾向學生提出過這樣的問題:有人站在五樓的窗檯上要往下跳,你說危險嗎?開始大家都認為這太玩命了,後來仔細一琢磨,又全都樂了:你別往窗外跳,往窗里跳不就沒事了嗎?這位學生覺得這個例子特有意思,於是經久不忘;但問他該例說明了什麼物理知識時,他說忘了.正當我面露憾色時,他緊接著的一番話卻令人寬慰,他說:「這個例子使我懂得凡事都是相對的,從不同角度看會有不同的結果」.盡管這堂課所傳授的物理知識,這位學生已經遺忘殆盡,但通過有關知識的學習而凝煉成的思想、方法等,卻在他的心裡銘刻上深深的印記.從這個意義上說,二十多年前的這堂物理課,對他不也是極有價值的嗎?學生從高中畢業後,他們中的大多數可能將告別物理,所學的物理知識終究會被忘記,到那時再回頭審視一下:物理教學留給他們的還有些什麼呢?如果在他們的身上,體現不出物理所給予的才智與啟迪,那將是物理教學的失敗.由此看來,具體的知識通常只是作為教學的載體,在知識的背後還有更多值得我們去追求的東西.正如我國資深科學家錢偉長教授說的:「我在大學里學的是物理學,……. 以物理學為對象我學到了調查研究,收集資料,分析資料和邏輯思維的能力,物理學的知識有時是很有用的,但通過物理學學到的這些能力,比物理學知識更有用.」錢老在讀書時就是通過「物理學」這個載體,獲得了很多比物理知識更重要的能力.所以,那種將物理教學等同於物理知識教學的看法是偏面的,而以「知識本位」來確立物理教學目標取向的做法同樣是短視的. 隨著教學實踐的深入,教師一般都會對自己所任教的學科日臻熟悉,從而格外鍾愛.可能是受了這種職業情感的影響,我還一度把物理教學的目標,定位於「將盡可能多的學生培養成為物理學家或物理工作者」.尤其是當我從農村普通中學調入重點高中,面對的是一個個聰穎好學的學生時,這種願望愈顯強烈.但我不久就發現,其它學科的教師大概也出於各自的職業偏好,都對學生有著與我類似的期望.這樣一來,大家自掃門前雪,各唱各的調,沒能將各學科的分力凝聚成一股合力,實際效果當然就差強人意了.尤其令我沮喪的是,班上那些物理學習優秀的「得意門生」,日後直接從事物理專業的竟然也少之又少.正當我陷於迷惘之時,復旦大學原校長楊福家先生的一則事例給了自己極大的啟迪.當年復旦大學曾對核物理專業的畢業生的去向做過一次調查,結果發現,只有不到十分之一的學生畢業後從事與核物理有關的工作,其餘的都紛紛改行,活躍在金融、企業或行政等崗位上.對此,多數人都斷言這是物理系的失敗,而楊福家卻認為這正是「復旦」的成功.因為,通過這四年本科的物理教育,使學生具備了良好的素質,為他們今後的發展打下了堅實的基礎,於是畢業後都能很快適應各種不同領域的工作.這也印證了趙凱華先生的話:「一個人學了物理之後干什麼都可以,他的物理沒有白學.在我看來,對於學物理的人無所謂『改行』…….」 經過上述曲折的認識歷程,使我逐漸看清了物理教學最終目標的聚焦點,既不在知識的本位上,也不在學科的本位上,而應該落實在我們的教育對象——學生的本位上. 對於「為什麼教物理」這個問題,也可以反過來設問:「如果我們不教物理,學生不學物理,將會對他們今後的發展留下那些缺憾?」一種顯而易見的回答是,學生將因此學不到許多重要的物理知識.這話沒錯,但不夠全面.因為除此之外,學生還將失去更為重要的,有關科學方法、科學精神等方面的培養與熏陶,從而最終影響他們的科學素養的提高.當前,物理已經深入到社會的方方面面,成為每一位有教養的公民都必須懂得的知識.對於大多數學生來說,他今天學習物理的目的,恐怕不是為了明天去進一步研究物理,而是有助於他去面對或決策所遇到的大量非物理的問題,為他們今後一生的文明、健康,高質量的生活奠定基礎.正如《面向全體美國人的科學》一書中所說的:「教育的最高目標是為了使人們能夠過一個實現自我和負責任的生活作準備.」 據此,對於「為什麼教物理」這個問題,最確切的答案就是:為提高全體學生的科學素養而教.——這應該成為我們的物理教學觀. 眾所周知,生物基因對於生物進化有著非同小可的作用,極其細微的基因差異,往往會導致生物之間的巨大差別.受此啟發,有不少社會學者正致力於尋求在人類文化傳承與發展過程中,有著哪些最為核心的要素,從而提出了「文化基因」的概念,並將其定義為人類文化系統中的「遺傳密碼」.文化基因的核心是思維方式和價值觀念.人類的進化比一般的生物進化更為復雜,它具有雙重進化機制,除了生物基因進化機制外,還有文化基因進化機制.教育正是推動文化基因機制的重要途徑.學校教育的要義,不只是文化現象的展示與詮釋,而在於文化基因的傳承和發展.物理教育當然也不例外.什麼,蘊含在物理教學中的「文化基因」究竟有些什麼呢?筆者以為主要體現為三個方面,即科學知識、科學方法和科學精神,因為這三者是構成科學素養最基本的要素.如果將科學素養比擬為一座金字塔,什麼科學知識猶如塔基,科學方法就是塔身,科學精神則是塔尖.物理教學的最高宗旨,就是為了構建這座宏偉的科學素養之塔而添磚加瓦.換言之,物理教學的核心價值就在於促進學生實現三個轉化:一是把人類社會積累的知識轉化為學生個體的知識,使他們知識世界是什麼樣的,成為一個客觀的人;二是把前人從事智力活動的思想方法轉化為學生認識能力,使他們明白世界為什麼是這樣的,成為一個理性的人;三是把蘊含在知識中的觀念、態度等轉化為學生的行為准則,使他們懂得怎樣使世界更美好,成為一個創造的人

H. 物理學對我們有什麼用

物理是一門自然科學。在生活中,處處都有物理現象。物理雖然很難學,但是你會發現,物理是一個很有趣的課程。

金屬球實驗

二、填報專業

在我們廣東,高考是3+1+2的模式,首選科目是物理和歷史中任選一門,對於理科生來說,會選擇物理課程。畢竟,在高校填報專業志願時,百分之九十多的專業條件必須是物理學科。

三、未來就業

就業方面很廣泛,例如:物理老師,傳授知識;科研工作人員,為國家做出貢獻;天文學家,識辨天文。

結束語:

雖然好玩,但是很多學生物理成績出現掛科,因此要培養起對物理感興趣,愛上物理,下定決心,認真復習,成績會有所飛躍。

I. 關於物理學方面的論文

物理學是研究物質運動最一般規律和物質基本結構的學科,是當今最精密的一門自然科學學科。下文是我為大家整理的關於物理學方面的論文的 範文 ,歡迎大家閱讀參考!

物理學方面的論文篇1

試談物理學專業電動力學課程教學

動力學電磁現象的經典的動力學理論。通常也稱為經典電動力學,電動力學是它的簡稱。它研究電磁場的基本屬性、運動規律以及電磁場和帶電物質的相互作用。

一、課程教學根本理念

第一,在教學中要尊重先生學習的主體性、教員教學的主導性,片面發揚先生的盲目性、自動性、發明性。第二,“電動力學”課程屬於專業根底課程,教學內容布置上除了讓先生學習本門課程的根本知識、根本實際、根本思緒,與其他物理學分支也具有個性和特性的關系。針對這一特點,教師在教學中要留意引導先生類似性抽象思想。第三,教學應突出探求式教學辦法,改動傳統的教學形式,把信息技術與電動力學課程最大限制地整合,運用多種古代 教育 手腕優化教學進程,推行啟示式、探求式、討論式、小製造等授課方式,培育先生的創新思想和創新理念。

二、在本課程教學中該當做到以下幾點

1.講授內容應實際聯絡實踐

“電動力學”作為一門專業學科課程,是師范院校物理專業的根底實際課。教學中要求先生掌握課程的根本知識、根本實際和根本原理,使先生加深對所授知識的了解,更可深入看法電動力學的實踐使用價值,到達學致使用的目的,同時提升先生剖析成績、處理成績的才能。

2.注重先生學習的主體性和集體性培育

從課程的設計到評價各個環節,在留意發揚教員在教學中主導作用的同134教改課改2016年3月時,應特別留意表現先生的學習主體位置,以充沛發揚先生的積極性和發掘學習潛能。要求先生能初步剖析消費、生活中的電動力學成績,以提升先生的剖析成績和處理成績的才能。在電動力學實際的學習中運用數學工具處置成績,使先生看法數學和物理的親密關系,培育先生運用數學工具處理物理成績的才能。培育先生自學才能,重要的不是教內容,而是教給先生學習辦法。要充沛留意先生的興味、專長和根底等方面的集體差別,因材施教,依據這種差別性來確定學習目的和評價辦法,並提出相應的教學建議。課程規范在課程設計、教學方案、方案制定、內容選取和教學評價等環節上,為教學、學習提供了選擇餘地和開展的空間。

3.運用多種古代教育手腕優化教學環節

充沛應用古代化教學手腕,發揚信息化教學的劣勢,加強先生的學習興味,進一步強化需求掌握的知識點,拓寬知識面,加強先生的理論操作技藝,培育迷信的思想方式,這樣先生能更好地掌握“電動力學”課程知識所觸及的相關迷信辦法,無效提升其發現成績、剖析成績、處理成績的才能。

4.具有良好的實驗條件,充沛保證明驗和理論訓練質量

鼓舞先生展開科研理論訓練,參與各類科技競賽。實驗課及理論訓練要留意培育先生的邏輯思想、發明性思想,充沛應用好物理、電子競賽等創新平台,促進電動力學課程的教學。

三、課程學習戰略探求

第一,針對“電動力學”是實際根底課的特點,先生必需堅持 課前預習 ,預習進程中無意識地提出成績。課堂教學次要採用探求式課堂教學法,即每節課突出一個主題,講清論透相關原理知識,每個主題經過師生多種方式的互動,教員及時理解、處理先生的疑問成績,以加強先生的學習興味。第二,將傳統板書、電子課件、網路和視頻多種教學手腕相結合。如課內講授與課外討論和製造相結合、根底實際教學與學科前沿講座結合、根本實際與科研理論訓練相結合。第三,鼓舞先生參與科研理論訓練和各類科技競賽。培育多樣化使用型人才,以培育使用型、復合型、技藝型人才,加強 畢業 生失業才能,完本錢課的預期目的。第四,電動力學也是一門理論性很強的課程,其研討對象是區別於實物的物質形狀,具有籠統的特徵。為防止課程教學的數學化,我們將充沛使用當代信息技術的劣勢,比方說以視頻教學材料加強先生的理性看法和入手才能。再次,實驗課及理論訓練要留意培育先生的邏輯思想、發明性思想才能和素質,充沛發揚先生的物理思想和物理探求才能。

四、課程教學辦法探求

本課程教學中應留意電動力學實際與理論的結合,尊重先生學習的主體性,適當布置指點性自習,培育先生的自學才能。增強對先生課前、課後的答疑輔導,注重先生才能的培育,使先生經過對電動力學中根本實際的了解,看法和掌握電動力學原理的研討規律,開辟思緒,初步培育先生的科研思想。

1.“雙邊反應式”教學法

這種教學法由“自學”和“反應”兩局部構成,其著眼點是先生在教員指點下的自學和教員由反應來的信息而停止的有重點的解說,使先生的才能在重復訓練中失掉錘煉。“自學”和“反應”表現了先生和教員的互相聯絡、互相配合、互相作用的訓練進程。

2.以成績為中心,展開課堂討論

式教學法建議課堂教學中遵照迷信性、主體性、開展性准繩,採用以先生為主體的小組討論式的辦法,從提出成績動手,激起先生學習的興味,讓先生有針對性地去探究並運用實際知識處理實踐成績;也可以針對教研室科研任務中遇到的成績設計討論或考慮題,以啟示先生剖析、討論有關電動力學成績,學習並穩固電動力學知識,開辟思緒,培育科研思想。

3.倡導學導式的教學方式

在教員指點下,先生停止自學、自練,教員把先生在教學進程中的認知活動視為教學活動的主體,讓先生自動地去獲取知識,開展各自才能,從而到達在充沛發揚先生自動性的根底上,滲入教員的正確引導,使教學單方各盡其能,各得其所。

4.多展開課外理論活動

課外理論訓練中,要留意培育先生的邏輯思想、發明性思想才能和素質。鼓舞和指點有才能的先生進入科研理論訓練,參與各類科技競賽。將先生撰寫的課程小論文融入教學全進程,從中選出有質量的項目進入科研理論訓練。充沛應用好物理、電子競賽等創新平台,促進電動力學課程的教學,培育使用型、復合型、技藝型人才,加強畢業生失業才能。“電動力學”作為一門探求性課程,在課堂教學中,要突出先生的參與性,使他們自動獲取而不是主動承受迷信結論,互動思想使先生覺得電動力學發人沉思,不難入門。“電動力學”與其他物理學分支具有“個性”和“特性”的關系。為了激起先生學習興味,可以常常採用課堂討論方式,由先生發問,在教員引導下大家討論, 總結 得出正確結論。由於剖析“電動力學”需求運用籠統思想,所以課堂教學應充沛運用多媒體,盡量運用圖像和顏色搭配,使先生樹立正確的物理圖像。留意“信息技術”與“電動力學”課程的無效整合,這關於全體優化教學進程,進步先生的專業知識學習效果、進步先生的信息技術才能、培育先生的協作認識和創新肉體均具有嚴重的理想意義。同時,可將教學實際使用到創新理論才能訓練中,使用到物理、電子等各類競賽中。

參考文獻:

[1]馮雲光.物理專業電動力學教學變革的探究[J].才智,2014,(19).

[2]鄭偉,呂嫣.電動力學網路教學平台建立的研討[J].沈陽師范大學學報(自然迷信版),2013,31(4):531-534.

[3]劉佳.《電磁學》與《電動力學》課程體系創新研討[J].科技信息,2013,(11):44.

[4]熊萬傑,陸建隆.對“電動力學”課程變革的探究[J].初等文科教育,2003,(6):72-75.

[5]付長寶,徐國慧,王希英.基於電動力學教學變革的學習辦法討論[J].通化師范學院學報,2009,30

物理學方面的論文篇2

試談電力信息物理融合系統

【摘 要】嵌入式系統、計算機技術、網路通信技術的快速發展使構建未來智能電網成為了可能,基於信息物理系統(CPS)技術構建電力信息物理融合系統(CPPS)為實現未來智能電網提供了新的思路。本文對CPPS平台進行了初步研究分析,介紹了應用於CPPS中的同步PMU技術、開放式通信網路、分布式控制。

【關鍵詞】CPPS;同步PMU;開放式通信;分布式控制

引言

受能源危機、環保壓力的推動,以及用戶對電能質量(QoS)要求的不斷提高,當代電力系統不再符合社會的發展需求,智能電網(Smart Grid)成為未來電力系統的發展方向。智能電網的發展原因主要有以下幾個方面:

1)分布式電源(Distributed Generation,DG)大量接入電網導致的系統穩定性問題。由於DG的大量接入使電網變成一個故障電流和運行功率雙向流動的有源網路,增加了系統的復雜度和脆弱度,因此亟需發展智能電網以解決DG大量接入電網導致的系統穩定性問題。

2)電力用戶對電能質量(QoS)要求的不斷提高。現代社會短時間的停電也會給高科技產業帶來巨額的經濟損失,近年來發生的大停電事故更是給社會帶來了難以估量的經濟損失。因此,亟需建立堅強自愈的智能電網以提供優質的電力服務。

論文主體結構如下:第1部分介紹了近年來信息物理系統(Cyber Physical System ,CPS)技術的發展以及CPS與智能電網的相互關系;第2部分介紹了電力信息物理融合系統(Cyber-Physical Power System,CPPS)的硬體平台模型;第3部分介紹了同步相量測量裝置(Phasor Measurement Units,PMU)技術;第4部分對CPPS中的開放式通信網路進行了初步分析;第5部分對CPPS的分布式控制技術進行了簡單介紹;最後第6部分做出全文總結。

1 CPS與智能電網的相互關系

CPS技術的發展得益於近年來嵌入式系統技術、計算機技術以及網路通信技術等的高速發展,其最終目標是實現對物理世界隨時隨地的控制。CPS通過嵌入數量巨大、種類繁多的無線感測器而實現對物理世界的環境感知,通過高性能、開放式的通信網路實現系統內部安全、及時、可靠地通信,通過高精度、可靠的數據處理系統實現自主協調、遠程精確控制的目標[1]。

CPS技術已經在倉儲物流、自主導航汽車、無人飛機、智能交通管理、智能樓宇以及智能電網等領域得以初步研究應用[2]。

將CPS技術引入到智能電網中,可以得到電力信息物理融合系統(Cyber-Physical Power System,CPPS)的概念。為了分析CPPS與智能電網的相互關系,首先簡單回顧一下智能電網的概念。目前關於智能電網的概念較多,並且未達成一致結論。IBM中國公司高級電力專家Martin Hauske認為智能電網有3個層面的含義:首先利用感測器對發電、輸電、配電、供電等環節的關鍵設備的運行狀況進行實時監控;然後把獲得的數據通過網路系統進行傳輸、收集、整合;最後通過對實時數據的分析、挖掘,達到對整個電力系統運行進行優化管理的目的[3-4]。

從上文關於CPS和智能電網的介紹中可以看出,CPS與智能電網在概念上有相通之處,它們均強調利用前沿通信技術和高端控制技術增強對系統的環境感知和控制能力。因此,在CPS基礎上建立的CPPS為促進電力一次系統與電力信息系統的深度融合,最終實現構建完整的智能電網提供了新的思路和實現途徑。

2 CPPS的硬體平台架構

基於分布式能源廣泛接入電網所引起的系統穩定性問題以及建立堅強自愈智能電網的總體目標,建立安全、穩定、可靠的智能電網成為未來電力系統研究的重要方向,同時也是CPPS研究的主要內容。

傳統的電力系統監測手段主要有基於電力系統穩態監測的SCADA/EMS系統和側重於電磁暫態過程監測的各種故障錄波儀,保護控制方式主要有基於SCADA主站的集中控制方式和基於保護控制裝置安裝處的就地控制方式[5]。就地控制方式易於實現,並且響應速度快,但是由於利用的信息有限,控制性能不夠完善,不能預測和解決系統未知故障,對於電力系統多重反應故障更不能准確動作。集中控制方式利用系統全局信息,能夠優化系統控制性能,但是計算數據龐大、通信環節多,系統響應速度慢,並且現有SCADA系統主要對電力系統進行穩態分析,不能對電力系統的動態運行進行有效地控制。

針對目前電力系統監測、控制手段的不足,要建立堅強自愈的未來智能電網,必須建立相應的廣域保護的實時動態監控系統,CPPS的硬體平台就是在此基礎上建立起來的。

CPPS的硬體平台6層體系架構如圖1所示,主要包括:物理層(電力一次設備)、感測驅動層(同步PMU)、分布式控制層(智能終端單元STU、智能電子裝置IED等)、過程式控制制層(控制子站PLC)、高級優化控制層(SCADA主站控制中心)和信息層(開放式通信網路)。

其中,底層的物理層是指電力系統的一次設備,如發電廠、輸配電網等。感測驅動層主要用於對電力系統的動態運行參數進行實時監控,測量參數包括電流、電壓、相角等,在CPPS中廣泛使用的測量裝置是同步PMU。分布式控制層主要包括各STU/IED,為廣域保護的分布式就地控制提供反饋控制迴路。過程式控制制層主要指樞紐發電廠和變電站的控制子站,是CPPS的重要組成部分,通過收集多個測量節點的數據信息,建立系統層面的控制迴路,並做出相應的控制決策。高級優化控制層是指調度中心控制主站,主要為電力系統的動態運行提供人工輔助優化控制。頂層的信息層即智能電網的開放式通信網路,注意信息層並不是單獨的一層,而是重疊搭接CPPS的各個分層,為CPPS內部各組件提供安全、及時、可靠的通信。

上文給出了CPPS的硬體平台模型,但要在電力系統中具體實現CPPS,涉及諸多方面的技術難題,下面對CPPS中的同步PMU、開放式通信網路以及分布式控制等分別加以簡單介紹。

3 同步PMU測量技術

同步PMU是構建CPPS的基礎,它為CPPS中廣域保護的動態監測提供了豐富的測量數據。同步PMU裝置主要對電力系統內部的同步相量進行測量和輸出,裝設點包括大型發電廠、聯絡線落點、重要負荷連接點以及HVDC、SVC等控制系統,測量數據包括線路的三相電壓、三相電流、開關量以及發電機端的三相電壓、三相電流、開關量、勵磁電流、勵磁電壓、勵磁信號、氣門開度信號、AGC、AVC、PSS等控制信號[6]。利用測得的數據可以進行系統的穩定裕度分析,為電力系統的動態控制提供依據。

同步PMU的硬體結構框圖如圖2所示。

其中,GPS接收模塊將精度在±1微秒之內的秒脈沖對時脈沖與標准時間信號送入A/D轉換器和CPU單元,作為數據採集和向量計算的標准時間源。由電壓、電流互感器測得的三相電流、電壓經過濾波整形和A/D轉換後,送到CPU單元進行離散傅里葉計算,求出同步相量後再進行輸出。注意,發電機PMU除了測量機端電壓、電流和勵磁電壓、電流以外,還需接入鍵相脈沖信號用以測量發電機功角[7]。

4 CPPS的開放式通信網路

建立CPPS的開放式通信網路,應該在保證安全、及時、可靠的通信的基礎上,使系統具有高度的開放性,支持自動化設備與應用軟體的即插即用,支持分布式控制與集中控制的結合。對於建立的開放式通信網路,需要進行通信實時性分析、網路安全性和可靠性分析。

4.1 IEC 61850標準的應用

IEC 61850標准作為新一代的網路通信標准而運用於智能變電站中,支持設備的即插即用和互操作,使智能變電站具有高度的開放性。IEC 61850標準是智能變電站的網路通信標准,同時正在進一步發展成為智能電網的通信標准[8],因此,使用IEC 61850作為CPPS通信網路的通信標準是最佳選擇。

IEC 61850的核心技術[9]包括面向對象建模技術、XML(可擴展標記語言)技術、軟體復用技術、嵌入式 操作系統 技術以及高速乙太網技術等。

4.2 通信網路配置與分析

對於CPPS開放式通信網路的網路配置,可參考智能變電站的三層二網式網路結構配置,構建CPPS的3層式通信網路,如圖3所示。

其中,底層為位於發電廠、變電站和重要負荷處的大量PMU、STU/IED,分別負責採集實時信息和執行保護控制功能。中間層為控制子站(過程式控制制單元PLC),每個控制子站與多個PMU、STU/IED相連,以完成該分區系統層面的保護控制,並根據需要將數據上傳到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上傳數據,處理以後將控制信息下發到各控制子站,以實現CPPS的廣域保護控制功能。注意,各層設備均嵌入GPS實現精確對時,保證全系統的同步數據采樣。

5 CPPS的分布式控制機理

要建立堅強自愈的智能電網,必須利用新型控制機理建立可靠的電力控制系統。根據電力故障擴大的路徑和范圍以及故障的時間演變過程,文獻[10-11]中提出建立時空協調的大停電防禦框架,建立了電力系統的3道防線,為實現智能電網的廣域動態保護控制奠定了良好的基礎。

電力系統的分布式控制(Distributed Control,DC)是相對於傳統的SCADA主站集中控制方式而言的,指的是多機系統,即用多台計算機(指嵌入式系統,包括PLC控制子站和STU/IED等)分別控制不同的設備和對象(如發電機、負荷、保護裝置等),各自構成獨立的子系統,各子系統之間通過通信網路互聯,通過對任務的相互協調和分配而完成系統的整體控制目標[12]。分布式控制的核心特徵就是“分散控制,集中管理”。在電力系統的3道防線的基礎上,結合分布式控制技術,建立CPPS的3層控制架構,如圖4所示。

其中,分布式控制層主要是在故障發生的起始階段(緩慢開斷階段)採取的控制 措施 ,其控制目標應該是保證系統在不嚴重故障下的穩定性,防止故障的蔓延。過程式控制制層是在系統已經發生嚴重故障時(級聯崩潰開始階段)所採取的廣域緊急控制措施,需要付出較大的代價。通常針對可能會使系統失穩的特定故障,往往需要投切非故障設備以保證系統的穩定性。廣域的緊急控制措施應該在故障被識別出的第一時間立即實施,控制措施實施越晚,控制效果越差。優化控制層是在前兩層控制均拒動或欠控制而沒有取得控制效果,同時在檢測到各種不穩定現象後所採取的控制措施,通常需要進行多輪次的切負荷和振盪解列。在電力恢復階段,要有自適應的黑啟動和自痊癒的控制方案。

6 結語

將CPS 方法 引入到電力系統中,建立CPPS的模型平台,為建立堅強自愈的智能電網提供新的思路。文中對CPPS中的同步PMU測量技術、開放式通信 網路技術 、分布式控制技術分別進行了簡單介紹。

>>>下一頁更多精彩的“物 理 學方面的論 文”

閱讀全文

與學物理有什麼用論文相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1011
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:849
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:672
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:836
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017