導航:首頁 > 物理學科 > 高中物理力學部分怎麼學好

高中物理力學部分怎麼學好

發布時間:2023-01-06 07:29:06

㈠ 高中物理力學怎麼學

高中物理怎麼樣?有哪些好的學習方法?

現在還有很多的小夥伴,都說對於高中物理這是難度比較大的學科,這就讓物理成了很多的高中生成了心裡的一種痛處,其實吧學習高中物理也是很簡單的,只要你掌握好思路,培養好自己的學習習慣,讓自己喜歡上這個學科,其實這還是比較簡單的.

高中物理試卷

讀好每一本教材,看好每一個單元,學會每一個小題,對於高中物理每一個練習都有關鍵的洞察力以及他的解決辦法,可能他們所用的知識都是一樣的,只要你記住一個定理就可以做很多類似的題.

㈡ 物理力學怎麼學好,怎麼弄懂.

高中的物理力學,主要集中在高一以及高二的上半學期的前3章。
我是個高2的學生現在,對物理還是十分的有信心。高一的物理成績基本保持年級單科第一,所以,我自大地認為,我能給你指點一二。

力學方面,當然還是老套路,重在理解,這是真話不錯,不過我們都忽略的本質,如何去理解?怎麼去理解,整天喊著理解但實質上去死記當然不對,所以,我在這里主要談如何理解。
力學是高中物理最好學的部分(我這么認為),因為它更切合實際並且比較容易構造物理模型。理解力學這方面的知識,是不能僅僅靠放在課堂上的,實際上,每當你走在路上,看著來來往往的人和周圍的景色,都能夠捕捉到物理力學方面的知識。實際上,只要善於觀察,理解物理力學是不在話下,每次看到一個現象,哪怕十分常見,腦子里也應該稍微動動物理那片的知識,這樣,不僅能鞏固對知識的認知,更重要的,是能提升在腦海中建立物理模型的能力。考試的時候,有些探究題,或者實驗題,有的時候並不只是紙上寫寫畫畫就能構造物理模型的,需要的是在腦海中構造一個立體的,全方位,牽一發而能動全身的物理模型,才能真正做到在考場上「戰無不勝,所向披靡」。考試難免緊張,忘掉公式是很正常的,在這方面失分的也不少,尤其是平時比較懶的。而我恰恰就是屬於懶的那類,不過這方面我從來沒丟過一分,主要是忘掉以後我能快速的在腦子里建立物理模型再把它推導出來,如此往復,可謂根深蒂固,公式想忘都忘不了啊~~
以上只是小部分經驗之談,希望樓主能採納,並按自己的實際情況總結有個人特色的物理力學學習方法。到了高2,電學那方面的知識我就覺得有些吃力,分數也只能保持90分以上了,沒有高1「不滿分就是失常」的輝煌了,當然我想重現我的輝煌。(願你給個好評喲~~)

㈢ 怎麼學好高中物理的力學

1、我在中考後就把必修一和必修二看完了。看的不僅僅是書,而且還要做一下題。書本上的知識是很容易理解或背下來的,但做起題來不是很容易。如果你基礎較差的話可以搞本教材全解,把上面的每一個注意要點和例題看一遍,同時自己做好歸納。(注意,歸納的不是知識點,而是方法或者易錯的陷阱。
2、物理其實只是利用公式再加上題目的限制條件求解而已。數學上的方程思想可以從更深的層面來了解解題思路。比如說一個模型有很多個變數,如物體一的速度,加速度等,要想把n個變數解出來必須要有n個方程。這些方程的來源是書本上的公式以及題目的限制條件。解題時只要確認變數的數量在列方程就行了。PS:在二維的模型里要列方程可以考慮正交分解。
3、如果自認為理解能力還不錯,可以看一下大學教材,裡面雖然有一些微積分,但實質是和書本一樣的,看大學教材可以幫助你更好地理解公式以及尋找解題思路
4、平時做題可以多想幾種方法。雖然格式上要求按一種方法寫,但你可以用其他方法來檢驗答案的對錯。
上述內容是我回答別人問題是說的,對你也應該有用。
力學是最好學的,他不抽象。在看完題後可以在腦子里想想一下具體的運動過程,然後用公式把具體的運動表達出來,再計算。
望採納

㈣ 高中物理力學怎麼學好

首先要多思考,這是肯定的。但還要講究方法,條理要清晰
審清題意,要明確知道了哪些量,要求哪些量
分析時
首先第一步,選取受力的對象,分析物體受了那些力
第二步,就受力的物體畫直角坐標系,把所有的力根據平行四邊形法則投影到X軸或Y軸上。
三,根據牛頓的定律列式(主要是要確定物體的加速度)
四,根據題意求得相應的量

㈤ 高中物理學不好,尤其是力學部分,該怎麼學

運動和力的關系概括為三條規律:牛頓運動定律、動量規律、能量規律。
解決力學問題第一步不是受力分析!由於好多老師講的是受力分析,所以也就養成了學生們思維不嚴密的習慣,所以考試中會出錯。
解力學問題第一步是確定研究對象。尤其是當研究對象是一個整體或者說是一個系統的時候更要慎重!系統選錯了,解題也就白瞎了,比如在解決整體牛頓第二定律時,這就顯得尤為重要。
第二步才是受力分析。受力分析最忌諱的就是漏力或添力,怎麼辦?將力「四面瓦解」, 如果平衡則「有上必有下、有左必有右」否則就不平衡。
受力分析其實並不復雜,整個高中物理就5個力:彈力、摩擦力;G、E、B(2個接觸力;3個場力)記住一句話:「有摩必有彈,有彈必接觸」,同時,要謹防摩擦力的陷阱,要記住摩擦力的6個不一定:

(1)摩擦力的方向不一定與運動方向相反;
(2)摩擦力的方向不一定與運動方向共線;
(3)摩擦力不一定是阻力;
(4)摩擦力不一定做負功;
(5)受動摩擦力的物體不一定運動;受靜摩擦力的物體不一定靜止;
(6)求摩擦力的大小不一定就用公式法(還有平衡法和牛頓定律)。

在解力學題的時候,可以邊讀題邊看物理情境圖並結合題目中給出的已知量,畫出物體的受力分析圖。然後將已知量與未知量都羅列出來,看一看求未知量的幾種方法,分別需要那些中間量或中間關系,再根據已知量並結合力學三大規律,看看選擇哪一種。
將有價值的力學題都整理在錯題本上,但整理並不是一字不落地整理下來,而是畫幾個示意圖、標出幾個字母、列出幾個關鍵的方程、寫幾句關鍵性的語句。最後就是要把整理的這些東西變薄,要不斷地記在心裡,復習的過程中多總結,比如力學的五大模型:彈簧、傳送帶、子彈穿木塊、滑塊—滑板、碰撞等。

㈥ 高中物理力學怎麼學

學習是一件實實在在的事情,我們來不得半分含糊。雖然沒有捷徑,但科學的學習方法確是有的。我給大家介紹一種「6+2」學習法,所謂「6+2」學習法即在學習過程中嚴格貫徹「預習→上課→復習→作業→質疑→小結」六個環節,另外對於每一章或一單元進行學習前後還應該有「計劃」和「系統」兩個環節。下面我們來看具體的分析。

1.預習

學習的第一個環節是預習。有的同學不注重聽課前的這一環節,會說我在初

中從來就沒有這個習慣。這里我們需要注意,高中物理與初中有所不同,無論是從課程要求的程度,還是課堂的容量上,都需要我們在上課之前對所學內容進行預習。

在每次上課前,抽出一段時間(沒有時間的限制,長則20分鍾,短則課前的5、6分鍾,重要的是過程。)將知識預先瀏覽一下,一則可以幫助我們熟悉課上所要學習的知識,做好上課的知識准備和心理准備;二則可以使我們明確課堂的重點,找出自己理解上的難點,從而做到有的放矢地去聽課,有的同學感到聽課十分吃力,原因就在於此。另外,還有更重要的一點就是預習可以培養鍛煉我們的自學能力和獨立思考能力(要知道以後進入大學深造或走上工作崗位,這些可是極其重要的)。

我們應該逐漸養成預習的良好習慣。

2.上課

上課是我們學習的中心環節。對此我准備強調三個問題:

(1) 主動聽課。

有人將我們的聽課分成了三種類型:即主動型、自覺型和強制型。主動型就是能夠根據老師講課的程序主動自覺地思考,在理解基礎知識的基礎上,對難點和重點進行推理性的思維和接受;自覺型則是能對老師講課的程序進行思考,能基本接受講解的內容和基礎知識,對難點和重點一般不能進行自覺推理思維,要在老師的知道下才能完成這一過程;而強制型則是指在課堂學習中,思維遲緩,推理滯留,必須在老師的不斷知道啟發下才能完成學習任務。

那麼,你屬於哪一種類型呢?我說,如果你屬於強制型,那你要試著改變自己,由強制型變為自覺型;如果你是自覺型,那麼你就要加強主動意識,努力變成主動型,畢竟「我們是學習的主人」!總之,我們應該以主動的態度去聽講,積極地進行思考,努力參與到老師的課堂教學中去。

(2)注意課堂要點。要聽好課,我們應善於抓課堂的要點,這主要是指重點和難點兩個方面。心理學研究表明,我們聽課注意力集中的時間一般在20分鍾左右,(要想一節課幾十分鍾內都保持精力高度集中是不可能的),所以我們應將這有限的集中注意時間用到「刀刃」上。

上課時,我們應有意識地去注意老師講課的重點內容。有經驗的老師,總是將主要精力放在突出重點上,進行到重要的地方,或放慢速度,重點強調;或板書綱目,理清頭緒;或條分縷析,仔細講解等,我們應培養自己善於去抓住這些。對於難點,則可能因人而異,這就需要我們在預習時做到心中有數,到時候注意專心專意,仔細聽講。總之,我們要做到「會聽」,能「聽出門道」。

(3)處理好聽課和記筆記的關系

有的同學總是感到困惑,說「上課時注意了聽課,就忘了記筆記;而記了筆記,就又跟不上老師的思路了」。對此,我們應認識清楚聽課和記筆記的關系:聽課是主要的方面,記筆記是輔助的學習手段。

那麼,我們應該如何記筆記呢?我認為,我們不應該將「記筆記」變成老師的「課堂語錄」,也不應該將「記筆記」變成「板書復印」。筆記中我們要記的內容應該有:記課堂重點、記課堂難點、記課堂疑點、記補充結論或例題等課本上沒有的內容、記課堂「靈感」等等。總之,我們應該有摘要、有重點地記。

有的同學從來就沒有記筆記的習慣,這是不好的,特別是對於高中物理學習中是不行的。俗話說「好腦子不如爛筆頭」,聽課時間有限,老師講的內容轉瞬即逝,我們對知識的記憶隨時間延伸會逐漸遺忘,沒有筆記我們以後就沒有辦法進行復習。

3.復習

有的同學課後總是急著去完成作業,結果是一邊做作業,一邊翻課本、筆記。而在這里我要強調我們首先要做的不是做作業,而應該靜下心來將當天課堂上所學的內容進行認真思考、回顧,在此基礎上再去完成作業會起到事半功倍的效果。

復習的方法我們可以分成以下兩個步驟進行:首先不看課本、筆記,對知識進行嘗試回憶,這樣可以強化我們對知識的記憶。之後我們再鑽研課本、整理筆記,對知識進行梳理,從而使對知識的掌握形成系統。

另外,德國心理學家艾賓浩斯的研究表明:知識在學習最初的兩三天內遺忘是最快的,也是最多的,所以,我們對知識進行及時的復習也是戰勝遺忘的需要。

4.作業

在復習的基礎上,我們再做作業。在這里,我們要糾正一個錯誤的概念:完成作業是完成老師布置的任務。我們在課後安排作業的目的有兩個:一是鞏固課堂所學的內容;二是運用課上所學來解決一些具體的實際問題。

明確這兩點是重要的,這就要求我們在做作業時,一方面應該認真對待,獨立完成,另一方面就是要積極思考,看知識是如何運用的,注意對知識進行總結。我們應時刻記著「我們做題的目的是提高對知識掌握水平」,切忌「為了做題而做題」。

5.質疑

在以上幾個環節的學習中,我們必然會產生疑難問題和解題錯誤。及時消滅這些「學習中的攔路虎」對我們的學習有著重要的影響。有的同學不注意及時解決學習過程中的疑難問題,對錯誤也不及時糾正,其結果是越積越多,形成惡性循環,導致學習無法有效地進行下去。對於疑難問題,我們應該及時想辦法(如請教同學、老師或翻閱資料等)解決,對錯題則應該注意分析錯誤原因,搞清究竟是概念混淆致錯還是計算粗心致錯,是套用公式致錯還是題意理解不清致錯等等。另外,我們還應該通過思考,逐步培養自己善於針對所學發現問題、提出問題。

在這里,我建議每位同學都准備一個「疑難、錯題本」,專門記錄收集自己的疑難問題和典型錯誤,這也可以為我們今後對知識進行復習提供有效的素材。

6.小結

學習的最後一個是對所學知識的小結。小結的常用方法是列概括提綱,將當天所學的知識要點以提綱的形式列出,這樣可以使零散的知識形成清晰的脈絡,使我們對它的理解更為深入,掌握起來更為系統。

以上六個環節是學習新課的基本進程,它們環環相扣,每一環都十分重要,缺少其中任何一環,都會對學習的進程產生不良影響。在這六個環節之外,我們在學習每一章前後,還應該有「計劃」和「系統」兩個環節,即在學習每一章前,我們應對這一章內容進行預覽,根據要學習的內容制訂一個學習計劃,正所謂「凡事預則立,不預則廢」。此外,在學完每一章後,我們就應該對這一章進行系統總結,常用的方法是畫該章的知識網路圖,它可以使我們對該章的知識有一系統的了解,讓我們從「宏觀」的角度來重新認識該章,實現對知識掌握的「升華」。

㈦ 怎麼學好高中物理力學

物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N�6�1m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F�0�7{負號表示方向相反,F、F�0�7各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N�6�1s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』�0�7也可以是m1v1+m2v2=m1v1�0�7+m2v2�0�7
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1�0�7=(m1-m2)v1/(m1+m2) v2�0�7=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:
(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
http://..com/question/32499571.html?fr=ala0

㈧ 怎樣才能學好高中物理力學

首先你要做的就是忘掉初中的輝煌.你以後就會清楚,初中物理幾乎不算物理,高中也不是很講所謂基礎好壞.所以先不用為學不懂發慌,從頭再來而已,比以前吃力是很正常的,當然,對誰都一樣.

至於要做的,就是以從頭開始的心理,先抓基礎,學塌實些,不要懶!別為自己以前學得好感到驕傲,等你真的把高中物理學的很厲害再驕傲不遲.

閱讀全文

與高中物理力學部分怎麼學好相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017