⑴ 物理矛盾可以通過分離矛盾的方法解決,有幾種分離原則
解決物理矛盾的分離原則
1、空間分離:將矛盾雙方在不同的空間分離以降低解決問題的難度。當系統矛盾雙方在某一空間出現一方時、空間分離是可能的。
2、時間分離:將矛盾雙方在不同的時間分離、以降低解決問題的難度。當系統 矛盾雙方在某一時空中只出現一方時時間分離是可能的。
3、條件分離:將矛盾雙方在不同的條件下分離、以降低解決問題的難度。當系統矛盾雙方在某一條件下只出現一方時、條件分離是可能的。
4、整體與部分分離:將矛盾雙方在不同的層次分離、以降低解決問題的難度。當系統矛盾雙方在系統層次只出現一方時整體與部分分離是可能的。
⑵ 在TRIZ理論中,矛盾是如何解決的
(一)沖突解決理論
1、技術沖突解決原理
TRIZ提出描述技術沖突的39個通用工程參數:運動物體質量、靜止物體質量、運動物體長度、靜止物體長度等。為了解決技術沖突,TRIZ理論提出了40 項發明原理,如分割、分離、局部質量、不對稱等。通過研究,Altshuller提出了沖突矩陣,該矩陣將描述技術沖突的39個工程參數與40條發明原理建立了對應關系,解決了設計過程中選擇發明原理的難題。
2、物理沖突解決原理
Terninko於1998年提出的物理沖突描述方法為:(1)為實現關鍵功能,子系統要具有一有用功能,但為了避免出現一有害功能,子系統又不能具有上述有用功能。(2)關鍵子系統的特性必須是一大值以能取得有用功能,但又必須是一小值以避免出現有害功能。 (3)關鍵子系統必須出現以取得一有用功能,但又不能出現以避免出現有害功能。TRIZ提出採用分離原理解決物理沖突的方法,包括空間分離和時間分離、基於條件的分離、整體與部分的分離。英國Bath大學的Mann提出,解決物理沖突的分離原理與解決技術沖突的發明原理之間存在關系,一條分離原理可以與多條發明原理存在對應關系。
(二)物—場模型分析方法
物—場分析是用符號表達技術系統變換的建模技術。物—場模型分析方法產生於1947—1977年,每一次的改進都增加了新的可用的知識,現在已經有了76 種標准解。這些標准解是最初解決問題方案的精華,因此,物—場分析為我們提供了一種方便快捷的方法,利用這種方法,可以在汲取基本知識的基礎上產生不同想法。
TRIZ理論認為,技術系統構成要素S1、作用體S2、場 F三者缺一就會造成系統不完整。而當系統中某一物質的特定機能沒有實現時,系統就會產生問題。為了控制這一物質產生的問題,有必要引入另外的物質。由此產生這些物質之間的相互作用並伴隨能量(場)的產生、變換、吸收等,物—場模型也從一種形式變換為另一種形式。因此各種技術系統及其變換都可用物質和場的相互作用形式表述。
利用物—場分析方法分析系統存在的問題,建立系統的物—場模型,並提出問題解決對策的步驟如下:(1)指定物體S1;(2)指定場;(3)建立物—場初期模型;(4)指定作用體S2;(5)生成所希望的物—場模型;(6)提出解決問題的對策。
(三)發明問題解決演算法
TRIZ認為,一個問題解決的困難程度取決於對該問題的描述或程式化方法,描述得越清楚,問題的解就越容易找到。TRIZ中,發明問題求解的過程是對問題不斷地描述、不斷地程式化的過程。經過這一過程,初始問題最根本的沖突被清楚地暴露出來,能否求解已很清楚,如果已有的知識能用於該問題則有解,如果已有的知識不能解決該問題則無解,需等待自然科學或技術的進一步發展。該過程是靠ARIZ演算法實現的。
ARIZ (Algorithm for Inventive Problem Solving)稱為發明問題解決演算法,是TRIZ的一種主要工具,是解決發明問題的完整演算法,該演算法採用一套邏輯過程逐步將初始問題程式化。該演算法特別強調沖突與理想解的程式化,一方面技術系統向理想解的方向進化,另一方面如果一個技術問題存在沖突需要克服,該問題就變成一個創新問題。
ARIZ中沖突的消除有強大的效應知識庫的支持。效應知識庫包括物理的、化學的、幾何的等效應。作為一種規則,經過分析與效應的應用後問題仍無解,則認為初始問題定義有誤,需對問題進行更一般化的定義。
應用ARIZ取得成功的關鍵在於沒有理解問題的本質前,要不斷地對問題進行細化,一直到確定了物理沖突,該過程及物理沖突的求解已有軟體支持。
綜上所述,由於TRIZ將產品創新的核心—--產生新的工作原理過程具體化,並提出了規則、演算法與發明創造原理供設計人員使用,它已經成為一種較完善的創新設計理論。
(四)應用TRIZ的一般過程
TRIZ解決問題的一般過程被劃分為四個步驟,如圖所示:
(1)分析
分析是TRIZ的工具之一,是解決問題的一個重要階段。功能分析的目的是從完成功能的角度而不是從技術的角度分析系統、子系統、部件。理想解是採用與技術及實現無關的語言對需要創新的原因進行描述,創新的重要進展往往在該階段對問題深入的理解所取得。確認哪些使系統不能處於理想化的元件是使創新成功的關鍵。設計過程中從一起點向理想解過渡的過程稱為理想化過程。可用資源分析是要確定可用物品、能源、信息、功能等。這些可用資源與系統中的某些元件組合將改善系統的性能。沖突區域的確定是要理解出現沖突的原因。區域既可指時間,又可指空間。假如在分析階段問題的解已經找到,可以移到實現階段。假如問題的解還沒有找到,而該問題的解需要最大限度的創新,則基於知識的三種工具:原理、預測、效應等都可採用。
(2)原理
原理是獲得沖突解的方法。有技術與物理兩種沖突解決原理。TRIZ引導設計者挑選能解決特定沖突的原理,其前提是要按標准參數確定沖突。有40條原理。
(3)預測
預測又稱為技術預報。TRIZ確定了8種技術系統進化的模式。當模式確定後,系統、子系統及部件的設計應向高一級的方向發展。
(4)效應
效應指應用本領域,特別是其他領域的有關定律解決設計中的問題。如採用數學、化學、生物等領域中的原理,解決設計中的創新問題。
(5)評價
該階段將所求出的解與理想解進行比較,確信所作的改進不僅滿足了技術需求而且推進了技術創新。TRIZ中的特性傳遞( feature transfer)法可用於將多個解進行組合以改進系統的品質。
⑶ 虛擬機IP與物理機IP沖突怎麼解
1、首先打開控制面板,找到「網路和共享中心」點擊打開。
⑷ 物理矛盾及其解決原理
物理矛盾是當一個技術系統的工程參數具有相反的需求,就出現了物理矛盾。比如說,要求系統的某個參數既要出現又不存在,或既要高又要低,或既要大又要小等等。相對於技術矛盾,物理矛盾是一種更尖銳的矛盾,創新中需要加以解決。具體來講,物理矛盾表現在:
1)系統或關鍵子系統必須存在,又不能存在;)系統或關鍵子系統具有性能「F」,同時應具有性能「-F」,「F」與「-F」是相反的性能;3)系統或關鍵子系統必須處於狀態「S」及狀態「-S」,「S」與「-S」是不同的狀態;
4)系統或關鍵子系統不能隨時間變化,隨時間變化。從功能實現的角度,物理矛盾可表現在:
1)為了實現關鍵功能,系統或子系統需要具有有用的一個功能,但為了避免出現有害的另一個功能,系統或子系統又不能具有上述有用功能;2)關鍵子系統的特性必須是取大值,以取得有用功能,但又必須是小值以避免出現有害功能)系統或關鍵子系統必須出現以獲得一個有用功能,但系統或子系統又不能出現,以避免出現有害功能物理矛盾可以根據系統所存在的具體問題,選擇具體的描述方式來進行表達。總結歸納物理學中的常用參數,主要有3大類:幾何類、材料及能量類、功能類。
⑸ 物理矛盾實例和解決方法
我們首先來看阿奇舒勒的矛盾矩陣。
阿奇舒勒矛盾矩陣由39個通用工程參數和40個創新原理構成,矛盾矩陣第一列表示改進的參數,第一行表示惡化的參數,共有39*39個小格子,每一個小格子代表一個工程矛盾(具體說明),非對角線上小格子所表達的矛盾為技術矛盾。該矛盾由對應小格子里所提供的創新原理解決(具體說明)。
需要說明:
1、不同的矛盾提供原理數不一樣(1、
2、
3、4),盡可能應用所提供的創新原理解決問題,否則你定義的矛盾有問題;
2、如果非對角線上小格子裡面沒有數字,表明該矛盾在實際工程中不存在;
3、對角線上小格子裡面沒有數字,並不表示不存在矛盾,而是另一類矛盾。
我們知道,技術矛盾是兩個參數之間形成的矛盾,即當一個參數改進時,引起另一個參數的惡化;當我們用同樣的方式描述對角線上小格子所表達的矛盾時,應該是「當一個參數改進時,又引起該參數的惡化」,也就是說,對角線上小格子對應的正反兩個參數是一個參數,說明這些參數自身產生了矛盾,這樣的矛盾稱物理矛盾。例如,筆記本攜帶時應該小點,使用時應該大點,對筆記本的尺寸相反的要求就構成了物理矛盾。本章研究物理矛盾及其解決方法。
幻燈片2
§1 物理矛盾的定義
•物理矛盾的定義:
•當一個技術系統中對同一個參數具有相互
排斥(相反的或是不同的)需求時,所產生的
矛盾稱為物理矛盾。
對於技術系統的元素,物理矛盾有以下三種情況:
第一種情況,這個元素是通用工程參數,不同的設計條件對它提出了完全相反的要求,例如:對於建築領域,牆體的設計應該有足夠的厚度以使其堅固,同時牆體又要盡量薄以使建築進程加快並且總重比較輕。建築結構的材料密度應接近零以使其輕便,同時材料密度也應該足夠高以使其具有一定的承重能力。另外還有:溫度既要高又要低;尺寸既要長又要短;材質既要軟又要硬等等。
第二種情況,這個元素是通用工程參數,不同的工況條件對它有著不同(並非完全相反)的要求,例如:燈泡的功率既要是25瓦,又要是100瓦;一個工件的形狀,既要是直的,又要是彎的等等。
第三種情況,這個元素是非工程參數,不同的工況條件對它有著不同的要求,例如:冰箱的門既要經常打開,又要經常保持關閉;道路上既要有十字路口,又要沒有十字路口。
⑹ 關鍵問題被轉化為物理矛盾之後,可以用哪些方法解決
TRIZ理論中,如果一個關鍵問題被轉化為物理矛盾可以嘗試用以下分離矛盾需求、滿足矛盾需求、繞過矛盾需求方法來解決。
【原題】
TRIZ理論中,如果一個關鍵問題被轉化為物理矛盾可以嘗試用以下()方法來解決。
A、分離矛盾需求。
B、滿足矛盾需求。
C、繞過矛盾需求。
D、縮小矛盾需求。
【答案】ABC。
物理沖突的描述:
根據出發點不同,物理沖突有多種描述形式,其中最概括或最本質的描述是:
1、一個子系統有害功能的降低導致子系統中有用功能的降低;
2、子系統一種有用功能的增強導致子系統中有害功能的增強。
這個描述說明了物理沖突和技術沖突的根本區別,即「物理矛盾是單參數,而技術矛盾是雙參數」。與技術沖突不同,物理沖突由同一個參數的兩個相反方向組成,它無法從矛盾矩陣中得到理解。
⑺ 物理矛盾的例子及解決從日常生活中遇到的問題中,選擇有技術沖突的一個事例進
1.工作背景:圓環的研磨.原來使用滾筒研磨,現使用磁力平面研磨.
2.問題描述:滾筒可以使工件自我摩擦,去除毛刺.拋光機不能使工件有效相對運動.
3.思路簡述:如想達到自我摩擦的效果必須使工件相互摩擦,選擇工件上下運動,或左右運動.
因磁力太小,選擇左右運動.
4.解決過程:增加一個圓環的支撐架,使磁力旋轉時,帶動支架,是工件左右運動.
5.應用:缺少必要條件,發現--解決
⑻ 請列舉5個屬於物理矛盾的實例 急急急
例如:
1、房間應該盡量大,居住寬敞舒適,但是打掃衛生很累人,所以房間又應該盡量小。
2、快餐店(或者火鍋店)的定製菜單上要填寫數字,以便點菜,但是從節約紙的角度來說,填寫了數字的菜單紙就不能給別人用,只能扔掉,所以制定菜單上又不能填寫數字。
3、給縫衣針穿線的時候希望針眼大,好把線穿入到針眼中,縫衣服的時候希望針眼小。
4、過濾網的網眼應該盡量小,這樣過濾效果好,但是為了過濾網的網眼不堵塞,網眼又應該大一些。
5、電子設備里的散熱器體積應該盡量大一些,這樣散熱效果好,但是從節省空間的角度來看,散熱器的體積又應該盡量小。
6、輪船要快速航行,船體就要盡量窄,輪船要穩定航行,船體就要盡量寬。
當一個技術系統的工程參數具有相反的需求,就出現了物理矛盾。比如說,要求系統的某個參數既要出現又不存在,或既要高又要低,或既要大又要小等等。相對於技術矛盾,物理矛盾是一種更尖銳的矛盾,創新中需要加以解決。
(8)如何解決物理沖突擴展閱讀:
從功能實現的角度,物理矛盾可表現在:
1、為了實現關鍵功能,系統或子系統需要具有有用的一個功能,但為了避免出現有害的另一個功能,系統或子系統又不能具有上述有用功能;
2、關鍵子系統的特性必須是取大值,以取得有用功能,但又必須是小值以避免出現有害功能;
3、系統或關鍵子系統必須出現以獲得一個有用功能,但系統或子系統又不能出現,以避免出現有害功能。
物理矛盾和技術矛盾是有相互聯系的。例如,為了提高子系統Y的效率,需要對子系統Y加熱;但是加熱會導致其鄰接子系統X的降解。這是一對技術矛盾。
同樣,這樣的問題可以用物理矛盾來描述,即溫度要高又要低。溫度高可提高Y的效率,但是惡化了X的工況;而溫度低無法提高Y的效率,但也不會惡化X的工況。所以,技術矛盾與物理矛盾之間,是可以相互轉化的。
⑼ 技術矛盾和物理矛盾的概念,各自怎麼解決
技術矛盾:指技術系統中兩個參數之間存在相互制約,是在提高技術系統的某一參數時,導致了另一個參數的惡化而產生的矛盾。
解決方法:1.尋找系統矛盾性能之間的妥協方案(為了提高一個性能指標,在另一個性能指標上可以做出的犧牲是多少)
2.尋找消除矛盾的辦法(如何做到雙贏)。
前一種途徑得到的是典型的工程解,後一種途徑的結果是創造性的發明解。
物理矛盾:當一個技術系統中對同一個元素具有相反的需求時,就出現了物理矛盾。
解決方法:實現矛盾雙方的分離,包括空間分離,時間分離,條件分離,系統級別分離。
(9)如何解決物理沖突擴展閱讀:
技術矛盾和物理矛盾的聯系:
技術矛盾和物理矛盾都反映的是技術系統的參數屬性,就定義而言,技術矛盾是技術系統中兩個參數之間存在著相互制約;物理矛盾是技術系統中一個參數無法滿足系統內相互排斥的需求。
物理矛盾和技術矛盾是有相互聯系的。例如,為了提高子系統Y的效率,需要對子系統Y加熱;但是加熱會導致其鄰接子系統X的降解。
這是一對技術矛盾。同樣,這樣的問題可以用物理矛盾來描述,即溫度要高又要低。溫度高可提高Y的效率,但是惡化了X的工況;而溫度低無法提高Y的效率,但也不會惡化X的工況。
所以,技術矛盾與物理矛盾之間,是可以相互轉化的。