『壹』 斜率怎麼求,有哪些公式
1直線斜率k的公式 k=(y2-y1)/(x2-x1);如果直線與x軸垂直,直角的正切值無窮大,故此直線不存在斜率。當直線L的斜率存在時,對於一次函數y=kx+b(斜截式),k即該函數圖像(直線)的斜率。
2直線斜率相關 當直線L的斜率不存在時,斜截式y=kx+b 當k=0時 y=b 當直線L的斜率存在時,點斜式y2—y1=k(X2—X1), 當直線L在兩坐標軸上存在非零截距時,有截距式X/a+y/b=1 對於任意函數上任意一點,其斜率等於其切線與x軸正方向的夾角,即tanα 斜率計算:ax+by+c=0中,k=-a/b. 直線斜率公式:k=(y2-y1)/(x2-x1) 兩條垂直相交直線的斜率相乘積為-1:k1*k2=-1. 當k>0時,直線與x軸夾角越大,斜率越大;當k<0時,直線與x軸夾角越小,斜率越小。
拓展資料
在物理中,斜率也有很重要的意義, 電源的電動勢曲線和燈泡的伏安特性曲線的交點 就是燈泡在 這個電動勢(實際電壓)下工作的電流
『貳』 求圖像的斜率用什麼方法求,要方法就行了
選線上的兩個點,最好相距遠點,縱坐標之差除以橫坐標之差就是斜率
『叄』 高中物理中的斜率怎麼算
如果坐標系的橫軸為x軸,縱軸為y軸,斜率為k,則斜率k=Δy/Δx
『肆』 高一物理V--T圖像中的斜率怎麼算
v-t圖像中,圖像的切線的斜率就是加速度;
圖像的切線向上的方向與t軸的正方向的傾斜角為銳角時,斜率為正;
圖像的切線向上的方向與t軸的正方向的傾斜角為鈍角時,斜率為負;
圖像的切線向上的方向與t軸的正方向的傾斜角為零度的角時,斜率為0;
圖像的切線向上的方向與t軸的正方向的傾斜角為直角時,斜率不存在。
運動圖像(motion diagram)包含了位移-時間圖像(displacement-time graph)和速度-時間圖像(velocity-time graph),其中位移與速度都是矢量(vector),矢量含有大小(magnitude)與方向(direction)。
位移—時間圖象(s-t圖像)
橫軸表示時間,縱軸表示位移;
靜止的x-t圖像在一條與橫軸
平行或重合的直線上;
勻速直線運動的s-t圖像在一條傾斜直線上,所在直線的斜率表示運動速度的大小及方向;勻變速直線運動的s-t圖像為拋物線。
速度—時間圖像(v-t圖像)
橫軸表示時間,縱軸表示速度;
靜止的v-t圖像在一條與橫軸重合的直線上;
勻速直線運動的v-t圖像在一條與橫軸平行的直線上;
勻變速直線運動的v-t圖像在一條傾斜直線上,所在直線的斜率表示加速度大小及方向;
當直線斜率(加速度)與運動速度同號時,物體做勻加速直線運動;
當直線斜率(加速度)與運動速度異號時,物體做勻減速直線運動。
位移—速度圖像(s-v圖像)
橫軸表示速度,縱軸表示位移;
圖像與坐標軸圍成面積的意義
v-t圖像與坐標軸圍成的面積表示位移。如右圖3陰影部分的面積表示從t1到t2這段時間內的位移。
其公式為:(V0+Vt)(t2-t1)/2
『伍』 高中物理,斜率是什麼意思怎麼計算
時間位移圖像x-t,斜率k=△x/△t,有沒有發現這個斜率剛好是速度,V=k=△x/△t
速度時間圖像v-t,斜率k=△v/△t,這個斜率剛好是加速度,a=k=△v/△t,所形成的圖形面積就是位移
這是圖像是直線的情況,還可以求導,比如:位移時間函數,x=3t²+5t+10。位移對時間求導就是速度即V=x'=6t+5,這是速度和時間函數關系。速度對時間求導就是加速度,即a=v'=6
『陸』 斜率怎麼求
斜率計算:ax+by+c=0中,k=-a/b。
直線斜率公式:k=(y2-y1)/(x2-x1)
兩條垂直相交直線的斜率相乘積為-1:k1*k2=-1。
曲線y=f(x)在點(x1,f(x1))處的斜率就是函數f(x)在點x1處的導數
當直線L的斜率存在時,斜截式y=kx+b 當k=0時 y=b
當直線L的斜率存在時,點斜式y2—y1=k(X2—X1),
當直線L在兩坐標軸上存在非零截距時,有截距式X/a+y/b=1
對於任意函數上任意一點,其斜率等於其切線與x軸正方向的夾角,即tanα
(6)物理實驗圖像的斜率怎麼求擴展閱讀
(1)顧名思義,「斜率」就是「傾斜的程度」。過去我們在學習解直角三角形時,教科書上就說過:斜坡坡面的豎直高度h與水平寬度l的比值i叫做坡度;如果把坡面與水平面的夾角α叫做坡度,那麼;坡度越大<=>α角越大<=>坡面越陡,所以i=tanα可以反映坡面傾斜的程度。
現在我們學習的斜率k,等於所對應的直線(有無數條,它們彼此平行)的傾斜角(只有一個)α的正切,可以反映這樣的直線對於x軸傾斜的程度。實際上,「斜率」的概念與工程問題中的「坡度」是一致的。
(2)解析幾何中,要通過點的坐標和直線方程來研究直線通過坐標計算求得,使方程形式上較為簡單。如果只用傾斜角一個概念,那麼它在實際上相當於反正切函數值arctank,難於直接通過坐標計算求得,並使方程形式變得復雜。
(3)坐標平面內,每一條直線都有唯一的傾斜角,但不是每一條直線都有斜率,傾斜角是90°的直線(即x軸的垂線)沒有斜率。在今後的學習中,經常要對直線是否有斜率分情況進行討論。
『柒』 求斜率的五種公式
求斜率的五種公式如下:
1、已知兩點求斜率的公式。如果已知直線上兩點的坐標(x1,y1), (x2,y2),很多人就會想到用待定系數法求斜率,然而這里是有一個斜率公式的,即過這兩點的直線斜率k=(y1-y2)/(x1-x2)或k=(y2-y1)/(x2-x1)。
2、已知直線在兩條坐標軸上的截距的斜率公式。如果已知直線與縱軸的交點是(0,b),與橫軸的交點是(c,0),那麼直線的斜率k=-b/c. 這個公式其實是第一個公式的特例。因為將兩點的坐標代入第一個公式,就可以得到這個公式。
3、正比例函數。正比例函數y=kx這種特例。只要知道正比例函數上一點的坐標(x0,y0)(非原點),就可以求得它的斜率是k=y0/x0。這個公式也是第一個公式的特例。因為除了這個點,還有原點的坐標是已知的,把它們的坐標代入第一個公式,就可以得到這個公式了。
4、直線解析公式。我們知道直線解析式的一般式Ax+By+C=0時,我們可以求得直線的斜率k=-A/B。只要將一般式化為點截式y=-Ax/B-C/B,就可以得到這個公式了。
5、斜率的本質公式。最後一個公式最能體現斜率的本質,它指的是直線與x軸的右上夾角的正切值。當直線與x軸的右上夾角為θ時,k=tanθ。
『捌』 高考物理實驗題圖像的的斜率怎麼畫得或測得准
有兩種情況:
1、大多數高中物理的實驗圖像多是傾斜的直線,這種處理實驗數據的方法是畫圖時:讓大多數點發布在直線上,其他的分布在直線的兩側,這種方法能減小實驗誤差。求斜率時,在直線上取相距較遠的兩點求解。(如,v-t圖求加速度)
2、有些圖象是曲線的,(如,小燈泡的伏安特性曲線)用平滑的曲線描點,這種只能按要求求電阻,因為在不同的電流或電壓下,電阻不等。
『玖』 測普朗克常量中,作出了U-v的實驗數據圖,怎麼求得斜率
答案:光電效應測普朗克常數的斜率是h/e
根據愛因斯坦光電效應方程:hv=1/2mv^2+A
入射到金屬表面的光頻率越高,逸出的電子動能越大,所以即使陽極電位比陰極電位低時也會有電子落入陽極形成光電流,直至陽極電位低於截止電壓,光電流才為零,此時有關系
eU0 = hν-A
此式表明截止電壓U0是頻率 ν 的線性函數,直線斜率k = h/e,只要用實驗方法得出不同的頻率對應的截止電壓,求出直線斜率,就可算出普朗克常數h。
『拾』 有關物理中利用表格畫圖法求斜率的問題
首先畫出的直線要比較准確,盡可能使線在點之間。以下分兩種情況:
1、點基本上都在直線上。隨便在線上取兩點計算斜率。
2、點分布在直線的上下。畫出直線,盡可能取離原點(數據點)較遠的兩點計算斜率。因為靠近原點(數據點)的數據可能誤差較大,但是直線的作用就是減小誤差,所以選取離原點(數據點)較遠的點計算斜率,誤差較小。在題目給的答案當中,斜率是有一定范圍的,一般誤差在正負百分之五可以接受。
第2點無論是哪種情況都適用,是一種更一般的解決方法。