㈠ 周期T的計算公式,求解答
物理上的周期一般有兩個計算公式:
1、T=2πr/v(周期=圓的周長÷線速度);
2、T=2π/ω(「ω」代表角速度)。
若f(x)為周期函數,則把使得f(x+l)=f(x)對定義域中的任何x都成立的最小正數l,稱為f(x)的(基本)周期。
在計算機中,完成一個循環所需要的時間;或訪問一次存儲器所需要的時間,亦稱為周期 。周期函數的實質:兩個自變數值整體的差等於周期的倍數時,兩個自變數值整體的函數值相等。如:f(x+6) =f(x-2)則函數周期為T=8。
(1)物理周期怎麼算數學公式擴展閱讀
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
㈡ 物理中求周期的公式是
周期與頻率:T=1/f
衛星繞行速度、角速度、周期:V=(GM/r)^1/2;ω=(GM/r3)^1/2;T=2π(r3/GM)^1/2{M:中心天體質量}
具體見圖:
完成一次振動所需要的時間,稱為振動的周期。
若f(x)為周期函數,則把使得f(x+l)=f(x)對定義域中的任何x都成立的最小正數l,稱為f(x)的(基本)周期。
對於函數y=f(x),如果存在一個不為零的常數T,使得當x取定義域內的每一個值時,f(x+T)=f(x)都成立,那麼就把函數y=f(x)叫做周期函數,不為零的常數T叫做這個函數的周期。事實上,任何一個常數kT(k∈Z,且k≠0)都是它的周期。
並且周期函數f(x)的周期T是與x無關的非零常數,且周期函數不一定有最小正周期。
(2)物理周期怎麼算數學公式擴展閱讀:
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
周期函數的判定方法分為以下幾步:
(1)判斷f(x)的定義域是否有界;
例:f(x)=cosx(≤10)不是周期函數。
(2)根據定義討論函數的周期性可知非零實數T在關系式f(x+T)= f(x)中是與x無關的,故討論時可通過解關於T的方程f(x+T)- f(x)=0,若能解出與x無關的非零常數T便可斷定函數f(x)是周期函數,若這樣的T不存在則f(x)為非周期函數。
例:f(x)=cosx^2 是非周期函數。
(3)一般用反證法證明。(若f(x)是周期函數,推出矛盾,從而得出f(x)是非周期函數)。
例:證f(x)=ax+b(a≠0)是非周期函數。
證:假設f(x)=ax+b是周期函數,則存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0與T≠0矛盾,∴f(x)是非周期函數。
例:證f(x)= ax+b是非周期函數。
證:假設f(x)是周期函數,則必存在T(≠0)對 ,有(x+T)= f(x),當x=0時,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)與f(x+T)= f(x)矛盾,∴f(x)是非周期函數。
㈢ 周期t公式是什麼呢
物理上的周期一般有兩個計算公式:
1、T=2πr/v(周期=圓的周長÷線速度)。
2、T=2π/ω(「ω」代表角速度)。
相關介紹:
周期函數是無論任何獨立變數上經過一個確定的周期之後數值皆能重復的函數。
對於函數y=f(x),如果存在一個不為零的常數T,使得當x取定義域內的每一個值時,f(x+T)=f(x)都成立,那麼就把函數y=f(x)叫做周期函數,不為零的常數T叫做這個函數的周期。
事實上,任何一個常數kT(k∈Z,且k≠0)都是它的周期。並且周期函數f(x)的周期T是與x無關的非零常數,且周期函數不一定有最小正周期。
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
㈣ 周期怎麼算物理公式
物理中周期的演算法是T=1/f,衛星環繞地球,作勻速圓周運動,軌道周期,是指一顆行星(或其它天體)環繞軌道一周需要的時間,環繞太陽運行的星體有很多種不同的軌道周期。
行星,通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同。一般來說行星需具有一定質量,行星的質量要足夠的大且近似於圓球狀。
㈤ 物理周期T公式
物理周期T公式是T=1/f(s)。周期的國際單位制單位是秒(s)。周期就是物體作往復運動或物抄理量作周而復始的變化時,重復一次所經歷的時間。物體或物理量完成一次振動所經歷的時間。在各種周期運動或周期變化襲中,物體或物理量從任一狀態開始發生變化,經過一個周期或周期的整百數倍時間後,總是回復到開始的狀態。
㈥ 周期的計算公式
周期是指事物在發展變化過程中,某些特徵重復出現,其接續兩次出現所經過的時間
如:0、資金運轉周期=銷售收入凈額/(平均流動資產-平均流動負債)1、應收賬款周轉率(1)應收賬款周轉次數=主營業務收入凈額/應收賬款平均余額
主營業務收入凈額=主營業務收入-銷售退回、折讓和折扣
應收賬款平均余額=(期初應收賬款+期末應收賬款)/2(2)應收賬款周轉天數=360/應收賬款周轉次數2、存貨周轉率(1)存貨周轉次數=銷貨成本<或主營業務成本>/平均存貨
平均存貨=(期初存貨+期末存貨)/2(2)存貨周轉天數=360/存貨周轉次數3、流動資產周轉率(1)流動資產周轉次數=主營業務收入凈額/流動資產平均余額
流動資產平均余額=(流動資產期初數+流動資產期末數)/2(2)流動資產周轉天數=360/流動資產周轉次數4、總資產周轉率(1)總資產周轉次數=主營業務收入凈額/總資產平均余額
總資產平均余額=(總資產期初數+總資產期末數)/2(2)總資產周轉天數=360/總資產周轉次數
㈦ 周期怎麼算數學公式是什麼
周期怎麼算數學公式是f(x+a)=-f(x)周期為2a。
證明過程:因為f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函數周期公式T=2π,sinx是正弦函數,周期是2π
cosx的函數周期公式T=2π,cosx是餘弦函數,周期2π。
tanx和 cotx 的函數周期公式T=π,tanx和 cotx 分別是正切和餘切
secx 和cscx 的函數周期公式T=2π,secx 和cscx 是正割和餘割。
y=Asin(wx+b) 周期公式T=2π/w。
y=Acos(wx+b) 周期公式T=2π/w。
y=Atan(wx+b) 周期公式T=π/w。
重要推論:
如果函數f(x)(x∈D)在定義域內有兩條對稱軸x=a,x=b則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有兩個對稱中心A(a,0),B(b,0)則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有一條對稱軸x=a和一個對稱中心B(b, 0)(a≠b),則函數f(x)是周期函數,且周期T=4|b-a|(不一定為最小正周期)。
㈧ 圓周運動周期公式是什麼
公式如下:
1、v(線速度)=l/t=2πr/T(l代表弧長,t代表時間,r代表半徑)
2、ω(角速度)=θ/t=2π/T(θ表示角度或者弧度)
3、T(周期)=2πr/v=2π/ω
4、n(頻率)=1/T
5、ω=2πn
6、v=rω
7、F向(向心力)=mrω^2=mv^2/r=mr4π^2/T^2
8、a向(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2
概述
在物理學中,圓周運動(circular motion)是在圓上轉圈:一個圓形路徑或軌跡。當考慮一件物體的圓周運動時,物體的體積大小可以被忽略,並將其看成一質點(在空氣動力學上除外)。
圓周運動的例子有:一個人造衛星跟隨其軌跡轉動、用繩子連接著一塊石頭並轉圈揮動、一架賽車在賽道上轉彎、一粒電子垂直地進入一個平均磁場、一個齒輪在機器中的轉動(其表面和內部任一點)、皮帶傳動裝置、火車的車輪及拐彎處軌道。
圓周運動以向心力(centripetal force)提供運動物體所需的加速度。這向心力把運動物體拉向圓形軌跡的中心點。若果沒有向心力,物體會跟隨牛頓第一定律慣性地進行直線運動。即使物體速率不變,物體的速度方向也在不停地改變。即勻速圓周運動中,線速度改變(方向),而角速度不變。