1. 大學物理:理想模型的概念
理想模型就是我們在解決實際問題時候,對實際問題進行一些假設之後再來模型化這個問題。
比如說在學習材料力學的時候,一開始會有均質性,等向性,連續性的假設,在這些假設的基礎之上來模型化問題然後用數學方式解決它。 這就是理想化的概念。
使用這個概念的原因主要有兩點,第一是所有的實際情況很難考慮完整,一般實際情況都比較復雜,受到各種因素的影響,而有些因素超過了我們能夠計算的能力,所以就對這些地方進行理想化假設,讓它可以被計算。 第二是投資收益的問題。很多問題我們並不需要考慮所有的實際情況,在一些理想化假設下,我們可以得到一個相當近似的結果,如果想更接近實際情況,那麼會付出非常大量的成本,所以我們只是使用這個理想化假設的近似結果,大概有多少誤差(統計學)就夠了,沒有必要考慮具體實際上結果是多少。
2. 大學物理中的理想模型有哪些
質點,系統,理想氣體,點電荷,勻強電場,勻強磁場等。
理想化模型是根據研究的物理問題的需要,從客觀存在的事物中抽象出來的一種簡單,近似,直觀的模型。具體是對事物的各個物理因素加以分析,忽略與問題無關或影響較小的因素,突出對問題起作用較大的主要因素,從而把問題簡化。
例如力學上所研究的只有一定質量而沒有一定形狀和大小的質點,分子物理學中所研究的分子本身的體積和分子間作用力都可以忽略不計的理想氣體,電學中所研究的沒有空間大小的點電荷等,這些都是理想模型。
(2)有哪些理想的物理概念擴展閱讀:
注意事項:
選擇合適的方法是把物理問題轉化為數學問題的關鍵之一。只有選擇了合適解決問題的辦法,我們才能順利而簡捷地解決問題。在這個環節是用分析,綜合還是反證,遞推,是否要用隔離分析等方法。
運用數學知識的過程是把物理問題轉化為數學問題的關鍵環節,通過尋找數量關系,給物理模型加入定量的因素。
用符號來表示物理量,從而使符號成為物理內容的載體,把復雜的事物代碼化,根據物理規律列出問題中物理量之間的關系,實現物理過程的數學化。
3. 物理理想化模型都有什麼
1、質點:
例如,我們從力學角度研究引力作用下物體的運動時,只需考慮質量這一最重要的屬性,其他因素均可略去。
對於具有一定質量的物體,我們假設其質量集中在物體的質量中心,便抽象出質點模型。質點是力學中的一個基本概念,只要所考慮的運動僅涉及物體的位置移動,並且所涉及的空間尺度比物體自身的尺度大得多時,都可以用質點模型來代表所研究的客體。
在上述條件下,不但微觀世界中的電子、質子、中子等基本粒子可以看作質點,地球上的各種生物和其他物體可用質點模型來代表,就是恆星、行星等各種天體,也可以看作質點。
2、剛體:
但是,當要研究的客體運動,需要涉及它自身的轉動時,質點模型便不適用了,於是又抽象出剛體模型。真實的物體在受到力的作用時,多少會發生形狀的變化,當這種形變可以忽略不計時,便可近似地看作是剛體。
所以剛體也是一種簡化了的理想模型。只要所研究的運動僅涉及平動和轉動,而不涉及物體的形變時,剛體便是很有效的力學模型。
(3)有哪些理想的物理概念擴展閱讀:
理想模型字面相關延伸:理想實驗
局限:
「理想實驗」在自然科學的理論研究中有著重要的作用,但是,「理想實驗」的方法也有其一定的局限性。
「理想實驗」只是一種邏輯推理的思維過程,它的作用只限於邏輯上的證明與反駁,而不能用來作為檢驗認識正確與否的標准.相反,由「理想實驗」所得出的任何推論,都必須由觀察或實驗的結果來檢驗。
4. 物理基本概念有哪些
經典力學及理論力學 (Mechanics)研究物體機械運動的基本規律的規律
● 電磁學及電動力學 (Electromagnetism and Electrodynamics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
● 熱力學與統計物理學 (Thermodynamics and Statistical Physics)研究物質熱運動的統計規律及其宏觀表現
● 相對論 (Relativity)研究物體的高速運動效應以及相關的動力學規律以及關於時空相對性的規律
● 量子力學 (Quantum mechanics)研究微觀物質運動現象以及基本運動規律
此外,還有:
粒子物理學、原子核物理學、原子分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學、聲學、電磁學、光學、無線電物理學、熱學、量子場論、低溫物理學、半導體物理學、磁學、液晶、醫學物理學、非線性物理學、計算物理學等等。
通常還將理論力學、電動力學、熱力學與統計物理學、量子力學統稱為四大力學。
5. 高中物理中理想模型有哪些
一、將物質形態自身理想化,如質點、系統、理想氣體、點電荷、勻強電場、勻強磁場等。
二、將所處的條件理想化,如光滑、絕熱等;
三、將結構理想化,如分子電流、原子模式結構、磁力線、電力線。
四、將運動變化過程理想化,如勻速圓周運動、等壓過程等溫、等容、等壓過程;勻速、勻變速直線運動;拋體運動;簡諧振動;穩恆電流等。
6. 高中物理中的理想模型有哪些
歸納在一起就是一個萬能的小滑塊(可以帶電、可以有摩擦也可以無摩擦、可大可小、有時可忽略體積質量,可在各種場中運動。。等等)
7. 初中物理所有概念
初中物理基本概念概要
一、測量
⒈長度L:主單位:米;測量工具:刻度尺;測量時要估讀到最小刻度的下一位;光年的單位是長度單位。
⒉時間t:主單位:秒;測量工具:鍾表;實驗室中用停表。1時=3600秒,1秒=1000毫秒。
⒊質量m:物體中所含物質的多少叫質量。主單位:千克; 測量工具:秤;實驗室用托盤天平。
二、機械運動
⒈機械運動:物體位置發生變化的運動。
參照物:判斷一個物體運動必須選取另一個物體作標准,這個被選作標準的物體叫參照物。
⒉勻速直線運動:
①比較運動快慢的兩種方法:a 比較在相等時間里通過的路程。b 比較通過相等路程所需的時間。
②公式: 1米/秒=3.6千米/時。
三、力
⒈力F:力是物體對物體的作用。物體間力的作用總是相互的。
力的單位:牛頓(N)。測量力的儀器:測力器;實驗室使用彈簧秤。
力的作用效果:使物體發生形變或使物體的運動狀態發生改變。
物體運動狀態改變是指物體的速度大小或運動方向改變。
⒉力的三要素:力的大小、方向、作用點叫做力的三要素。
力的圖示,要作標度;力的示意圖,不作標度。
⒊重力G:由於地球吸引而使物體受到的力。方向:豎直向下。
重力和質量關系:G=mg m=G/g
g=9.8牛/千克。讀法:9.8牛每千克,表示質量為1千克物體所受重力為9.8牛。
重心:重力的作用點叫做物體的重心。規則物體的重心在物體的幾何中心。
⒋二力平衡條件:作用在同一物體;兩力大小相等,方向相反;作用在一直線上。
物體在二力平衡下,可以靜止,也可以作勻速直線運動。
物體的平衡狀態是指物體處於靜止或勻速直線運動狀態。處於平衡狀態的物體所受外力的合力為零。
⒌同一直線二力合成:方向相同:合力F=F1+F2 ;合力方向與F1、F2方向相同;
方向相反:合力F=F1-F2,合力方向與大的力方向相同。
⒍相同條件下,滾動摩擦力比滑動摩擦力小得多。
滑動摩擦力與正壓力,接觸面材料性質和粗糙程度有關。【滑動摩擦、滾動摩擦、靜摩擦】
7.牛頓第一定律也稱為慣性定律其內容是:一切物體在不受外力作用時,總保持靜止或勻速直線運動狀態。 慣性:物體具有保持原來的靜止或勻速直線運動狀態的性質叫做慣性。
四、密度
⒈密度ρ:某種物質單位體積的質量,密度是物質的一種特性。
公式: m=ρV 國際單位:千克/米3 ,常用單位:克/厘米3,
關系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;
讀法:103千克每立方米,表示1立方米水的質量為103千克。
⒉密度測定:用托盤天平測質量,量筒測固體或液體的體積。
面積單位換算:
1厘米2=1×10-4米2,
1毫米2=1×10-6米2。
五、壓強
⒈壓強P:物體單位面積上受到的壓力叫做壓強。
壓力F:垂直作用在物體表面上的力,單位:牛(N)。
壓力產生的效果用壓強大小表示,跟壓力大小、受力面積大小有關。
壓強單位:牛/米2;專門名稱:帕斯卡(Pa)
公式: F=PS 【S:受力面積,兩物體接觸的公共部分;單位:米2。】
改變壓強大小方法:①減小壓力或增大受力面積,可以減小壓強;②增大壓力或減小受力面積,可以增大壓強。
⒉液體內部壓強:【測量液體內部壓強:使用液體壓強計(U型管壓強計)。】
產生原因:由於液體有重力,對容器底產生壓強;由於液體流動性,對器壁產生壓強。
規律:①同一深度處,各個方向上壓強大小相等②深度越大,壓強也越大③不同液體同一深度處,液體密度大的,壓強也大。 [深度h,液面到液體某點的豎直高度。]
公式:P=ρgh h:單位:米; ρ:千克/米3; g=9.8牛/千克。
⒊大氣壓強:大氣受到重力作用產生壓強,證明大氣壓存在且很大的是馬德堡半球實驗,測定大氣壓強數值的是托里拆利(義大利科學家)。托里拆利管傾斜後,水銀柱高度不變,長度變長。
1個標准大氣壓=76厘米水銀柱高=1.01×105帕=10.336米水柱高
測定大氣壓的儀器:氣壓計(水銀氣壓計、盒式氣壓計)。
大氣壓強隨高度變化規律:海拔越高,氣壓越小,即隨高度增加而減小,沸點也降低。
六、浮力
1.浮力及產生原因:浸在液體(或氣體)中的物體受到液體(或氣體)對它向上托的力叫浮力。方向:豎直向上;原因:液體對物體的上、下壓力差。
2.阿基米德原理:浸在液體里的物體受到向上的浮力,浮力大小等於物體排開液體所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物體排開液體的體積)
3.浮力計算公式:F浮=G-T=ρ液gV排=F上、下壓力差
4.當物體漂浮時:F浮=G物 且 ρ物<ρ液 當物體懸浮時:F浮=G物 且 ρ物=ρ液
當物體上浮時:F浮>G物 且 ρ物<ρ液 當物體下沉時:F浮<G物 且 ρ物>ρ液
七、簡單機械
⒈杠桿平衡條件:F1l1=F2l2。力臂:從支點到力的作用線的垂直距離
通過調節杠桿兩端螺母使杠桿處於水位置的目的:便於直接測定動力臂和阻力臂的長度。
定滑輪:相當於等臂杠桿,不能省力,但能改變用力的方向。
動滑輪:相當於動力臂是阻力臂2倍的杠桿,能省一半力,但不能改變用力方向。
⒉功:兩個必要因素:①作用在物體上的力;②物體在力方向上通過距離。W=FS 功的單位:焦耳
3.功率:物體在單位時間里所做的功。表示物體做功的快慢的物理量,即功率大的物體做功快。
W=Pt P的單位:瓦特; W的單位:焦耳; t的單位:秒。
八、光
⒈光的直線傳播:光在同一種均勻介質中是沿直線傳播的。小孔成像、影子、光斑是光的直線傳播現象。
光在真空中的速度最大為3×108米/秒=3×105千米/秒
⒉光的反射定律:一面二側三等大。【入射光線和法線間的夾角是入射角。反射光線和法線間夾角是反射角。】
平面鏡成像特點:虛像,等大,等距離,與鏡面對稱。物體在水中倒影是虛像屬光的反射現象。
⒊光的折射現象和規律: 看到水中筷子、魚的虛像是光的折射現象。
凸透鏡對光有會聚光線作用,凹透鏡對光有發散光線作用。 光的折射定律:一面二側三隨大四空大。
⒋凸透鏡成像規律:[U=f時不成像 U=2f時 V=2f成倒立等大的實像]
物距u 像距v 像的性質 光路圖 應用
u>2f f<v<2f 倒縮小實 照相機
f<u<2f v>2f 倒放大實 幻燈機
u<f 放大正虛 放大鏡
⒌凸透鏡成像實驗:將蠟燭、凸透鏡、光屏依次放在光具座上,使燭焰中心、凸透鏡中心、光屏中心在同一個高度上。
九、熱學:
⒈溫度t:表示物體的冷熱程度。【是一個狀態量。】
常用溫度計原理:根據液體熱脹冷縮性質。
溫度計與體溫計的不同點:①量程,②最小刻度,③玻璃泡、彎曲細管,④使用方法。
⒉熱傳遞條件:有溫度差。熱量:在熱傳遞過程中,物體吸收或放出熱的多少。【是過程量】
熱傳遞的方式:傳導(熱沿著物體傳遞)、對流(靠液體或氣體的流動實現熱傳遞)和輻射(高溫物體直接向外發射出熱)三種。
⒊汽化:物質從液態變成氣態的現象。方式:蒸發和沸騰,汽化要吸熱。
影響蒸發快慢因素:①液體溫度,②液體表面積,③液體表面空氣流動。蒸發有致冷作用。
⒋比熱容C:單位質量的某種物質,溫度升高1℃時吸收的熱量,叫做這種物質的比熱容。
比熱容是物質的特性之一,單位:焦/(千克℃) 常見物質中水的比熱容最大。
C水=4.2×103焦/(千克℃) 讀法:4.2×103焦耳每千克攝氏度。
物理含義:表示質量為1千克水溫度升高1℃吸收熱量為4.2×103焦。
⒌熱量計算:Q放=cm⊿t降 Q吸=cm⊿t升
Q與c、m、⊿t成正比,c、m、⊿t之間成反比。⊿t=Q/cm
6.內能:物體內所有分子的動能和分子勢能的總和。一切物體都有內能。內能單位:焦耳
物體的內能與物體的溫度有關。物體溫度升高,內能增大;溫度降低內能減小。
改變物體內能的方法:做功和熱傳遞(對改變物體內能是等效的)
7.能的轉化和守恆定律:能量即不會憑空產生,也不會憑空消失,它只會從一種形式轉化為其它形式,或者從一個物體轉移到另一個物體,而能的總量保持不變。
十、電路
⒈電路由電源、電鍵、用電器、導線等元件組成。要使電路中有持續電流,電路中必須有電源,且電路應閉合的。 電路有通路、斷路(開路)、電源和用電器短路等現象。
⒉容易導電的物質叫導體。如金屬、酸、鹼、鹽的水溶液。不容易導電的物質叫絕緣體。如木頭、玻璃等。
絕緣體在一定條件下可以轉化為導體。
⒊串、並聯電路的識別:串聯:電流不分叉,並聯:電流有分叉。
【把非標准電路圖轉化為標準的電路圖的方法:採用電流流徑法。】
十一、電流定律
⒈電量Q:電荷的多少叫電量,單位:庫侖。
電流I:1秒鍾內通過導體橫截面的電量叫做電流強度。 Q=It
電流單位:安培(A) 1安培=1000毫安 正電荷定向移動的方向規定為電流方向。
測量電流用電流表,串聯在電路中,並考慮量程適合。不允許把電流表直接接在電源兩端。
⒉電壓U:使電路中的自由電荷作定向移動形成電流的原因。電壓單位:伏特(V)。
測量電壓用電壓表(伏特表),並聯在電路(用電器、電源)兩端,並考慮量程適合。
⒊電阻R:導電物體對電流的阻礙作用。符號:R,單位:歐姆、千歐、兆歐。
電阻大小跟導線長度成正比,橫截面積成反比,還與材料有關。【 】
導體電阻不同,串聯在電路中時,電流相同(1∶1)。 導體電阻不同,並聯在電路中時,電壓相同(1:1)
⒋歐姆定律:公式:I=U/R U=IR R=U/I
導體中的電流強度跟導體兩端電壓成正比,跟導體的電阻成反比。
導體電阻R=U/I。對一確定的導體若電壓變化、電流也發生變化,但電阻值不變。
⒌串聯電路特點:
① I=I1=I2 ② U=U1+U2 ③ R=R1+R2 ④ U1/R1=U2/R2
電阻不同的兩導體串聯後,電阻較大的兩端電壓較大,兩端電壓較小的導體電阻較小。
例題:一隻標有「6V、3W」電燈,接到標有8伏電路中,如何聯接一個多大電阻,才能使小燈泡正常發光?
解:由於P=3瓦,U=6伏
∴I=P/U=3瓦/6伏=0.5安
由於總電壓8伏大於電燈額定電壓6伏,應串聯一隻電阻R2 如右圖,
因此U2=U-U1=8伏-6伏=2伏
∴R2=U2/I=2伏/0.5安=4歐。答:(略)
⒍並聯電路特點:
①U=U1=U2 ②I=I1+I2 ③1/R=1/R1+1/R2 或 ④I1R1=I2R2
電阻不同的兩導體並聯:電阻較大的通過的電流較小,通過電流較大的導體電阻小。
例:如圖R2=6歐,K斷開時安培表的示數為0.4安,K閉合時,A表示數為1.2安。求:①R1阻值 ②電源電壓 ③總電阻
已知:I=1.2安 I1=0.4安 R2=6歐
求:R1;U;R
解:∵R1、R2並聯
∴I2=I-I1=1.2安-0.4安=0.8安
根據歐姆定律U2=I2R2=0.8安×6歐=4.8伏
又∵R1、R2並聯 ∴U=U1=U2=4.8伏
∴R1=U1/I1=4.8伏/0.4安=12歐
∴R=U/I=4.8伏/1.2安=4歐 (或利用公式 計算總電阻) 答:(略)
十二、電能
⒈電功W:電流所做的功叫電功。電流作功過程就是電能轉化為其它形式的能。
公式:W=UQ W=UIt=U2t/R=I2Rt W=Pt 單位:W焦 U伏特 I安培 t秒 Q庫 P瓦特
⒉電功率P:電流在單位時間內所作的電功,表示電流作功的快慢。【電功率大的用電器電流作功快。】
公式:P=W/t P=UI (P=U2/R P=I2R) 單位:W焦 U伏特 I安培 t秒 Q庫 P瓦特
⒊電能表(瓦時計):測量用電器消耗電能的儀表。1度電=1千瓦時=1000瓦×3600秒=3.6×106焦耳
例:1度電可使二隻「220V、40W」電燈工作幾小時?
解 t=W/P=1千瓦時/(2×40瓦)=1000瓦時/80瓦=12.5小時
十三、磁
1.磁體、磁極【同名磁極互相排斥,異名磁極互相吸引】
物體能夠吸引鐵、鈷、鎳等物質的性質叫磁性。具有磁性的物質叫磁體。磁體的磁極總是成對出現的。
2.磁場:磁體周圍空間存在著一個對其它磁體發生作用的區域。
磁場的基本性質是對放入其中的磁體產生磁力的作用。
磁場方向:小磁針靜止時N極所指的方向就是該點的磁場方向。磁體周圍磁場用磁感線來表示。
地磁北極在地理南極附近,地磁南極在地理北極附近。
3.電流的磁場:奧斯特實驗表明電流周圍存在磁場。
通電螺線管對外相當於一個條形磁鐵。
通電螺線管中電流的方向與螺線管兩端極性的關系可以用右手螺旋定則來判定
一、 歐姆定律部分
1. I=U/R(歐姆定律:導體中的電流跟導體兩端電壓成正比,跟導體的電阻成反比)
2. I=I1=I2=…=In (串聯電路中電流的特點:電流處處相等)
3. U=U1+U2+…+Un (串聯電路中電壓的特點:串聯電路中,總電壓等於各部分電路兩端電壓之和)
4. I=I1+I2+…+In (並聯電路中電流的特點:幹路上的電流等於各支路電流之和)
5. U=U1=U2=…=Un (並聯電路中電壓的特點:各支路兩端電壓相等。都等於電源電壓)
6. R=R1+R2+…+Rn (串聯電路中電阻的特點:總電阻等於各部分電路電阻之和)
7. 1/R=1/R1+1/R2+…+1/Rn (並聯電路中電阻的特點:總電阻的倒數等於各並聯電阻的倒數之和)
8. R並= R/n(n個相同電阻並聯時求總電阻的公式)
9. R串=nR (n個相同電阻串聯時求總電阻的公式)
10. U1:U2=R1:R2 (串聯電路中電壓與電阻的關系:電壓之比等於它們所對應的電阻之比)
11. I1:I2=R2:R1 (並聯電路中電流與電阻的關系:電流之比等於它們所對應的電阻的反比)
二、 電功電功率部分
12.P=UI (經驗式,適合於任何電路)
13.P=W/t (定義式,適合於任何電路)
14.Q=I2Rt (焦耳定律,適合於任何電路)
15.P=P1+P2+…+Pn (適合於任何電路)
16.W=UIt (經驗式,適合於任何電路)
17. P=I2R (復合公式,只適合於純電阻電路)
18. P=U2/R (復合公式,只適合於純電阻電路)
19. W=Q (經驗式,只適合於純電阻電路。其中W是電流流過導體所做的功,Q是電流流過導體產生的熱)
20. W=I2Rt (復合公式,只適合於純電阻電路)
21. W=U2t/R (復合公式,只適合於純電阻電路)
22.P1:P2=U1:U2=R1:R2 (串聯電路中電功率與電壓、電阻的關系:串聯電路中,電功率之比等於它們所對應的電壓、電阻之比)
23.P1:P2=I1:I2=R2:R1 (並聯電路中電功率與電流、電阻的關系:並聯電路中,電功率之比等於它們所對應的電流之比、等於它們所對應電阻的反比)
物理量(單位) 公式 備注 公式的變形
速度V(m/S) v= S:路程/t:時間
重力G (N) G=mg m:質量
g:9.8N/kg或者10N/kg
密度ρ (kg/m3) ρ= m/v
m:質量
V:體積
合力F合 (N) 方向相同:F合=F1+F2
方向相反:F合=F1-F2 方向相反時,F1>F2
浮力F浮 (N) F浮=G物-G視 G視:物體在液體的重力
浮力F浮 (N) F浮=G物
此公式只適用 物體漂浮或懸浮
浮力F浮 (N) F浮=G排=m排g=ρ液gV排
G排:排開液體的重力
m排:排開液體的質量
ρ液:液體的密度
V排:排開液體的體積 (即浸入液體中的體積)
杠桿的平衡條件 F1L1= F2L2 F1:動力 L1:動力臂
F2:阻力 L2:阻力臂
定滑輪 F=G物
S=h F:繩子自由端受到的拉力
G物:物體的重力
S:繩子自由端移動的距離
h:物體升高的距離
動滑輪 F= (G物+G輪)/2
S=2 h G物:物體的重力
G輪:動滑輪的重力
滑輪組 F= (G物+G輪)
S=n h n:通過動滑輪繩子的段數
機械功W (J) W=Fs
F:力
s:在力的方向上移動的距離
有用功W有 =G物h
總功W總 W總=Fs 適用滑輪組豎直放置時
機械效率 η=W有/W總 ×100%
功率P (w) P= w/t
W:功
t:時間
壓強p (Pa) P= F/s
F:壓力
S:受力面積
液體壓強p (Pa) P=ρgh
ρ:液體的密度
h:深度(從液面到所求點的豎直距離)
熱量Q (J) Q=cm△t
c:物質的比熱容
m:質量
△t:溫度的變化值
燃料燃燒放出
的熱量Q(J) Q=mq m:質量
q:熱值
電磁波波速與波
長、頻率的關系 C=λν C:波速(電磁波的波速是不變的,等於3×108m/s)
λ:波長 ν:頻率
需要記住的幾個數值:
a.聲音在空氣中的傳播速度:340m/s b光在真空或空氣中的傳播速度:3×108m/s
c.水的密度:1.0×103kg/m3 d.水的比熱容:4.2×103J/(kgo℃)
e.一節干電池的電壓:1.5V f.家庭電路的電壓:220V
g.安全電壓:不高於36V
8. 物理學中的典型的理想模型有哪些/
勻速運動、勻變速直線運動、自由落體運動、簡諧振動、勻速圓周運動、平拋運動、彈性碰撞等等。
1、勻速運動
勻速運動只有勻速直線運動,但勻速圓周運動實際上是勻速率圓周運動或者是勻角速度運動,其加速度不為零,故勻速圓周運動不是勻速運動。
2、勻變速直線運動
其速度時間圖象是一條傾斜的直線,表示在任意相等的時間內速度的變化量都相同,即速度(v)的變化量與對應時間(t)的變化量之比保持不變(加速度不變)。
3、自由落體運動
源於地心引力,物體在只受重力作用下從相對靜止開始下落的運動叫做自由落體運動(其初速度為Vo=0m/s)譬如用手握住某種物體,不施加任何外力的理想條件下輕輕松開手後發生的物理現象。
4、質點沿圓周運動
因為物體作圓周運動時速率不變,但速度方向隨時發生變化。所以勻速圓周運動的線速度是每時每刻都在發生變化的。
5、平拋運動的物體
平拋運動是曲線運動,平拋運動的時間僅與拋出點的豎直高度有關;物體落地的水平位移與時間(豎直高度)及水平初速度有關,其速度變化的方向始終是豎直向下的。
9. 物理中指的理想狀態是什麼。
理想狀態
理想狀態是自然科學里表示理論上可以達到而實際上因為種種原因不能達到的狀態。例如牛頓第一定律,它是一個理想狀態,但是實際上因為摩擦,它無法真正做出來。理想狀態達到的理想效果是不能用實際的實驗或操作證明的。它只能用理論或近似實驗證明。 上面的資料來自網路。 其實,物理中針對不同問題,為了簡化實際問題,而得到符合實際規律的理論結論,提出了針對於該問題的適當假設,例如理想氣體狀態方程,其就是忽略了分子間的作用力合分子自身的體積,從而得出普遍使用的公式,當然是在一定條件下才能使用,組如此類的還有很多。。。實際就是為了分析方便,至於要精確得出解,要對其進行修正。