導航:首頁 > 物理學科 > 應用物理考研方向有哪些

應用物理考研方向有哪些

發布時間:2023-01-17 15:35:47

1. 物理學的將來考研都可以考哪些專業呢

考研可以考任何專業,只要你考得上。
只能說你是學物理的,考什麼專業最具有優勢,最具有競爭力。物理學可以就考物理學方面的專業,如,量子物理,
核物理
等,或者稍微轉一點,根據自己的興趣和以後想發展的領域,考工程方面的專業也比較有優勢,如,工程管理,
管理科學與工程
,預算管理等等O(∩_∩)O~

2. 應用物理學考研方向及其前景

新金屬材料物理專業方向:培養從事金屬及合金的物理、力學、化學性能及其理論研究,新型結構及功能材料探索和研製,金屬材料的熱處理及表面改性研究與開發等方面的專門人才。


應用物理學是中國普通高等學校本科專業,屬物理學類專業,基本修業年限為四年,授予理學學士學位。

該專業以物理學為主要內容,了解物理的理論前沿、應用前景和最新發展動態以及相關高新技術的發展狀況,掌握物理理論以及相關的工程技術知識,進行基礎研究和應用技術方面的科學思維和科學實驗訓練。

在十九世紀末二十世紀初,隨著物理學的不斷發展,核技術的逐步崛起,此時應用物理作為一個領域從整體物理中被專門挑選出來,相對於更加註重結合數學的理論研究的物理專業而言,應用物理更注重理論在現實生活中的實際運用。

確立了應用物理的地位,表明了對應用物理態度的改變。是應用物理正式走向專業化的標志。在 20世紀以來應用物理在航空航天、電子電信、聲、光等基礎開發和應用中取得了巨大成就。

3. 物理考研方向有什麼

物理學專業考研方向有以下幾點:

1、凝聚態物理 :

凝聚態物理(學科代碼:070205)是物理學之下的一個二級學科。凝聚態物理是從微觀角度出發,研究由大量粒子(原子、分子、離子、電子)組成的凝聚態的結構、動力學過程及其與宏觀物理性質之間的聯系的一門學科。凝聚態物理是以固體物理為基礎的外向延拓。

3、原子與分子物理

原子與分子物理(學科代碼:070203)是一級學科物理學下的二級學科。它是研究原子分子結構、性質、相互作用、運動規律及其與周圍環境相互作用的一門科學。原子與分子物理學是一門基礎學科,它為現代科學各分支學科提供基礎理論、實驗方法和基本數據,是許多研究領域的基礎,原子與分子是組成物質的基本結構單元。

4、理論物理

理論物理(學科代碼:070201)是物理學下設的二級學科之一。理論物理是從理論上探索自然界未知的物質結構、相互作用和物質運動的基本規律的一門學科。其研究領域涉及粒子物理與原子核物理、統計物理、凝聚態物理、宇宙學等,幾乎包括物理學所有分支的基本理論問題,它將推動整個物理學乃至自然科學向前發展。

4. 應用物理學專業考研方向

看你考哪個方向?
1.光電方向,應該有光學(當然激光方向,最好了),
2.材料物理,應該量子力學
3.理論物理,應該數學物理方法,理論力學
4.半導體物理,我感覺這個比較熱門.
我不全知道,你要考哪個學校,你就他那個學校網站去查,考研規定比較嚴,你不光要知道,考哪些專業課,還要知道要考得專業課教材是那裡出的,那一版,都要搞清楚.

5. 應用物理學考研大多數學生考什麼專業

應用物理學考研大多數學生考的專業有會計類、金融類、法學、電子科學與技術、電氣工程。
應用物理學本專業主要培養掌握物理學基本理論與方法,具有良好的數學基礎和基本實驗技能,掌握電子技術、計算機技術、光纖通信技術、生物醫學物理等方面的應用基礎知識、基本實驗方法和技術,能在物理學、郵電通信、航空航天、能源開發、計算機技術及應用、光電子技術、醫療保健、自動控制等相關高校技術領域從事科研、教學、技術開發與應用、管理等工作的高級專門人才。

6. 應用物理學的考研方向有哪些

本科應用物理,考研方向選擇。
如果考研選擇進入企業,本科應用物理專業需要跨專業,主要考研計算機類(各專業包括計算機科學與技術,計算機系統結構,計算機軟體與理論,計算機應用技術,信息安全)>通信大類(信息與通信工程,電子與通信工程,通信與信息系統),電氣工程>無線電物理>電磁場與微波技術>微電子與固體電子學>電子科學與技術,光學工程,光電信息工程>物理電子學>電子信息材料與元器件>材料加工工程>材料物理與化學,材料學,納米科學與技術,應用數學等。
如果選擇搞科研的話,研究生方向選擇則變得非常簡單,僅僅需要考慮興趣問題就行了,只是在選擇學校和導師上尤為重要。如果真正喜歡物理,並且有理想和抱負,那就選擇搞科研方向。
搞科研又主要分為兩個方向,一個是技術研究,一個就是理論研究。
1、技術研究(應用物理)做技術研究的就是研究應用物理的,不僅需要做理論研究還需要具備一定的工程基礎。它有以下特點:
(1)此方向需要重在創新研究,即通過基礎理論研究提出新技術,新理念。
例如拓撲絕緣技術,光纖激光器理念,超空泡技術,太赫茲技術,納米電子技術等等
(2)多為交叉性研究,涉及物理學各個方面,例如不僅需要普通物理知識基礎(如力學,光學,熱學,電磁學或者原子物理)還需要理論物理的基本素養,例如量子力學,固體物理,半導體技術和激光原理等等。此外還需要掌握許多工程技術,例如基本相關軟體應用,相關測量手段,相關產品規格,基本實驗素養。
(3)與生活戚戚相關,與國家戰略需求緊密相關,說白了就是一種為國家或
者人類生活便利做貢獻的學科方向。
2、理論研究做理論研究的,一般比較適合研究純理論的人,它適合以下人群的選擇:
(1)數學素養要求較高,例如群論,運算元,復變函數和數學物理方程
(2)需要有自己的哲學宇宙觀,這個非常重要。

7. 應用物理學跨專業考研,都能有哪些方向

物理專業考研方向

理論物理
主要研究方向
1、高溫超導體機理、BEC理論及自旋電子學相關理論研究。
2、凝聚態理論;
3、原子分子物理、量子光學和量子信息理論;
4、統計物理和數學物理。
5、凝聚態物理理論、計算材料、納米物理理論
6、自旋電子學,Kondo效應。
7、凝聚態理論、第一原理計算、材料物性的大規模量子模擬。
8、玻色-愛因斯坦凝聚, 分子磁體, 表面物理,量子混沌。
凝聚態物理
主要研究方向
1、非常規超導電性機理,混合態特性和磁通動力學。
(1)高溫超導體輸運性質,超導對稱性和基態特性研究。
(2)超導體單電子隧道譜和Andreev反射研究。
(3)新型Mott絕緣體金屬-絕緣基態相變和可能超導電性探索。
(4)超導體磁通動力學和渦旋態相圖研究。
(5)新型超導體的合成方法、晶體結構和超導電性研究。
2、高溫超導體電子態和異質結物理性質研究
(1)高溫超導體和相關氧化物功能材料薄膜和異質結的生長的研究。
(2)鐵電體極化場對高溫超導體輸運性質和超導電性的影響的研究。
(3)高溫超導體和超大磁電阻材料異質結界面自旋極化電子隧道效應的研究。
(4)強關聯電子體系遠紅外物性的研究。
3、新型超導材料和機制探索
(1)銅氧化合物超導機理的實驗研究
(2)探索電子—激子相互作用超導體的可能性
(3)高溫超導單晶的紅外浮區法制備與物理性質研究
4、氧化物超導和新型功能薄膜的物理及應用研究
(1)超導/介電異質薄膜的制備及物性應用研究
(2)超導及氧化物薄膜生長和實時RHEED觀察
(3)超導量子器件的研究和應用
(4)用於超導微波器件的大面積超導薄膜的研製
5、超導體微波電動力學性質,超導微波器件及應用。
6、原子尺度上表面納米結構的形成機理及其輸運性質
(1)表面生長的動力學理論;
(2)表面吸附小系統(生物分子,水和金屬團簇)原子和電子結構的第一性原理計算;
(3)低維體系的電子結構和量子輸運特性 (如自旋調控、新型量子尺寸效應等)。.

7、III-V族化合物半導體材料及其低維量子結構制備和新型器件探索
(1)寬禁帶化合物(In/Ga/AlN,ZnMgO)半導體及其低維量子結構生長、物性、微結構以及相互關系的研究,寬禁帶化合物半導體新型微電子、光電子器件探索;
(2)砷化鎵基、磷化銦基新型低維異質結材料的設計、生長、物性研究及其新型微電子/光電子器件探索;
(3)SiGe/Si應變層異質結材料的制備及物性研究。
8、新穎能源和電子材料薄膜生長、物性和器件物理
(1)納米太陽能轉換材料制備和器件研製;
(2)納米金剛石薄膜、碳氮納米管/硼碳氮納米管的CVD、PVD制備和場發射及發光性質研究;
(3)負電親和勢材料的探索與應用研究;
(4)納米硅基發光材料的制備與物性研究;
(5)有序氧化物薄膜制備和催化性質。
9、低維納米結構的控制生長與量子效應
(1)極低溫強磁場雙探針掃描隧道顯微學和自旋極化掃描隧道顯微學;
(2)半導體/金屬量子點/線的外延生長和原子尺度控制;
(3)低維納米結構的輸運和量子效應;
(4)半導體自旋電子學和量子計算;
(5)生物、有機分子自組裝現象、單分子化學反應和納米催化。
10、生物分子界面、激發態及動力學過程的理論研究
(1)生物分子體系內部以及生物分子-固體界面(主要包括氧化物表面、模擬的細胞表面和離子通道結構)的相互作用的第一原理計算和經典分子動力學模擬;
(2)界面的幾何結構、電子結構、輸運性質及對生物特性的影響;
(3)納米結構的低能激發態、光吸收譜、電子的激發、馳豫和輸運過程的研究,電子-原子間的能量轉換和耗散以及飛秒到皮秒時段的含時動力學過程的研究。
11、表面和界面物理
(1)表面原子結構、電子結構和表面振動;
(2)表面原子過程和界面形成過程;
(3)表面重構和相變;
(4)表面吸附和脫附;
(5)表面科學研究的新方法/技術探索。
12、自旋電子學;
13、磁性納米結構研究;
14、新型稀土磁性功能材料的結構與物性研究;
15、磁性氧化物的結構與物性研究;

16、磁性物質中的超精細相互作用;
17、凝聚態物質中結構與動態的中子散射研究;
18、智能磁性材料和金屬間化合物單晶的物性研究;
19、分子磁性研究;
20、磁性理論。
21、納米材料和介觀物理
研究內容:
發展納米碳管及其它一維納米材料陣列體系的制備方法;模板生長和可控生長機理研究;界面結構,譜學分析和物性研究;納米電子學材料的設計、制備,納米電子學基本單元器件物理。
22、無機材料的晶體結構,相變和結構-性能的關系
研究內容:
在材料相圖相變研究的基礎上,探索合成新型功能材料,為先進材料的合成和性能優化提供科學依據;在晶體結構測定的基礎上,探討材料結構-性能之間的內在聯系,從晶體結構的微觀角度闡明先進材料物理性質的機制,設計合成具有特定功能性結構單元的新型功能材料;發展和完善粉末衍射結構分析方法。
23、電子顯微學理論與顯微學方法
研究內容:
電子晶體學圖像處理理論和方法研究,微小晶體、准晶體的結構測定;系統發展表面電子衍射及成像的理論和實驗方法,彈性與非彈性動力學電子衍射的一般理論,高能電子衍射的張量理論,動力學電子衍射數據的求逆方法。
24、高分辨電子顯微學在材料科學中的應用
研究內容:
利用高分辨、電子能量損失譜、電子全息等電子顯微分析方法,研究金屬/半導體納米線的生長機制及結構與性能間的關系;復雜晶體結構中新型缺陷研究;結合其他物理方法,研究巨磁電阻、隧道結、半導體量子阱/點等薄膜材料的顯微結構及其對物理性能的影響;低維材料界面勢場的測量及與物理性能的相互關系;磁性材料中磁疇結構、各向異性場與波紋磁疇測定。
25、強關聯系統微觀結構,電子相分離和軌道有序化研究
研究內容:高溫超導體的結構分析;強關聯系統的電子條紋相和電子相分離研究;電荷有序化和JT效應;探索低溫LORENTZ電子顯微術,電子全息和EELS 在非常規電子態系統的應用。

閱讀全文

與應用物理考研方向有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1370
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017