㈠ 高一物理中的逐差法公式是什麼,如果可以,講解一下步驟【不用很詳細】
逐差法求加速度a:a=[(x4+x5+x6)-(x1+x2+x3)]/9T²
求瞬時速度,比如3T時刻:V3=(X3+X4)/2T
在高中物理「求勻變速直線運動物體的加速度」實驗中分析紙帶。
運用公式△X=at^2;X3-X1=X4-X2=Xm-Xm-2
當時間間隔T相等時,假設測得 X1,X2,X3,X4四段距離,那麼加速度:a=【(X4-X2)+(X3-X1)】/2×2T2
(1)高一物理加速度用逐差法怎麼算擴展閱讀:
逐差法是為提高實驗數據的利用率,減小了隨機誤差的影響,另外也可減小了實驗中儀器誤差分量,因此是一種常用的數據處理方法。逐差法是針對自變數等量變化,因變數也做等量變化時,所測得有序數據等間隔相減後取其逐差平均值得到的結果。
其優點是充分利用了測量數據,具有對數據取平均的效果,可及時發現差錯或數據的分布規律,及時糾正或及時總結數據規律。
加速度的大小等於單位時間內速度的改變數;加速度的方向與速度變化量ΔV方向始終相同。特別,在直線運動中,如果加速度的方向與速度相同,速度增加;加速度的方向與速度相反,速度減小。
加速度等於對速度時間的一階導數,等於位移對時間的二階導數。
㈡ 高一物理中的計算加速度的逐差法怎麼用的,詳細
逐差法
當實驗中、兩物理量滿足正比關系時,依次記錄改變相同的量時的值:x1,x2…xn(或者當某一研究對象隨實驗條件周期性變化時,依次記錄研究對象達到某一條件(如峰值、固定相位等)時的值x1,x2…xn:),的間隔周期的求解方法若由x1,x2…xn逐項逐差再求平均:
其中只利用了和,難以發揮多次測量取平均以減小隨機誤差的作用,此時應採用隔項逐差法(簡稱逐差法)處理數據。
逐差法處理數據時,先把數據分為兩組,然後第二組的與第一組相應的 相減,如下表:
n 第一組 第二組 逐差 處理結果 不確定度分析
n為偶數時,每組 個
對,和均含有,則方和根合成有
可採用下式粗略估算不確定度
n為奇數時,可以任意舍掉第一個數據或最後一個數據或正中間的一個數據,再按以上方法處理。但要注意舍掉正中間的數據時兩組相應數據之間的實際間隔大小。
逐差法處理數據舉例:
外加砝碼下,彈簧伸長到的位置記錄如下表,可用逐差法求得每加一個1kg的砝碼時彈簧的平均伸長量(滿足前提條件:彈簧在彈性范圍內伸長,伸長量與外加力成正比),也可求得彈簧的倔強系數。已知測量時,估算(見下表)。
實驗數據 數 據 處 理
處理結果:
1 1.00 2.00 7.90
2 2.00 4.01 7.92
3 3.00 6.05 7.80
4 4.00 7.95 7.87
5 5.00 9.90
6 6.00 11.93
7 7.00 13.85
8 8.00 15.82
逐差法提高了實驗數據的利用率,減小了隨機誤差的影響,另外也可減小中儀器誤差分量,因此是一種常用的數據處理方法。
有時為了適當加大逐差結果為個周期,但並不需要逐差出個數據,可以連續測量 n個數據後,空出若干數據不記錄,到時,再連續記錄 n個數據,對所得兩組數據進行逐差可得:
,不確定度可簡化由:來估算。
嚴格地講以上介紹的一次逐差法理論上適用於一次多項式的系數求解,要求自變數等間隔地變化。有時在物理實驗中可能會遇到用二次逐差法、三次逐差法求解二次多項式、三次多項式的系數等,可參考有關書籍作進一步的了解