㈠ 物理學分為哪些類我要全面的
理學門類是十二大學科門類之一,理學門類下共有 數學類、物理學類、化學類、天文學類、地理科學類、大氣科學類、海洋科學類、地球物理學類、地質學類、生物科學類、心理學類、統計學類十二個專業類,
其中物理學類下設六個專業,分別是:物理學、應用物理學、核物理、聲學、系統科學與工程、量子信息科學。
一、物理學
專業代碼:070201 | 男女比例:56:44
1、什麼是物理學專業?
物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。
2、發展前景
考研方向
物理學畢業生主要的考研方向有理論物理、粒子物理與原子核物理、原子與分子物理、等離子體物理、凝聚態物理、聲學、光學、無線電物理,以及與物理學相關的例如天體物理、化學物理、生物物理、大氣物理海洋物理、地球物理等 。
就業方向
物理學就業與大多基礎性專業相同,主要在高校、國防部門、科研機構等從事教學研究及相關科研管理工作。中國有很多與物理相關的研究所,如中國科學院高能物理研究所、理論物理研究所、近代物理研究所、等離子體物理研究所、國家空間科學中心等。
二、應用物理學
專業代碼:070202 | 男女比例:77:23
1、什麼是應用物理學專業?
該專業以物理學為主要內容,了解物理的理論前沿、應用前景和最新發展動態以及相關高新技術的發展狀況,掌握物理理論以及相關的工程技術知識,進行基礎研究和應用技術方面的科學思維和科學實驗訓練。
2、發展前景
人才需求
應用物理學旨在培養能在大中型高新技術產業、公司、科研單位、高等院校從事科研、開發、教學和管理工作的高級應用型人才;具有向不同領域發展的潛力和素質,特別是在交叉學科的進一步深造方面具有優勢的人才。
考研方向
應用物理學本科專業的學生,可報考物理學、理論物理、凝聚態物理、光學等碩士專業。
就業方向
應用物理學本科專業畢業人員從業方向包括事業單位人員、高中教師、公務員、軟體工程師、初中教師、科研人員、硬體工程師、大學教師、通信技術工程師等崗位。
三、核物理
專業代碼:070203 | 男女比例:88:12
1、專業定義
核物理主要研究原子核的結構和變化規律以及同核能、核技術應用有關的物理問題,包含原子核、同位素、離子束、核射線等。常見的核電站、核武器、核輻射,醫療中的核磁共振都是基於核物理的知識。其中,同位素的應用是核技術應用中最廣泛的領域,包括同位素示蹤、同位素葯劑、同位素儀表等。
2、發展前景
就業方向
技術類企業:核器件研發、核能源開發、放射治療、同位素應用、工程技術; 政府、事業單位:核磁、核電、核能源。
考研方向
粒子物理與原子核物理、理論物理、物理學、凝聚態物理。
四、聲學
專業代碼:070204T | 男女比例:77:23
1、什麼是聲學專業?
聲學(Acoustics)是一門跨層次的基礎性學科,研究從微觀到宏觀、從次聲(長波)到超聲(短波)的一切形式的線性與非線性機械波現象。同時,現代聲學具有極強的交叉性與延伸性,它與現代科學技術的大部分學科發生了交叉,形成了一系列諸如次聲學、醫學聲學、生物聲學、海洋聲學、環境聲學等新型獨特的交叉學科方向,在現代科學技術中起著舉足輕重的作用。現代聲學更是一門具有廣泛應用性的學科,對當代科學技術的發展、社會經濟的進步、國防事業的現代化、以及人民物質與精神生活的改善與提高中發揮著極其重要、甚至不可替代的作用。
2、發展前景
在當前大學生就業形勢嚴峻的背景下,畢業生的深造比例達50%以上。超過60%的畢業生繼續深造,畢業生一次性就業率長期保持在100%以上。
就業趨勢是:碩士49%去外企,23%去高科技企業,9%去國企,其他去企業、攻博、出國等。
從就業走向來看基本上在北京等大城市就業。
就業方向
聲學的就業方向是:高等院校、科研院所和高科技公司。主要從事音箱工程,建築聲學,次聲/可聽聲/超聲電子器件,醫療儀器,以及IT行業等領域相關的各類工作。
五、系統科學與工程
專業代碼:070205T | 男女比例:--
1、專業定義
系統科學與工程主要研究系統科學、決策管理、控制系統、計算系統等方面的理論和知識,培養具有系統分析與設計、研究與開發、管理與決策基本能力,能夠與國際接軌、有知識創新能力的高級工程技術人才和管理人才。例如:在自動化系統、網路與通信、生產系統、金融經濟、社會管理等寬廣領域從事系統建模、分析、控制、設計、研究、開發、運行等。
2、發展前景
就業方向
企事業單位:系統分析、設計、科學研究開發、管理決策、設計規劃 高校:教學、科研。
六、量子信息科學
專業代碼:070206T | 男女比例:--
2021年,量子信息科學列入普通高等學校本科專業目錄的新專業名單。
什麼樣的人適合學習物理學類專業?
1、思維謹慎;
2、邏輯能力強;
(內容源於網路)
㈡ 物理學分支有哪些
物理學大可以分為六個大類:力學、光學、聲學、電磁學、量子物理學、固體物理學。
1.力學(力學作為物理學發展的最重要模塊,其分支也是最為龐大的)
靜力學 動力學 流體力學 分析力學 運動學 固體力學 材料力學 復合材料力學 流變學 結構力學 彈性力學 塑性力學 爆炸力學 磁流體力學 空氣動力學 理性力學 物理力學 天體力學 生物力學 計算力學 熱學 熱力學
2.光學
幾何光學 波動光學 大氣光學 海洋光學 量子光學 光譜學 生理光學 電子光學 集成光學 空間光學
3.聲學
次聲學 超聲學 電聲學 大氣聲學 音樂聲學 語言聲學 建築聲學 生理聲學 生物聲學 水聲學
4.電磁學
磁學 電學 電動力學
5.量子物理學
量子力學 核物理學 高能物理學 原子物理學 分子物理學
6.固體物理學
高壓物理學 金屬物理學 表面物理學
此外,物質的各種存在形式和運動形式之間普遍存在著聯系。隨著學科的發展,這種聯系逐步顯示出來。物理學也和其他學科相互滲透,產生一系列交叉學科,如:化學物理、生物物理、大氣物理、海洋物理、地球物理、天體物理等等。
數學對物理學的發展起了重要的作用,反過來物理學也促進數學的發展。在物理學的基礎性研究過程中,形成和發展出來的基本概念、基本理論、基本實施手段和精密的測試方法,已成為其他許多學科的重要組成部分,並產生了良好的效果。這對於天文學、化學、生物學、地學、醫學、農業科學都是如此。
物理學研究的重大突破導致生產技術的飛躍已經是歷史事實。反過來,發展技術和生產力的要求,也有力地推動物理學研究的發展,固體物理、原子核物理、等離子體物理、激光研究、現代宇宙學等之所以迅速發展,是和技術及生產力發展的要求分不開的。
㈢ 物理學專業課程有哪些
物理學專業課程有高等數學、力學、熱學、光學、電磁學、原子物理學、數學物理方法、理論力學、熱力學與統計物理、電動力學、量子力學、固體物理學、結構和物性、計算物理學入門等。
我國每年培養本科應用物理專業人才約12000人。和該專業存在交叉的專業包括物理專業,工程物理專業,半導體和材料專業等。人才需求方面,我國對應用物理專業的人才需求仍舊是供不應求。目前,很多物理研究的課題仍舊是基礎性的,往往需要大量 的政府的政策性投入,難以實現產業化,這對於打算畢業後從事應用物理研究的人員來說,是應該做好思想准備的。
但是近年來,隨著科學發展速度的增快,很多物理行業研究出的前沿技術很快便得到了應用,例如中微子通信,就是目前熱門課題之一。隨著現在學科交叉與學科細分現象的日益明顯,知識的更新程度非常快。像應用物理這樣基礎性專業的人才,由於其可塑性強,基礎知識扎實,反而越來越能得到各個行業的重視。
㈣ 物理九大基本學科
力學
聲學
熱學
分子物理學
電磁學
光學
原子物理學
原子核物理學
固體物理學
物理學是研究物質的結構、相互作用和運動規律以及它們的各種實際應用的科學.它是自然科學的基礎,是近代科學技術的主要源泉.
物理學是一門基礎學科.在物理學研究過程中形成和發展起來的基本概念、基本理論、基本實驗手段和精密測量方法,不但成為其它學科諸如天文學、化學、生物學、地學、醫學、農業科學和計量學等學科的組成部分,還推動了這些學科的發展.物理學還與其它學科相互滲透,產生了一系列交叉學科,如化學物理、生物物理、大氣物理、海洋物理、地球物理、天體物理等.
物理學也是各種技術學科和工程學科的共同基礎.在近代物理發展的基礎上,產生了許多新的技術學科,如核能與其它能源技術,半導體電子技術,材料科學等,從而有力的促進了生產技術的發展和變革.19世紀以來,人類歷史上的四次產業革命和工業革命都是以對物理某些領域的基本規律認識的突破為前提的.當代,物理學科研究的突破不斷導致各種高新技術的產生和發展,從而在近代物理學與許多高科技學科之間形成一片相互交疊的基礎性研究與應用性研究相結合的寬廣領域.物理學科與技術學科各自根據自身的特點,從不同的角度對這些領域的研究,既促進了物理學的發展和應用,又促進了高科技的發展和提高.
通常根據研究的物質運動形態和具體對象不同,物理學可主要分為如下幾個二級學科:理論物理、粒子物理與原子核物理、原子與分子物理、凝聚態物理、等離子體物理、聲學、光學以及無線電物理,本專業的主要涉及光學、凝聚態物理和理論物理三個二級學科十學科方向.
主要研究方向及其內容:
1.光信息存儲與顯示(光學)
X射線影像存儲材料和電子俘獲光存儲材料的制備、性能、存儲機理及其應用的研究;有機、無機電致發光材料的制備、傳輸機制、激發態過程的機理及其顯示器件的研究.
2.光電子材料與器件物理(光學)
研究稀土發光、半導體發光、陰極射線發光、高能射線發光、上轉換發光、長余輝發光、白光LED照明、無汞熒光燈、光學薄膜基本設計、超聲、光存儲、有機發光、載流子傳輸材料、有機光致發光和電致發光材料等的制備;研究光致發光和電致發光機理、載流子傳輸機制等;研究發光二極體、無機有機薄膜電致發光器件、厚膜交/直流驅動軟屏、電子油墨(或電子紙)、光電探測器等光電子器件;研究這些材料和器件的新技術和新工藝以及它們的應用.
3.激光與光電檢測技術(光學)
主要研究各種激光與光電檢測方法、技術及其應用,包括激光干涉測量技術、光電感測技術、激光超聲技術、激光多普勒振動檢測技術、紅外檢測技術、激光掃描測量技術及微納米測量技術等.此外常規的無損檢測手段中光電技術的使用也是本領域的研究內容之一.
4.光信息傳輸與光信號處理(光學)
研究光在各種光纖和各種光波導中的傳輸特性,以及由它們構成的光纖通信系統與光纖感測系統.包括導波光學、非線性光纖光學、光纖通信系統;以及利用光纖構成的感測系統,比如電壓、電流、氣體等感測器和智能蒙皮、分布感測系統、生物光纖感測器等.並涉及到全光網路、全光信號處理等方面的研究課題.
5.光物理(光學)
本研究方向在激光與原子、分子、團簇及凝聚態物質的相互作用、光學超快現象、光與生物體相互作用和THZ光的理論和應用等前沿課題上開展深入系統的研究.研究領域涉及激光與物質的相互作用及其用於激光探測等基礎研究和應用基礎研究,希望在非線性光學、激光與原子分子相互作用、OCT、超快光物理、有機聚合物的光子學和THz物理等研究方面取得突破性的進展,開拓和發展若干新的研究方向,為國家經濟建設服務.
6.稀土物理(凝聚態物理)
本方向研究凝聚態物質中稀土離子的能級和激發態過程.當前研究的主要方向是稀土離子高能激發態的結構,輻射躍遷,無輻射躍遷,電子--聲子偶合,組合混雜,真空紫外激發的稀土發光材料中的物理問題.
7.納米結構與低維物理(凝聚態物理)
低維體系是研究小空間尺度的新的物理效應,已成為凝聚態物理最活躍和最富有生命力的重要前言領域之一,它與物理、化學、生物、醫葯學、材料、電子學、光電子學、磁學、能源和環境等多學科交叉,該體系的能帶可人工剪裁性、表面界面效應、量子尺寸效應、隧穿效應等賦予它許多原來三維固體不具備的、內涵豐富而深刻的新現象、新效應、新規律,並廣泛地被用來開發具有新原理、新結構的固態電子、光電子器件.
8.固體發光(凝聚態物理)
固體發光是固體光學的一個重要組成部分,它是物體將吸收的能量轉化為光輻射的過程.它主要包括:光致發光、陰極射線發光、高能射線發光、電致發光和生物發光等.固體發光有很多重要的應用,例如:照明光源、陰極射線等各種發光顯示器、高密度光存儲材料、核輻射探測等.近年來固體光學又有很多新的發展,諸如有機電致發光、多孔硅、低維體系、量子剪裁等.本研究方向瞄準學科前沿,主要開展了無機及有機電致發光材料及機理、發光存儲材料及機理、上轉換材料及機理等諸多有特色的研究工作.
9.數學物理與計算物理(理論物理)
數學物理學是以研究物理問題為目標的數學理論和數學方法.它探討物理現象的數學模型,即尋求物理現象的數學描述和詮釋和.從二十世紀開始,由於物理學內容的更新,數學物理也有了新的面貌.伴隨著對電磁理論,量子理論和引力場的深入研究,人們的時空觀念發生了根本的變化,數學物理成為研究物理現象的有力工具.隨著電子計算機的發展,數學物理中的許多問題可以通過數值計算來解決,由此發展起來的計算物理都發揮著越來越大的作用.計算機直接模擬物理模型也成為重要的方法.本研究方向主要研究廣義相對論和宇宙學,數學物理的幾何結構,大型物理體系的數值計算和並行演算法等.
10.凝聚態理論(理論物理)
理論物理的一個重要分支是凝聚態物理中的量子多體理論,它是應用現代多體理論和量子場論研究凝聚態物理中的新現象、揭示新現象中的物理本質.當前研究的主要方向:計算凝聚態物理,強關聯電子系統和介觀體系中的物理問題,低維量子系統中的電聲相互作用,凝聚物質中的量子輸運理論,以及非費米液體、自旋輸運和Mott相變等.
㈤ 物理學里都有什麼學科
通常物理學分為力學、聲學、光學、電磁學、分子原理、原子原理、原子核物理等。
力學研究的是物體的機械運動規律;
聲學研究聲波的產生、傳播、接收和作用等問題。
熱學研究分子、原子、電子、光子等質點做不規則運動所引起的熱現象極其熱運動的的規律;
電磁學研究電和磁現象及其電流、電磁輻射、電磁場等;
光學研究光的本性,光的發射、傳播和接收的規律,光和其他物質的互相作用(如光的吸收、散射,光的機械作用和光的熱、電、化學效應等)及其應用。
分子物理學則是依據分子的結構.分子間互作用力和分子運動的性質,研究物質的性質和狀態;
原子物理是研究原子結構及其原子中發生的運動;
原子核物理是研究原子核的結構.性質和變化的規律。
物理學的分類不是固定不變的,隨著科學的發展,人們對物理現象的認識不斷深入,它上午分類不斷變化,分得越來越細。
㈥ 物理學中有哪些學科
牛頓力學
與理論力學
電磁學
與電動力學
熱力學
與統計力學
相對論
量子力學
粒子物理學
、
原子核物理學
、原子與分子物理學、
固體物理學
、
凝聚態物理學
、
激光物理學
、
等離子體物理學
、
地球物理學
、
生物物理學
、
天體物理學
等等。
㈦ 物理系分為哪些專業
考生在填報志願時經常會出現選定了大致方向,卻不知道這一類都有哪些專業。那麼物理學類都有哪些專業?
物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。
應用物理學、物理學、理論物理、微電子、凝聚態、純理論研究、核物理、生物物理、粒子物理、微電子學、固體電子學、物理電子學、應用物理、光學等專業。
物理學研究的領域可分為下列四大方面:
1、凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。
2、原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。
3、高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。
據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。現正尋找中。
4、天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。