❶ 物理學中,經常用的科學方法有哪些
1
.控制變數法:
定義:在研究一個量與多個因素關系時,將一些因素固定不變,分別只研究該量
與一個因素的關系,從而使問題簡化。
2
)舉例:研究電流與電壓、電阻關系時,先將電阻固定不變,研究電流與電壓的關
系,然後再將電壓固定不變,研究電流與電阻的關系。
2
.轉換法:
(
1
)定義:將看不見、摸不著、不便於研究的問題或因素,轉換成看得見、摸得著、
便於研究的問題或因素。
(
2
)舉例:磁場看不見,我們撒上鐵粉,通過鐵粉的有序排列「看見」磁場並進行研
究。
3
.放大法:
(
1
)定義:放大、擴大、變大或增加某些因素使問題更容易解決。許多情況下可以認
為這是一種特殊的轉換法。
(
2
)舉例:將帶有細玻璃管的塞子插到裝滿水的瓶口,顯示玻璃瓶的微小形變。
4
.換元法(替代法):
(
1
)定義:換元法就是運用替換或代換的方法去進行創造的方法。
(
2
)舉例:研究平面鏡成像時,用平面玻璃代替平面鏡進行研究。研究透鏡時,用冰
塊去代替玻璃製作簡易的透鏡。
5
.等效法:
(
1
)定義:兩種現象在效果上一樣,因此可以進行相互替代。可以認為這是一種特殊
的替代法。
(
2
)舉例:做功和熱傳遞在改變物體內能上是等效的。
6
.分類法:
(
1
)定義:將許多東西根據一定的規則進行分組。
(
2
)舉例:將汽化現象分為蒸發、沸騰兩類。
7
.比較法:
(
1
)定義:找到兩種東西(現象、物理量等)的相同點、不同點。
(
2
)舉例:蒸發和沸騰的異同點。
8
.類比法:
(
1
)定義:由兩種東西的一部分相似之處,推測其他部分也可能相似。
(
2
)舉例:研究功率時,想到功率表示做功快慢、速度表示運動快慢這一相似性,推
測功率在定義、定義式、單位等方面也可能與速度相似。
9
.擬人類比法:
(
1
)定義:擬人類比又稱「親身類比」或「角色扮演」。在解決問題時,讓學生設想
自己變成了問題中的某些事物,從而去設身處地、親臨其境地感受問題的本質,解決問題。
是一種特殊的類比法。
(
2
)舉例:在研究分子熱運動時,可以讓學生設想自己就是一個個的分子。
10
.模型法:
(
1
)定義:將研究的問題在抓住要點的基礎上進行簡化、抽象,建立模型,運用模型
去更方便地研究問題。
(
2
)舉例:為研究光現象,引入「光線」這一模型。
11
.等價變換法:
(
1
)定義:讓學生把有關知識的數據、形象、動作、符號、公式、實例、文字敘述等
各種信息自由地變換表示,培養學生聯想能力。
(
2
)例如,在研究壓強時,將壓強定義式變換為定義的文字敘述,或相反。
12
.逆向思考法:
(
1
)定義:對研究的問題從相反方向思考,從而受到啟發或得出結論。
(
2
)舉例:由「電能生磁」,引導學生反過來想一想,「磁能否生電?」
13
.缺點列舉法:
(
1
)定義:以挑剔的眼光去看待被研究的問題,找到它的缺點或不完美之處,然後針
對這些缺點找到解決的方法。
(
2
)舉例:在研究了「彈簧測力計」之後,就可以對彈簧測力計進行改進:
①
首先,讓學生找出普通彈簧測力計的缺點:
不能記憶數據(一旦指針回零,就不能再顯示剛才的數據);不能在暗處讀數;不能測
壓力。
②
然後,讓學生協作學習、分組討論,就可能解決上述問題:
在針軌上加一塑料泡沫片;
加一個小燈泡電路;
將彈簧測力計頂部打開,
接入一受力裝
置與指針和彈簧連接。
14
.缺點利用法:
(
1
)定義:針對所研究內容中的缺點和不足,將錯就錯、變害為利、變廢為寶,找到
知識的應用途徑。
(
2
)舉例:重力的方向豎直向下易使物體下落破碎是缺點,但同時也可以利用這一點
製成打樁機、重錘,懸掛物體等等。再如,導體中電流過大,產生大量熱量而引起火災是缺
點,但正是據此製成了電熱器來為我們服務。
15
.組合法:
(
1
)定義:通過不同原理、不同技術、不同方法、不同現象、不同器材等組合,去設
計創造、解決問題。
(
2
)舉例:將電流表、電壓表組合使用,去測量電阻。
16
.逐漸逼近法:
(
1
)定義:是指在解決某些問題時,讓學生設計逐漸逼近的實驗及其過程,然後根據
實驗現象的發展趨勢和走向,進行理想化推理,從而推出結論或規律。
(
2
)舉例:在研究「牛頓第一定律」時,可以讓學生設計阻力逐漸減小的三個斜面實
驗,根據實驗現象得出「阻力越小,速度變化越慢」,最終進行理想化推理,得到「當阻力
為零時物體做勻速直線運動的結論」。
17
.反證法:
(
1
)定義:是指在解決某些問題時,若直接證明該問題的存在有困難,可以讓學生設
計該問題不存在的情景,通過該情景不成立,從而推出原來問題的存在。
(
2
)舉例:在研究「二力平衡條件」時,直接證明二力平衡必須在同一物體上很困難,
可以設計一個可以分為兩半的物體,
當將該物體分為兩個物體後,
發現二力不平衡了,
從而
說明了一對平衡力必須作用在同一個物體上。
❷ 物理的幾種科學研究方法
中學物理的主要科學研究方法有:
(1)等效(替代法);
(2)建立理想模型法;
(3)控制變數法;
(4)實驗推理法;
(5)轉換法;
(5)類比法等.
❸ 初中物理學到的物理探究方法有哪些
研究物理的科學方法有許多,經常用到的有觀察法、實驗法、比較法、類比法、等效法、轉換法、控制變數法、模型法、科學推理法等.研究某些物理知識或物理規律,往往要同時用到幾種研究方法.如在研究電阻的大小與哪些因素有關時,我們同時用到了觀察法(觀察電流表的示數)、轉換法(把電阻的大小轉換成電流的大小、通過研究電流的大小來得到電阻的大小)、歸納法(將分別得出的電阻與材料、長度、橫截面積、溫度有關的信息歸納在一起)、和控制變數法(在研究電阻與長度有關時控制了材料、橫截面積)等方法.可見,物理的科學方法題無法細致的分類.只能根據題意看題中強調的是哪一過程,來分析解答.下面我們將一些重要的實驗方法進行一下分析.一、 控制變數法物理學研究中常用的一種研究方法——控制變數法.所謂控制變數法,就是在研究和解決問題的過程中,對影響事物變化規律的因素或條件加以人為控制,使其中的一些條件按照特定的要求發生變化或不發生變化,最終解決所研究的問題.可以說任何物理實驗,都要按照實驗目的、原理和方法控制某些條件來研究.如:導體中的電流與導體兩端的電壓以及導體的電阻都有關系,中學物理實驗難以同時研究電流與導體兩端的電壓和導體的電阻的關系,而是在分別控制導體的電阻與導體兩端的電壓不變的情況下,研究導體中的電流跟這段導體兩端的電壓和導體的電阻的關系,分別得出實驗結論.通過學生實驗,讓學生在動腦與動手,理論與實踐的結合上找到這「兩個關系」,最終得出歐姆定律I=U/R.為了研究導體的電阻大小與哪些因素有關, 控制導體的長度和材料不變,研究導體電阻與橫截面積的關系.為了研究滑動摩擦力的大小跟哪些因素有關,保證壓力相同時,研究滑動摩擦力與接觸面粗糙程度的關系.
利用控制變數法研究物理問題,注重了知識的形成過程,有利於扭轉重結論、輕過程的傾向,有助於培養學生的科學素養,使學生學會學習.中學物理課本中,蒸發的快慢與哪些因素的有關;滑動摩擦力的大小與哪些因素有關;液體壓強與哪些因素有關;研究浮力大小與哪些因素有關;壓力的作用效果與哪些因素有關;滑輪組的機械效率與哪些因素有關;動能、重力勢能大小與哪些因素有關;導體的電阻與哪些因素有關;研究電阻一定、電流與電壓的關系;研究電壓一定、電流和電阻的關系;研究電流做功的多少跟哪些因素有關系;電流的熱效應與哪些因素有關;研究電磁鐵的磁性強弱跟哪些因素有關系等均應用了這種科學方法.二、轉換法一些比較抽象的看不見、摸不著的物質的微觀現象,要研究它們的運動等規律,使之轉化為學生熟知的看得見、摸得著的宏觀現象來認識它們.這種方法在科學上叫做「轉換法」. 如:分子的運動,電流的存在等,如:空氣看不見、摸不到,我們可以根據空氣流動(風)所產生的作用來認識它;分子看不見、摸不到,不好研究,可以通過研究墨水的擴散現象去認識它;電流看不見、摸不到,判斷電路中是否有電流時,我們可以根據電流產生的效應來認識它;磁場看不見、摸不到,我們可以根據它產生的作用來認識它.再如,有一些物理量不容易測得,我們可以根據定義式轉換成直接測得的物理量.在由其定義式計算出其值,如電功率(我們無法直接測出電功率只能通過P=UI利用電流表、電壓表測出U、I計算得出P)、電阻、密度等. 中學物理課本中,測不規則小石塊的體積我們轉換成測排開水的體積我們測曲線的長短時轉換成細棉線的長度在測量滑動摩擦力時轉換成測拉力的大小大氣壓強的測量(無法直接測出大氣壓的值,轉換成求被大氣壓壓起的水銀柱的壓強)測硬幣的直徑時轉換成測刻度尺的長度測液體壓強(我們將液體的壓強轉換成我們能看到的液柱高度差的變化)通過電流的效應來判斷電流的存在(我們無法直接看到電流),通過磁場的效應來證明磁場的存在(我們無法直接看到磁場),研究物體內能與溫度的關系(我們無法直接感知內能的變化,只能轉換成測出溫度的改變來說明內能的變化);在研究電熱與電流、電阻的因素時,我們將電熱的多少轉換成液柱上升的高度.在我們研究電功與什麼因素有關的時候,我們將電功的多少轉換成砝碼上升的高度.密度、功率、電功率、電阻、壓強(大氣壓強)等物理量都是利用轉換法測得的.在我們回答動能與什麼因素有關時,我們回答說小球在平面上滑動的越遠則動能越大,就是將動能的大小轉換成了小球運動的遠近.以上列舉的這些問題均應用了這種科學方法.例:1、分子運動看不見、摸不著,不好研究,但科學家可以通過研究墨水的擴散現象去認識它,這種方法在科學上叫做「轉換法』.下面是小明同學在學習中遇到的四個研究實例,其中採取的方法與剛才研究分子運動的方法相同的是( )
A.利用磁感應線去研究磁場問題
B.電流看不見、摸不著,判斷電路中是否有電流時,我們可通過電路中的燈泡是否發光去確定
C.研究電流與電壓、電阻關系時,先使電阻不變去研究電流與電壓的關系:然後再讓電壓不變去研究電流與電阻的關系
D.研究電流時,將它比做水流
解析:B.三、放大法在有些實驗中,實驗的現象我們是能看到的,但是不容易觀察.我們就將產生的效果進行放大再進行研究. 比如音*的振動很不容易觀察,所以我們利用小泡沫球將其現象放大.觀察壓力對玻璃瓶的作用效果時我們將玻璃瓶密閉,裝水,插上一個小玻璃管,將玻璃瓶的形變引起的液面變化放大成小玻璃管液面的變化.四、積累法在測量微小量的時候,我們常常將微小的量積累成一個比較大的量、比如在測量一張紙的厚度的時候,我們先測量100張紙的厚度在將結果除以100,這樣使測量的結果更接近真實的值就是採取的積累法.要測量出一張郵票的質量、測量出心跳一下的時間,測量出導線的直徑,均可用積累法來完成.五、類比法在我們學習一些十分抽象的,看不見、摸不著的物理量時,由於不易理解我們就拿出一個大家能看見的與之很相似的量來進行對照學習.如電流的形成、電壓的作用通過以熟悉的水流的形成,水壓使水管中形成了水流進行類比,從而得出電壓是形成電流的原因的結論.學生在學習電學知識時,在老師的引導下,聯想到:水壓迫使水沿著一定的方向流動,使水管中形成了水流;類似的,電壓迫使自由電荷做定向移動使電路中形成了電流.抽水機是提供水壓的裝置;類似的,電源是提供電壓的裝置.水流通過渦輪時,消耗水能轉化為渦輪的動能;類似的,電流通過電燈時,消耗的電能轉化為內能.我們學習分子動能的時候與物體的動能進行類比;學習功率時,將功率和速度進行類比.例: 1、某同學在學習電學知識時,在老師的引導下,聯想力學實驗現象,進行比較並找出了一些相類似的規律,其中不準確的是( ) A.水壓使水管中形成水流;類似地,電壓使電路中形成電流
B.抽水機是提供水壓的裝置;類似地,電源是提供電壓的裝置C.抽水機工作時消耗水能;類似地,電燈發光時消耗電能D.水流通過渦輪時,消耗水能轉化為渦輪的動能:類似地,電流通過電燈時,消耗電能轉化為內能和光能 解析:C
通過類比,用大家熟悉的水流、水壓的直觀認識,使得看不見、摸不著的抽象的電流、電壓等知識躍然紙面,栩栩如生.六、理想化物理模型:實際現象和過程一般都十分復雜的,涉及到眾多的因素,採用模型方法對學習和研究起到了簡化和純化的作用.但簡化後的模型一定要表現出原型所反映出的特點、知識.模型法有較大的靈活性.每種模型有限定的運用條件和運用的范圍.中學課本中很多知識都應用了這個方法,比如有:液柱、(比如在求液體對豎直的容器底的壓強的時候,我們就選了一個液柱作為研究的對象簡化,簡化後的模型依然保留原來的特點和知識)光線、(在我們學習光線的時候光線是一束的,而且是看不見的,我們使用一條看的見的實線來表示就是將問題簡化,利用了理想化模型)液片、(在我們研究連通器的特點,求大氣壓時我們都在某一位置取了一個液面,研究該液面所受到的壓強和壓力,也是將問題簡化,利用理想化模型法)光沿直線傳播;(在我們學習中我們知道真正的空氣是各處都不均勻的,比如越往上空氣越稀薄,在比如因為空氣各處不均勻形成了風,而在光是沿直線傳播一節中我們將問題簡化,只取一個簡單的模型,一條光線在均勻的介質中傳播)勻速直線運動;(生活中很少有一個物體真正的做勻速直線運動,在我們研究問題的時候勻速直線運動只是一個模型)磁感線(磁感線是不存在的一條線,但是我們為了便於研究磁場我們人為的引入了一條線,將我們研究的問題簡化.)例:1、在我們學習物理知識的過程中,運用物理模型進行研究的是( )
A、建立速度概念 B、研究光的直線傳播 C、用磁感應線描述磁場 D、分析物體的質量 解析:B、C.七、科學推理法:當你在對觀察到的現象進行解釋的時候就是在進行推理,或說是在做出推論,例如當你家的狗在叫的時,你可能會推想有人在你家的門外,要做出這一推論,你就需要把現象(狗的叫聲)與以往的知識經驗,即有陌生人來時狗會叫結合起來.這樣才能得出符合邏輯的答案如:在進行牛頓第一定律的實驗時,當我們把物體在越光滑的平面運動的就越遠的知識結合起來我們就推理出,如果平面絕對光滑物體將永遠做勻速直線運動.如:在做真空不能傳聲的實驗時,當我們發現空氣越少,傳出的聲音就越小時,我們就推理出,真空是不能傳聲的.八、等效替代法:比如在研究合力時,一個力與兩個力使彈簧發生的形變是等效的,那麼這一個力就替代了兩個力所以叫等效替代法,在研究串、並聯電路的總電阻時,也用到了這樣的方法.在平面鏡成像的實驗中我們利用兩個完全相同的蠟燭,驗證物與像的大小相同,因為我們無法真正的測出物與像的大小關系,所以我們利用了一個完全相同的另一根蠟燭來等效替代物體的大小.九、歸納法:是通過樣本信息來推斷總體信息的技術.要做出正確的歸納,就要從總體中選出的樣本,這個樣本必須足夠大而且具有代表性.在我們買葡萄的時候就用了歸納法,我們往往先嘗一嘗,如果都很甜,就歸納出所有的葡萄都很甜的,就放心的買上一大串.比如銅能導電,銀能導電,鋅能導電則歸納出金屬能導電.在實驗中為了驗證一個物理規律或定理,反復的通過實驗來驗證他的正確性然後歸納、分析整理得出正確的結論.在阿基米德原理中,為了驗證F浮=G排,我們分別利用石塊和木塊做了兩次實驗,歸納、整理均得出F浮=G排,於是我們驗證了阿基米德原理的正確性,使用的正是這種方法.在驗證杠桿的平衡條件中,我們反復做了三次實驗來驗證F1×L1=F2×L2也是利用這種方法.一切發聲體都在振動結論的得出(在實驗中對多種結論進行分析整理並得出最後結論時),都要用到這一方法.在驗證導體的電阻與什麼因素有關的時候,經過多次的實驗我們得出了導體的電阻與長度,材料,橫截面積,溫度有關,也是將實驗的結論整理到一起後歸納總結得出的.在所有的科學實驗和原理的得出中,我們幾乎都用到了這種方法.十、比較法(對比法)當你想尋找兩件事物的相同和不同之處,就需要用到比較法,可以進行比較的事物和物理量很多,對不同或有聯系的兩個對象進行比較,我們主要從中尋找它們的不同點和相同點,從而進一步揭示事物的本質屬性.如,比較蒸發和沸騰的異同點.如,比較汽油機和柴油機的異同點 如,電動機和熱機 如,電壓表和電流表的使用利用比較法不僅加深了對它們的理解和區別,使同學們很快地記住它們,還能發現一些有趣的東西.十一、分類法把固體分為晶體和非晶體兩類、導體和絕緣體.十二、觀察法物理是一門以觀察、實驗為基礎的學科.人們的許多物理知識是通過觀察和實驗認真地總結和思索得來的.著名的馬德堡半球實驗,證明了大氣壓強的存在.在教學中,可以根據教材中的實驗,如長度、時間、溫度、質量、密度、力、電流、電壓等物理量的測量實驗中,要求學生認真細致的觀察,進行規范的實驗操作,得到准確的實驗結果,養成良好的實驗習慣,培養實驗技能.大部分均利用的是觀察法.十三、比值定義法:例:密度、壓強、功率、電流等概念公式採取的都是這樣的方法.十四、多因式乘積法:例:電功、電熱、熱量等概念公式採取的都是這樣的方法. 十五、逆向思維法例:由電生磁想到磁生電以上這些方法,還只是在初中物理的學習中會遇到和使用的一些科學方法,列舉出來,希望能夠給大家一些幫助.也希望大家都來關注這方面的問題,多了解和掌握一些科學方法,靈活運用,以便於指導我們的學習,工作和生活.
❹ 物理學的研究方法有哪些
一、控制變數法:通過固定某幾個因素轉化為多個單因素影響某一量大小的問題.
二、等效法:將一個物理量,一種物理裝置或一個物理狀態(過程),用另一個相應量來替代,得到同樣的結論的方法.
三、模型法:以理想化的辦法再現原型的本質聯系和內在特性的一種簡化模型.
四、轉換法(間接推斷法)把不能觀察到的效應(現象)通過自身的積累成為可觀測的宏觀物或宏觀效應.
五、類比法:根據兩個對象之間在某些方面的相似或相同,把其中某一對象的有關知識、結論推移到另一個對象中去的一種邏輯方法.
六、比較法:找出研究對象之間的相同點或相異點的一種邏輯方法.
七、歸納法:從一系列個別現象的判斷概括出一般性判斷的邏輯的方法.
(4)物理科學方法有哪些內容擴展閱讀:
物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受自然界的規則,並試圖以這些規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是物理學,甚至是所有自然科學共同追求的目標。
六大性質
1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。
2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。
牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動性實現了統一。愛因斯坦的相對論又把時間、空間統一了。
3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。
4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。
6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。
對於物理學理論和實驗來說,物理量的定義和測量的假設選擇,理論的數學展開,理論與實驗的比較是與實驗定律一致,是物理學理論的唯一目標。
人們能通過這樣的結合解決問題,就是預言指導科學實踐這不是大唯物主義思想,其實是物理學理論的目的和結構。
在不斷反思形而上學而產生的非經驗主義的客觀原理的基礎上,物理學理論可以用它自身的科學術語來判斷。而不用依賴於它們可能從屬於哲學學派的主張。在著手描述的物理性質中選擇簡單的性質,其它性質則是群聚的想像和組合。
通過恰當的測量方法和數學技巧從而進一步認知事物的本來性質。實驗選擇後的數量存在某種對應關系。一種關系可以有多數實驗與其對應,但一個實驗不能對應多種關系。也就是說,一個規律可以體現在多個實驗中,但多個實驗不一定只反映一個規律。
❺ 科學研究中,有哪些重要的物理方法
1、控制變數法:就是把一個多因素影響某一物理量的問題,通過控制某幾個因素不變,只讓其中一個因素改變,從而轉化為單一因素影響某一物理量問題的研究方法。
2、轉換法(放大法):對於一些看不見,摸不著的物理現象,或不易直接測量的物理量,用一些非常直觀的現象去認識或用容易測量的物理量間接測量的方法。
3、等效替代法(等效法):在研究物理問題時,有時為了使問題簡化,常用一個物理量來代替其他所有物理量,但不會改變物理效果。
4、理想模型法(抽象法、描述法):把復雜問題簡單化,將抽象的物理現象用簡單易懂的具體模型表示。
5、實驗推理法(科學推理法、理想實驗法):有一些物理現象,由於受實驗條件所限,無法直接驗證,需要我們先進行實驗,再進行合理推理得出正確結論,這也是一種常用的科學方法。
(5)物理科學方法有哪些內容擴展閱讀
物理學中對於多因素(多變數)的問題,常常採用控制因素(變數)的方法,把多因素的問題變成多個單因素的問題。每一次只改變其中的某一個因素,而控制其餘幾個因素不變,從而研究被改變的這個因素對事物的影響,分別加以研究,最後再綜合解決。
它是科學探究中的重要思想方法,廣泛地運用在各種科學探索和科學實驗研究之中。
1、獨立變數,即一個量改變不會引起除因變數以外的其他量的改變。只有將某物理量由獨立變數來表達,由它給出的函數關系才是正確的。
2、非獨立變數,一個量改變會引起除因變數以外的其他量改變。把非獨立變數看做是獨立變數,是確定物理量間關系的一大忌。
正確確定物理表達式中的物理量是常量還是變數,是獨立變數還是非獨立變數,不但是正確解答有關問題的前提和保障,而且還可以簡化解答過程
❻ 物理研究方法有哪些
物理研究主要方法如下所示。
1、控制變數法。控制變數法是指在研究幾個物理量的關系時,每次只改變一個物理量,保持其他一些物理量不變,探究這一物理量與研究對象之間的關系。這是物理研究最常用的一種方法,幾乎貫穿物理學習的始終。
2、物理模型法。物理模型法是一種高度抽象的理想客體和形態,便於想像、思考和研究問題。研究物理的過程就是建立物理模型的過程。
3、等效替代法。在保證效果相同的前提下,將陌生復雜的問題變換成熟悉簡單的模型進行分析和研究的方法。
4、類比法。簡言之,相同或相似的東西放在一起進行比較,以達到舉一反三的效果。它是根據兩個或兩類對象之間在某些方面的相同或相似而推出他們在其他方面也可能相同或相似的一種邏輯思維。
5、轉換法。物理學中有的物理現象不便於直接觀察和直接測量,通常用一些非常直觀的現象去認識或用易測量的物理量進行間接測量,這種研究問題的方法叫轉換法。
6、實驗推理法。這種方法主要利用理想實驗,理想實驗又叫假想實驗,抽象的實驗或思想上實驗它是人們在思想中塑造的實驗過程,是一種邏輯推理的理論研究方法。
7、圖像法。圖像法是數學方法在物理研究領域的運用。它是描述物理過程、揭示物理規律、解決物理問題的重要方法之一,它具有形象、直觀、動態變化過程清晰等特點,能把物理問題簡化明了,有效、簡捷地解決問題。
8、比較法。比較法是確定研究對象之間的差異點和共同點的物理研究方法,各種物理現象和過程都可以通過比較確定它們的差異點和共同點。
9、歸納法。在大量經驗、實驗、現象的基礎上,從具體事物中抽象出共同本質,概括出一般物理規律的推理方法。
❼ 物理研究方法有哪些
物理研究方法,收集齊全的物理知識,一起來看看:
一、控制變數法:通過固定某幾個因素轉化為多個單因素影響某一量大小的問題。控制變數法是指在研究幾個物理量的關系時,每次只改變一個物理量,保持其他一些物理量不變,探究這一物理量與研究對象之間的關系。這是物理研究最常用的一種方法,幾乎貫穿物理學習的始終。
二、等效法:將一個物理量,一種物理裝置或一個物理狀態(過程),用另一個相應量來替代,得到同樣的結論的方法。在保證效果相同的前提下,將陌生復雜的問題變換成熟悉簡單的模型進行分析和研究的方法。 例如:研究串、並聯電路關系時引入總電阻(等效電阻)的概念。在研究力的關系時引入合力的概念也是運用了等效替代法,即可以用一個力的作用效果代替幾個力的作用效果。研究平面鏡成像特點時,用鏡後未點燃的蠟燭代替鏡前點燃蠟燭的像。
三、模型法:以理想化的辦法再現原型的本質聯系和內在特性的一種簡化模型。物理模型法是一種高度抽象的理想客體和形態,便於想像、思考和研究問題。研究物理的過程就是建立物理模型的過程。
四、轉換法(間接推斷法)把不能觀察到的效應(現象)通過自身的積累成為可觀測的宏觀物或宏觀效應。物理學中有的物理現象不便於直接觀察和直接測量,通常用一些非常直觀的現象去認識或用易測量的物理量進行間接測量,這種研究問題的方法叫轉換法。
五、類比法:根據兩個對象之間在某些方面的相似或相同,把其中某一對象的有關知識、結論推移到另一個對象中去的一種邏輯方法。簡言之,相同或相似的東西放在一起進行比較,以達到 「舉一反三」的效果。它是根據兩個或兩類對象之間在某些方面的相同或相似而推出他們在其他方面也可能相同或相似的一種邏輯思維。
六、比較法:找出研究對象之間的相同點或相異點的一種邏輯方法。
七、歸納法:從一系列個別現象的判斷概括出一般性判斷的邏輯的方法。
八、觀察法。觀察法是人們為了認識事物的本質和規律有目的有計劃地對自然發生條件下所顯現的有關 事物進行考察的一種方法,是人們收集獲取感性材料的常用方法之一,是最基本最直接的研究方法。
❽ 初中物理常見的科學方法有哪些
在《初中物理課程標准》中,科學探究既是學生的學習目標,又是重要的教學方式之一.在探究科學規律的過程中,學生通過動手動腦,通過物理學知道「再發現」過程,體驗到科學探究的樂趣,學習科學家的科學探究方法,領悟科學的思想和精神,掌握科學學習的策略和科學的思維方法,從而提高他們的科學素質.下面就與大家一起來探討物理教學中常用的一些科學方法. 一、猜想法 在科學探究的學習過程中,猜想這一步驟有著舉足輕重的地位,它是物理智慧中最活躍的成分,對學生猜想能力的培養,也是物理探究過程中的一個重要環節,而且猜想決定了科學探究的方向,因此,在物理教學的過程中,引導學生科學合理地猜想就顯得格外重要.首先,猜想要有一定經驗和知識作為基礎.在進行科學猜想能力方面的教學時,可先針對問題讓學生展開想像的翅膀,鼓勵學生把所有可能的情況都大膽地說出來,然後讓學生根據已有知識和生活經驗逐一進行分析,想想生活中有哪些事實支持它,它和已有知識是否一致,排除那些與經驗和知識相矛盾的想法,留下的就可能是科學的猜想了,沒有一定的知識和經驗,猜想恐怕只能是無本之木,無源之水.所以在教學中為了避免學生胡猜亂想,讓學生說出猜想的理由、事實依據是很有效的避免課堂混亂的手段,也是培養學生探究能力的方法之一. 二、控制變數法 「控制變數法」是初中物理中常用的探究問題的科學方法.由於影響物理研究對象的因素在許多情況下並不是單一的,而是多種因素相互交錯、共同起作用的.所以要想精確地把握研究對象的各種特性,弄清事物變化的原因和規律,必須人為的製造一些條件,便於問題的研究.例如當一個物理量與幾個因素有關時,我們一般是分別研究這個物理量與各個因素之間的關系,再進行綜合分析得出結論.這樣就必須在研究物理量同其中一個因素之間的關系時,將另外幾個因素人為地控制起來,使它們保持不變,以便觀察和研究該物理量與這個因素之間的關系.這就是「控制變數」的方法.在初中物理教學中有許多概念或規律的探索過程,都要用到控制變數法.例如,在八年級剛接觸物理時,有一個探究實驗是探究「聲音怎樣從發聲的物體傳到遠處?」.讓一個學生在桌子一端敲擊桌面,另一個學生在另一端聽聲音,一次貼在桌面上聽,一次只是貼近桌面.發現兩次都可以聽到聲音,引導學生分析這兩次聲音分別是通過桌子和空氣傳來的,從而說明聲音要靠介質傳播.同時讓學生比較兩次聽到的聲音大小,從而認識到聲音在固體中比在空氣中傳播得快,即固體的傳聲能力強.在這里,老師一定要強調實驗中需要控制的變數就是聽聲音的距離和敲擊桌面的力度要相同,使學生體驗到控制變數的思想,為以後的探究實驗作好方法上的准備.控制變數法是一種最常用的、非常有效的探索客觀物理規律的科學方法.通過控制變數法,可以讓我們很方便的研究出某個物理量與多個因素之間的定性或定量關系,從而能得出普遍的規律. 三、等效替代法 有一個廣為人知的歷史故事──曹沖稱象.他運用的就是一種等效替代的思想,他是用石頭替代了大象,巧妙地測出了大象的重力.當然,這里還用到了「化整為零」的思想.很多偉人也經常會用等效法來使研究問題簡化,例如,愛迪生用圍成一圈的平面鏡的反射光等效多個太陽造成了無影燈,他的助手阿普頓在苦苦計算燈泡的容積時,愛迪生卻告訴他只需要把燈泡裝滿水,測量水的體積即為燈泡的容積.還有阿基米德在洗澡時發現了鑒別王冠真假的方法,從而也導致了一個重要的原理──阿基米德原理的發現.可以說「等效替代」的思想是物理實驗成功的最根本、最重要的思路,物理學中的相關定律、定理、公式、原理都是以替代思維成立的基礎為出發點的.例如,測量不規則固體的體積,就是利用物體浸沒在液體中時,物體體積與物體排開的液體的體積相等的原理,將用替代.在有量筒或量杯時,可採用「排液補差法」或叫「等量空間占據法」測量.沒有量筒或量杯時,可用彈簧秤和水,通過測量浮力大小,結合阿基米德原理計算(全部浸沒),也可以用天平測排水的質量(全部浸沒),再利用密度知識來計算.當無法直接測物體的質量時,就可以用漂浮的方法利用的原理,測出也就知道了,物體的質量也就可求了.這種質量或體積的替代測量方法一般多見於測量物質密度的方法中.還有許多物理量的測量都用到了等效替代法. 四、轉換法 所謂「轉換法」,主要是指在保證效果相同的前提下,將不可見、不易見的現象轉換成可見、易見的現象;將陌生、復雜的問題轉換成熟悉、簡單的問題;將難以測量或測準的物理量轉換為能夠測量或測準的物理量的方法.彈簧測力計的原理也隱含了一個間接測量原則.即用可直接量度的量去間接表現那些不便直接觀察不便直接測量的量.在這里,彈簧的長度變化是可以直接觀察直接測量的,而力的大小是看不到摸不著的,但是力的大小卻和彈簧長度的變化有關系,所以我們就可以用彈簧的伸長量來量度力的大小.不僅測力計是這樣的,溫度計、壓強計、氣壓表(高度計)、電流表、電壓表、時鍾速度表都是如此,看見的是長度、角度的變化,反映的是溫度、液體壓強、大氣壓強(高度)、電流、電壓、時間、速度的變化.初中物理中有很多地方都用到了轉換法的原理.研究物體升溫吸熱的多少與哪些因素有關時,可通過觀察放入其中的相同電熱器加熱時間的長短來判斷吸熱多少.利用擴散現象來研究分子的運動及分子運動的快慢.研究動能或勢能大小時通過觀察運動的小球推動紙盒移動距離的大小或是木樁被打入地下的深度,來推斷動能和勢能的大小.研究力、電流、磁場時,由於它們都是看不見摸不著的東西,我們可以利用力所產生的效果、電流產生的各種效應、磁場的基本性質來研究它們.比如可以通過泡沫塑料凹陷的程度來知道壓力的作用效果大小,用燈光的亮度來感知電流的大小、用電磁鐵吸引大頭針的個數來判斷其磁性強弱.將光在透明空氣中的傳播轉換為在煙或水霧中的傳播來觀察光的傳播方向.再如,把發聲體的微小振動用泡沫塑料球的振動來進行放大,把物體熱脹冷縮的微小變化用細管中液柱的高度變化來放大,把物體受力後的微小形變用平面鏡反射光線的偏轉角度來進行放大等等都是利用了轉換法. 五、理想化方法 「理想化方法」.它又分為「理想實驗法」和「理想模型法」.例如,我們在研究真空能否傳聲的時候,將一隻小電鈴放在密閉的玻璃罩內,接通電路,可清楚的聽到鈴聲,用抽氣機逐漸抽去玻璃罩內的空氣,聽到鈴聲越來越弱,這說明空氣越稀薄,空氣的傳聲能力越弱.實驗中無法達到絕對的真空,但可以通過鈴聲的變化趨勢,推測出真空不能傳聲,這與牛頓第一定律的建立過程是非常類似的.這屬於理想實驗法.如果教師在教學中注意很好地滲透這一方法,有利於培養學生的科學思想,提高學生的創新能力.在初中教材中,我們熟悉的理想化模型有:杠桿(只要能繞著固定點轉動的物體都可以看作是杠桿)、斜面(像盤山公路這樣起點為低終點高的彎曲面可以看作是斜面)、輪軸(如門把手、汽車方向盤、腳踏板、扳手這樣在使用中某部分轉動形成的軌跡是一個圓的機械都可以看作輪軸)、連通器(上端開口、底部連通的容器都可以看作是連通器)、薄透鏡、光線、磁感線等等.正是引入了這些理想化的物理模型,才得以使我們面對許多復雜的現實問題,通過簡化處理能夠比較順利地予以解決.我們也常常運用理想化方法,對於某些問題可以通過尋找和建立合適的理想化模型來處理,即將研究對象、條件等理想化,以達到化繁為簡的目的. 另外常用的科學方法還有類比法、圖像法、歸納法、比較法、演繹法、推理法、想像法、逆向思維法、宏觀與微觀結合法、累積法,以及微分法等等.
❾ 物理的幾種科學研究方法
一、理想模型法
實際中的事物都是錯綜復雜的,在用物理的規律對實際中的事物進行研究時,常需要對它們進行必要的簡化,忽略次要因素,以突出主要矛盾。用這種理想化的方法將實際中的事物進行簡化,便可得到一系列的物理模型。有實體模型:質點、點電荷、輕桿、輕繩、輕彈簧、理想變壓器、(3-3)液片、理想氣體、(3-5)原子核式結構模型和玻爾原子模型等;過程模型:勻速直線運動、勻變速直線運動、勻變速曲線運動、勻速圓周運動等。
採用模型方法對學習和研究起到了簡化和純化的作用。但簡化後的模型一定要表現出原型所反映出的特點、知識。每種模型有限定的運用條件和運用的范圍。
二、控制變數法
就是把一個多因素影響某一物理量的問題,通過控制某幾個因素不變,只讓其中一個因素改變,從而轉化為多個單一因素影響某一物理量的問題的研究方法。
這種方法在實驗數據的表格上的反映為:某兩次試驗只有一個條件不相同,若兩次試驗結果不同,則與該條件有關,否則無關。反過來,若要研究的問題是物理量與某一因素是否有關,則應只使該因素不同,而其他因素均應相同。控制變數法是中學物理中最常用的方法。
滑動摩擦力的大小與哪些因素有關;探究加速度、力和質量的關系(牛頓第二定律 );導體的電阻與哪些因素有關(電阻定律 );電流的熱效應與哪些因素有關(焦耳定律 );研究安培力大小跟哪些因素有關( );研究理想氣體狀態變化(理想氣體狀態方程 )等均應用了這種科學方法。
三、理想實驗法(又稱想像創新法,思想實驗法)
是在實驗基礎上經過概括、抽象、推理得出規律的一種研究問題的方法。但得出的規律卻又不能用實驗直接驗證,是科學家們為了解決科學理論中的某些難題,以原有的理論知識(如原理、定理、定律等)作為思想實驗的「材料」,提出解決這些難題的設想作為理想實驗的目標,並在想像中給出這些實驗「材料」產生「相互作用」所需要的條件,然後,按照嚴格的邏輯思維操作方法去「處理」這些思想實驗的「材料」,從而得出一系列反映客觀物質規律的新原理,新定律,使科學難題得到解決,推動科學的發展。又稱推理法。
伽利略斜面實驗、推導出聲音不能在真空中傳播、推導出牛頓第一定律等。
三、微量放大法
物理實驗中常遇到一些微小物理量的測量。為提高測量精度,常需要採用合適的放大方法,選用相應的測量裝置將被測量進行放大後再進行測量。常用的放大法有累計放大法、形變放大法、光學放大法等。
1)累計放大法:在被測物理量能夠簡單重疊的條件下,將它展延若干倍再進行測量的方法,稱為累計放大法(疊加放大法)。如測量紙的厚度、金屬絲的直徑等,常用這種方法進行測量;累計放大法的優點是在不改變測量性質的情況下,將被測量擴展若干倍後再進行測量,從而增加測量結果的有效數字位數,減小測量的相對誤差。
2)形變放大法:形變是力作用的效果,在力學中形變的基本表現形式為體積、長度、角度的改變。而顯示形變的方法可用力學的方法,也可用電學、光學的方法,如:體積的變化:由液柱的長度的變化顯示;熱膨脹:杠桿放大法顯示。
3)光學放大法:常用的光學放大法有兩種,一種是使被測物通過光學裝置放大視角形成放大像,便於觀察判別,從而提高測量精度。例如放大鏡、顯微鏡、望遠鏡等。另一種是使用光學裝置將待測微小物理量進行間接放大,通過測量放大了的物理量來獲得微小物理量。例如測量微小長度和微小角度變化的光杠桿鏡尺法,就是一種常用的光學放大法。
卡文迪許通過扭秤裝置測量引力常量就採用了多種放大方法。
四、模擬法
模擬法和類比法很近似。它是在實驗室里先設計出於某被研究現象或過程(即原型)相似的模型,然後通過模型,間接的研究原型規律性的實驗方法。先依照原型的主要特徵,創設一個相似的模型,然後通過模型來間接研究原型的一種形容方法。根據模型和原型之間的相似關系,模擬法可分為物理模擬和數學模擬兩種。
如在描繪電場中等勢線實驗中用直流電流場模擬靜電場。
五、類比與歸納
所謂類比,是根據兩個(或兩類)對象之間在某些方面的相同或相似而推出它們在其他方面也可能相同或相似的一種邏輯思維。如萬有引力公式 和庫侖力公式 從形式上很相似。
六、等效替代效法
等效法是常用的科學思維方法。等效是指不同的物理現象、模型、過程等在物理意義、作用效果或物理規律方面是相同的。它們之間可以相互替代,而保證結論不變。
等效的方法是指面對一個較為復雜的問題,提出一個簡單的方案或設想,而使它們的效果完全相同,從而將問題化難為易,求得解決。例如我們學過的等效電路、等效電阻、電壓表等效為電流表、電流表等效為電壓表、測電阻中的替代法、分力與合力等效、分運動與合運動等效、環形電流與小磁體的等效、通電螺線管與條形磁鐵的等效等等。
七、比值定義法
比值定義法,就是在定義一個物理量的時候採取比值的形式定義。用比值法定義的物理概念在物理學中佔有相當大的比例,比如速度、加速度、密度、壓強、功率、電場強度、電勢、電勢差、磁感應強度、電阻、電容等等。加速度a=(Δv)/(Δt) ;
電場強度E=F/q ;電容C=Q/U ;電阻R=U/I ;電流I=q/t ;電動勢,ε=W/q;電勢差U=W/q;磁感應強度B=F/(IL)或B=F/qv或B=Φ/S。
(一)「比值法」的特點:
1、比值法適用於物質屬性或特徵、物體運動特徵的定義。應用比值法定義物理量,往往需要一定的條件;一是客觀上需要,二是間接反映特徵屬性的的兩個物理量可測,三是兩個物理量的比值必須是一個定值。
2.兩類比值法及特點
一類是用比值法定義物質或物體屬性特徵的物理量,如:電場強度E、磁感應強度B、電容C、電阻R等。它們的共同特徵是;屬性由本身所決定。定義時,需要選擇一個能反映某種性質的檢驗實體來研究。比如:定義電場強度E,需要選擇檢驗電荷q,觀測其檢驗電荷在場中的電場力F,採用比值F/q就可以定義。
另一類是對一些描述物體運動狀態特徵的物理量的定義,如速度v、加速度a、角速度ω等。這些物理量是通過簡單的運動引入的,比如勻速直線運動、勻變速直線運動、勻速圓周運動。這些物理量定義的共同特徵是:相等時間內,某物理量的變化量相等,用變化量與所用的時間之比就可以表示變化快慢的特徵。
(二)「比值法」的理解
1.理解要注重物理量的來龍去脈。為什麼要研究這個問題從而引入比值法來定義物理量(包括問題是怎樣提出來的),怎樣進行研究(包括有哪些主要的物理現象、事實,運用了什麼手段和方法等),通過研究得到怎樣的結論(包括物理量是怎樣定義的,數學表達式怎樣),物理量的物理意義是什麼(包括反映了怎樣的本質屬性,適用的條件和范圍是什麼)和這個物理量有什麼重要的應用。
2.理解要展開類比與想像,進行邏輯推理。所有的比值法定義的物理量有相同的特點,通過展開類比與想像,進行邏輯推理、抽象思維等活動,從而引起思維的飛躍,知識的遷移,在類比中加深理解。如在重力場、電場、磁場的教學中,相同的是都需要選擇一個檢驗場性質的實體,用檢驗實體的受力與檢驗實體的有關物理量的比來定義。但也存在區別,重力場的比值中,分母是質量最簡單,電場定義時,要考慮電荷的電性,而磁場定義最復雜,不僅與考慮電流元I,而且要考慮電流元的放置方位與有效長度。
3.不能將比值法的公式純粹的數學化。在建立物理量的時候,交代物理思想和方法,搞清概念表達的屬性,從這些量度公式中理解它們的物理過程與物理符號的真實內容,切忌被數學符號形式化,忽視了物理量的豐富內容,一定要從量度公式中揭示所定義的概念與有關概念的真實依存關系和物理過程,防止死記硬背和亂用。另一方面,在數學形式上用比例表示的式子,不一定就應用比值法。如公式a=F/m,只是數學形式上象比值法,實際上不具備比值法的其它特點。所以不能把比值法與數學形式簡單的聯系在一起。
八、微元法
微元法是分析、解決物理問題中的常用方法,也是從部分到整體的思維方法。用該方法可以使一些復雜的物理過程用我們熟悉的物理規律迅速地加以解決,使所求的問題簡單化。在使用微元法處理問題時,需將其分解為眾多微小的「元過程」,而且每個「元過程」所遵循的規律是相同的,這樣,我們只需分析這些「元過程」,然後再將「元過程」進行必要的數學方法或物理思想處理,進而使問題求解。使用此方法會加強我們對已知規律的再思考,從而引起鞏固知識、加深認識和提高能力的作用。
在高中物理中,由於數學學習上的局限,對於高等數學中可以使用積分來進行計算的一些問題,在高中很難加以解決。例如對於求變力所做的功或者對於物體做曲線運動時某恆力所做的功的計算;又如求做曲線運動的某質點運動的路程,這些問題對於中學生來講,成為一大難題。但是如果應用積分的思想,化整為零,化曲為直,採用「微元法」,可以很好的解決這類問題。「微元法」通俗地說就是把研究對象分為無限多個無限小的部分,取出有代表性的極小的一部分進行分析處理,再從局部到全體綜合起來加以考慮的科學思維方法,在這個方法里充分的體現了積分的思想。
九、極限法
極限法是把某個物理量推向極端,即極大和極小或極左和極右,並依此做出科學的推理分析,從而給出判斷或導出一般結論。
1.由平均值得瞬時值用到極限法 一般由比值定義式定義出的物理量均為平均值,如 ,當 取趨近於零時的平均速度可看做瞬時速度
2.極限法在進行某些物理過程分析時,具有獨特作用,恰當應用極限法能提高解題效率,使問題化難為易,化繁為簡,思路靈活,判斷准確。因此要求解題者,不僅具有嚴謹的邏輯推理能力,而且具有豐富的想像能力,從而得到事半功倍的效果。