❶ 液晶分子的特性
LCD液晶得名於其物理特性:它的分子晶體,不過以液態存在而非固態。大多數液晶都屬於有機復合物。這些晶體分子的液體特性使得它具有兩種非常有用的特點:如果你讓電流通過液晶層,這些分子將會以電流的流向方向進行排列,如果沒有電流,它們將會彼此平行排列。如果你提供了帶有細小溝槽的外層,將液晶倒入後,液晶分子會順著槽排列,並且內層與外層以同樣的方式進行排列。 液晶的第三個特性是很神奇的:液晶層能夠使光線發生扭轉。液晶層表現的有些類似偏光器,這就意味著它能夠過濾掉除了那些從特殊方向射入之外的所有光線。此外,如果液晶層發生了扭轉,光線將會隨之扭轉,以不同的方向從另外一個面中射出。 液晶的這些特點使得它可以被用來當作一種開關-即可以阻礙光線,也可以允許光線通過。液晶單元的底層是由細小的脊構成的,這些脊的作用是讓分子呈平行排列。上表面也是如此,在這兩側之間的分子平行排列,不過當上下兩個表面之間呈一定的角度時,液晶成了隨著兩個不同方向的表面進行排列,就會發生扭曲。結果便是這個扭曲了的螺旋層使通過的光線也發生扭曲。如果電流通過液晶,所有的分子將會按照電流的方向進行排列,這樣就會消除光線的扭轉。如果將一個偏振濾光器放置在液晶層的上表面,扭轉的光線通過了,而沒有發生扭轉的光線將被阻礙。因此可以通過電流的通斷改變LCD中的液晶排列,使光線在加電時射出,而不加電時被阻斷。也有某些設計了省電的需要,有電流時,光線不能通過,沒有電流時,光線通過。
❷ 液晶的特性和物理量
<b>液晶概述( 液晶,liquid crystal )
</b>液晶(Liquid Crystal)是一種高分子材料,因為其特殊的物理、化學、光學特性,20世紀中葉開始被廣泛應用在輕薄型的顯示技術上。
人們熟悉的物質狀態(又稱相)為氣、液、固,較為生疏的是電漿和液晶(Liquid Crystal,簡稱LC)。液晶相要具有特殊形狀分子組合始會產生,它們可以流動,又擁有結晶的光學性質。液晶的定義,現在以放寬而囊括了在某一溫度范圍可以是現液晶相,在較低溫度為正常結晶之物質。而液晶的組成物質是一種有機化合物,也就是以碳為中心所構成的化合物。 同時具有兩種物質的液晶,是以分子間力量組合的,它們的特殊光學性質,又對電磁場敏感,極有實用價值。
1888年,奧地利叫萊尼茨爾的科學家,合成了一種奇怪的有機化合物,它有兩個熔點。把它的固態晶體加熱到145℃時,便熔成液體,只不過是渾濁的,而一切純凈物質熔化時卻是透明的。如果繼續加熱到175℃時,它似乎再次熔化,變成清澈透明的液體。後來,德國物理學家列曼把處於「中間地帶」的渾濁液體叫做晶體。它好比是既不象馬,又不象驢的騾子,所以有人稱它為有機界的騾子.液晶自被發現後,人們並不知道它有何用途,直到1968年,人們才把它作為電子工業上的的材料.
液晶顯示材料最常見的用途是電子表和計算器的顯示板,為什麼會顯示數字呢?原來這種液態光電顯示材料,利用液晶的電光效應把電信號轉換成字元、圖像等可見信號。液晶在正常情況下,其分子排列很有秩序,顯得清澈透明,一旦加上直流電場後,分子的排列被打亂,一部分液晶變得不透明,顏色加深,因而能顯示數字和圖象。
液晶的電光效應是指它的干涉、散射、衍射、旋光、吸收等受電場調制的光學現象。
一些有機化合物和高分子聚合物,在一定溫度或濃度的溶液中,既具有液體的流動性,又具有晶體的各向異性,這就是液晶。液晶光電效應受溫度條件控制的液晶稱為熱致液晶;溶致液晶則受控於濃度條件。顯示用液晶一般是低分子熱致液晶。
根據液晶會變色的特點,人們利用它來指示溫度、報警毒氣等。例如,液晶能隨著溫度的變化,使顏色從紅變綠、藍。這樣可以指示出某個實驗中的溫度。液晶遇上氯化氫、氫氰酸之類的有毒氣體,也會變色。在化工廠,人們把液晶片掛在牆上,一旦有微量毒氣逸出,液晶變色了,就提醒人們趕緊去檢查、補漏。
液晶種類很多,通常按液晶分子的中心橋鍵和環的特徵進行分類。目前已合成了1萬多種液晶材料,其中常用的液晶顯示材料有上千種,主要有聯苯液晶、苯基環己烷液晶及酯類液晶等。液晶顯示材料具有明顯的優點:驅動電壓低、功耗微小、可靠性高、顯示信息量大、彩色顯示、無閃爍、對人體無危害、生產過程自動化、成本低廉、可以製成各種規格和類型的液晶顯示器,便於攜帶等。由於這些優點。用液晶材料製成的計算機終端和電視可以大幅度減小體積等。液晶顯示技術對顯示顯像產品結構產生了深刻影響,促進了微電子技術和光電信息技術的發展