導航:首頁 > 物理學科 > 高中物理發明家以及發明的什麼

高中物理發明家以及發明的什麼

發布時間:2023-02-22 15:23:56

㈠ 高中物理課程中物理學家所作科學貢獻總結

新課標高考高中物理學史(新人教版)
必修部分:(必修1、必修2 )
一、力學:
1、1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);
2、1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗;
3、1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律).
4、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因.
同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向.
5、英國物理學家胡克對物理學的貢獻:胡克定律;經典題目:胡克認為只有在一定的條件下,彈簧的彈力才與彈簧的形變數成正比(對)
6、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察-假設-數學推理的方法,詳細研究了拋體運動.
17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它

原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向.
7、人們根據日常的觀察和經驗,提出「地心說」,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了「日心說」,大膽反駁地心說.
8、17世紀,德國天文學家開普勒提出開普勒三大定律;
9、牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較准確地測出了引力常量;
10、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈(勒維耶)應用萬有引力定律,計算並觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發現冥王星.
9、我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同;但現代火箭結構復雜,其所能達到的最大速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);
俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念.多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家.
10、1957年10月,蘇聯發射第一顆人造地球衛星;
1961年4月,世界第一艘載人宇宙飛船「東方1號」帶著尤里加加林第一次踏入太空.
11、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體.
12、17世紀,德國天文學家開普勒提出開普勒三定律;牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較准確地測出了引力常量(體現放大和轉換的思想);1846年,科學家應用萬有引力定律,計算並觀測到海王星.
選修部分:(選修3-1、3-2、3-3、3-4、3-5)
二、電磁學:(選修3-1、3-2)
13、1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律,並測出了靜電力常量k的值.
14、1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,並發明避雷針.
15、1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場.
16、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎.
17、1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律.
18、1911年,荷蘭科學家昂尼斯(或昂納斯)發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象.
19、19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳——楞次定律.
20、1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱為電流磁效應.
21、法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,同時提出了安培分子電流假說;並總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向.
22、荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點.
23、英國物理學家湯姆生發現電子,並指出:陰極射線是高速運動的電子流.
24、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素.
25、1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子.(最大動能僅取決於磁場和D形盒直徑.帶電粒子圓周運動周期與高頻電源的周期相同;但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的迴旋周期發生變化,進一步提高粒子的速率很困難.
26、1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應定律.
27、1834年,俄國物理學家楞次發表確定感應電流方向的定律——楞次定律.
28、1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即為其應用之一,雙繞線法制精密電阻為消除其影響應用之一.
四、熱學(3-3選做):
29、1827年,英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動.
30、19世紀中葉,由德國醫生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最後確定能量守恆定律.
31、1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述.次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述.
32、1848年 開爾文提出熱力學溫標,指出絕對零度是溫度的下限.指出絕對零度(-273.15℃)是溫度的下限.T=t+273.15K
熱力學第三定律:熱力學零度不可達到.
五、波動學(3-4選做):
33、17世紀,荷蘭物理學家惠更斯確定了單擺周期公式.周期是2s的單擺叫秒擺.
34、1690年,荷蘭物理學家惠更斯提出了機械波的波動現象規律——惠更斯原理.
35、奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應.【相互接近,f增大;相互遠離,f減少】
36、1864年,英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎.電磁波是一種橫波
37、1887年,德國物理學家赫茲用實驗證實了電磁波的存在,並測定了電磁波的傳播速度等於光速.
38、1894年,義大利馬可尼和俄國波波夫分別發明了無線電報,揭開無線電通信的新篇章.
39、1800年,英國物理學家赫歇耳發現紅外線;
1801年,德國物理學家裡特發現紫外線;
1895年,德國物理學家倫琴發現X射線(倫琴射線),並為他夫人的手拍下世界上第一張X射線的人體照片.
六、光學(3-4選做):
40、1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律.
41、1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象.
42、1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射—泊松亮斑.
43、1864年,英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波;
1887年,赫茲證實了電磁波的存在,光是一種電磁波
44、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變.
45、愛因斯坦還提出了相對論中的一個重要結論——質能方程式:.
46.公元前468-前376,我國的墨翟及其弟子在《墨經》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現象,為世界上最早的光學著作.
47.1849年法國物理學家斐索首先在地面上測出了光速,以後又有許多科學家採用了更精密的方法測定光速,如美國物理學家邁克爾遜的旋轉棱鏡法.(注意其測量方法)
48.關於光的本質:17世紀明確地形成了兩種學說:一種是牛頓主張的微粒說,認為光是光源發出的一種物質微粒;另一種是荷蘭物理學家惠更斯提出的波動說,認為光是在空間傳播的某種波.這兩種學說都不能解釋當時觀察到的全部光現象.
七、相對論(3-4選做):
49、物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗——相對論(高速運動世界), ②熱輻射實驗——量子論(微觀世界);
50、19世紀和20世紀之交,物理學的三大發現:X射線的發現,電子的發現,放射性的發現.
51、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變.
52、1900年,德國物理學家普朗克解釋物體熱輻射規律提出能量子假說:物質發射或吸收能量時,能量不是連續的,而是一份一份的,每一份就是一個最小的能量單位,即能量子;
53、激光——被譽為20世紀的「世紀之光」;
八、波粒二象性(3-5選做):
54、1900年,德國物理學家普朗克為解釋物體熱輻射規律提出:電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎.
55、1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性.(說明動量守恆定律和能量守恆定律同時適用於微觀粒子)
56、1913年,丹麥物理學家玻爾提出了自己的原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎.
57、1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;
58、1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案.電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高.
十、原子物理學(3-5選做):
59、1858年,德國科學家普里克發現了一種奇妙的射線——陰極射線(高速運動的電子流).
60、1906年,英國物理學家湯姆生發現電子,獲得諾貝爾物理學獎.
61、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎.
62、1897年,湯姆生利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型.
63、1909-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型.由實驗結果估計原子核直徑數量級為10 -15m.
1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,並發現了質子.預言原子核內還有另一種粒子,被其學生查德威克於1932年在α粒子轟擊鈹核時發現,由此人們認識到原子核由質子和中子組成.
64、1885年,瑞士的中學數學教師巴耳末總結了氫原子光譜的波長規律——巴耳末系.
65、1913年,丹麥物理學家波爾最先得出氫原子能級表達式;
66、1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核有復雜的內部結構.
天然放射現象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變後新核處於激發態,向低能級躍遷時輻射出的.衰變快慢與原子所處的物理和化學狀態無關.
67、1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發現了兩種放射性更強的新元素——釙(Po)鐳(Ra).
68、1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,發現了質子,
並預言原子核內還有另一種粒子——中子.
69、1932年,盧瑟福學生查德威克於在α粒子轟擊鈹核時發現中子,獲得諾貝爾物理獎.
70、1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發現了正電子和人工放射性同位素.
71、1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變.63、1942年,在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成).
72、1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應).人工控制核聚變的一個可能途徑是:利用強激光產生的高壓照射小顆粒核燃料.
73、1932年發現了正電子,1964年提出誇克模型;
粒子分三大類:媒介子-傳遞各種相互作用的粒子,如:光子;
輕子-不參與強相互作用的粒子,如:電子、中微子;
強子-參與強相互作用的粒子,如:重子(質子、中子、超子)和介子,強子由更基本的粒子誇克組成,誇克帶電量可能為元電荷.
物理學史專題
★伽利略(義大利物理學家)
對物理學的貢獻:
①發現擺的等時性
②物體下落過程中的運動情況與物體的質量無關
③伽利略的理想斜面實驗:將實驗與邏輯推理結合在一起探究科學真理的方法為物理學的研究開創了新的一頁(發現了物體具有慣性,同時也說明了力是改變物體運動狀態的原因,而不是使物體運動的原因)
經典題目
伽利略根據實驗證實了力是使物體運動的原因(錯)
伽利略認為力是維持物體運動的原因(錯)
伽俐略首先將物理實驗事實和邏輯推理(包括數學推理)和諧地結合起來(對)
伽利略根據理想實驗推論出,如果沒有摩擦,在水平面上的物體,一旦具有某一個速度,將保持這個速度繼續運動下去(對)
★胡克(英國物理學家)
對物理學的貢獻:胡克定律
經典題目
胡克認為只有在一定的條件下,彈簧的彈力才與彈簧的形變數成正比(對)
★牛頓(英國物理學家)
對物理學的貢獻
①牛頓在伽利略、笛卡兒、開普勒、惠更斯等人研究的基礎上,採用歸納與演繹、綜合與分析的方法,總結出一套普遍適用的力學運動規律——牛頓運動定律和萬有引力定律,建立了完整的經典力學(也稱牛頓力學或古典力學)體系,物理學從此成為一門成熟的自然科學
②經典力學的建立標志著近代自然科學的誕生
經典題目
牛頓發現了萬有引力,並總結得出了萬有引力定律,卡文迪許用實驗測出了引力常數(對)
牛頓認為力的真正效應總是改變物體的速度,而不僅僅是使之運動(對)
牛頓提出的萬有引力定律奠定了天體力學的基礎(對)
★卡文迪許
貢獻:測量了萬有引力常量
典型題目
牛頓第一次通過實驗測出了萬有引力常量(錯)
卡文迪許巧妙地利用扭秤裝置,第一次在實驗室里測出了萬有引力常量的數值(對)

★亞里士多德(古希臘)
觀點:
①重的物理下落得比輕的物體快
②力是維持物體運動的原因
經典題目
亞里士多德認為物體的自然狀態是靜止的,只有當它受到力的作用才會運動(對)
★開普勒(德國天文學家)
對物理學的貢獻 開普勒三定律
經典題目
開普勒發現了萬有引力定律和行星運動規律(錯)
托勒密(古希臘科學家)
觀點:發展和完善了地心說
哥白尼(波蘭天文學家) 觀點:日心說
第谷(丹麥天文學家) 貢獻:測量天體的運動
威廉?赫歇耳(英國天文學家)
貢獻:用望遠鏡發現了太陽系的第七顆行星——天王星
湯苞(美國天文學家)
貢獻:用「計算、預測、觀察和照相」的方法發現了太陽系第九顆行星——冥王星
泰勒斯(古希臘)
貢獻:電磁波譜.
27、1924年,法國物理學家德布羅意
預言了實物粒子的波動性;
28、1897年,湯姆生
利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型.
29、1909年-1911年,英國物理學家盧瑟福
進行了α粒子散射實驗,並提出了原子的核式結構模型.由實驗結果估計原子核直徑數量級為10 -15 m .
30、1896年,法國物理學家貝克勒爾
發現天然放射現象,說明原子核也有復雜的內部結構.
31、1919年,盧瑟福
用α粒子轟擊氮核,第一次實現了原子核的人工轉變,並發現了質子.
32、1932年查德威克
在α粒子轟擊鈹核時發現中子,由此人們認識到原子核的組成.
33、1932年安德森發現了正電子,1964年蓋爾曼提出誇克模型;
粒子分為三大類:
媒介子,傳遞各種相互作用的粒子如光子;
輕子,不參與強相互作用的粒子如電子、中微子;
強子,參與強相互作用的粒子如質子、中子;強子由更基本的粒子誇克組成,誇克帶電量可能為元電荷的 .
34.密立根
測定電子的電量
35.瓦特在1782年研製成功了具有連桿、飛輪和離心調速器的雙向蒸汽機.
36.人類對天體的認識從「地心說—托勒密」到「日心說—哥白尼」到「開普勒定律」再到「牛頓的萬有引力定律」. 直到1798年英國物理學家卡文迪許利用扭秤裝置比較准確地測出了引力常量萬有引力定律顯示出強大的威力.

㈡ 高中物理學史總結 按人物成就

一、力學
1、1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);
2、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因。
同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
3、1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。
4、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。
5、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察-假設-數學推理的方法,詳細研究了拋體運動。
6、人們根據日常的觀察和經驗,提出「地心說」,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了「日心說」,大膽反駁地心說。
7、17世紀,德國天文學家開普勒提出開普勒三大定律;
8、牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較准確地測出了引力常量;
9、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈應用萬有引力定律,計算並觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發現冥王星。
10、我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同;
俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。
11、1957年10月,蘇聯發射第一顆人造地球衛星;
1961年4月,世界第一艘載人宇宙飛船「東方1號」帶著尤里加加林第一次踏入太空。

二、電磁學
12、1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律,並測出了靜電力常量k的值。
13、16世紀末,英國人吉伯第一個研究了摩擦是物體帶電的現象。
18世紀中葉,美國人富蘭克林提出了正、負電荷的概念。
1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,並發明避雷針。
14、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
15、1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場。
16、1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律。
17、1911年,荷蘭科學家昂納斯發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象。
18、19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳定律。
19、1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱為電流磁效應。
20、法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,並總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。
21、荷蘭物理學家洛倫茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛倫茲力)的觀點。
22、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。
23、1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。
(最大動能僅取決於磁場和D形盒直徑,帶電粒子圓周運動周期與高頻電源的周期相同)
24、1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應定律。
25、1834年,俄國物理學家楞次發表確定感應電流方向的定律——楞次定律。
26、1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即為其應用之一。

三、熱學
27、1827年,英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。
28、1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述。
29、1848年 開爾文提出熱力學溫標,指出絕對零度是溫度的下限。
30、19世紀中葉,由德國醫生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最後確定能量守恆定律。
21、1642年,科學家托里拆利提出大氣會產生壓強,並測定了大氣壓強的值。
四年後,帕斯卡的研究表明,大氣壓隨高度增加而減小。
1654年,為了證實大氣壓的存在,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗。

四、波動學
22、17世紀,荷蘭物理學家惠更斯確定了單擺周期公式。周期是2s的單擺叫秒擺。
23、1690年,荷蘭物理學家惠更斯提出了機械波的波動現象規律——惠更斯原理。
24、奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。

五、光學
25、1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。
26、1801年,英國物理學家托馬斯•楊成功地觀察到了光的干涉現象。
27、1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射——泊松亮斑。
28、1864年,英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。
29、1887年,德國物理學家赫茲用實驗證實了電磁波的存在,並測定了電磁波的傳播速度等於光速。
30、1894年,義大利馬可尼和俄國波波夫分別發明了無線電報,揭開無線電通信的新篇章。
31、1800年,英國物理學家赫歇耳發現紅外線;
1801年,德國物理學家裡特發現紫外線;
1895年,德國物理學家倫琴發現X射線(倫琴射線),並為他夫人的手拍下世界上第一張X射線的人體照片。
32、激光——被譽為20世紀的「世紀之光」。

六、波粒二象性
33、1900年,德國物理學家普朗克為解釋物體熱輻射規律提出能量子假說:物質發射或吸收能量時,能量不是連續的(電磁波的發射和吸收不是連續的),而是一份一份的,每一份就是一個最小的能量單位,即能量子E=hν,把物理學帶進了量子世界;
受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎。
34、1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性。
35、1913年,丹麥物理學家玻爾提出了自己的原子結構假說,最先得出氫原子能級表達式,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。
36、1885年,瑞士的中學數學教師巴耳末總結了氫原子光譜的波長規律——巴耳末系。
37、1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;
1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高。

七、相對論
38、物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗——相對論(高速運動世界),
②熱輻射實驗——量子論(微觀世界);
39、19世紀和20世紀之交,物理學的三大發現:X射線的發現,電子的發現,放射性的發現。
40、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
狹義相對論的其他結論:
①時間和空間的相對性——長度收縮和動鍾變慢(或時間膨脹)
②相對論速度疊加:光速不變,與光源速度無關;一切運動物體的速度不能超過光速,即光速是物質運動速度的極限。
③相對論質量:物體運動時的質量大於靜止時的質量。
41、愛因斯坦還提出了相對論中的一個重要結論——質能方程式:E=mc2。

八、原子物理學
42、1858年,德國科學家普呂克爾發現了一種奇妙的射線——陰極射線(高速運動的電子流)。
43、1897年,湯姆生利用陰極射線管發現了電子,指出陰極射線是高速運動的電子流。說明原子可分,有復雜內部結構,並提出原子的棗糕模型。1906年,獲得諾貝爾物理學獎。
44、1909-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型。由實驗結果估計原子核直徑數量級為10 -15 m 。
45、1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核有復雜的內部結構。
天然放射現象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變後新核處於激發態,向低能級躍遷時輻射出的。衰變快慢與原子所處的物理和化學狀態無關。
46、1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,發現了質子,
並預言原子核內還有另一種粒子——中子。
47、1932年,盧瑟福學生查德威克於在α粒子轟擊鈹核時發現中子,獲得諾貝爾物理獎。
48、1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發現了正電子和人工放射性同位素。
49、1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發現了兩種放射性更強的新元素——釙(Po)鐳(Ra)。
50、1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變。
51、1942年,在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成)。
52、1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是:利用強激光產生的高壓照射小顆粒核燃料。
53、粒子分三大類:媒介子-傳遞各種相互作用的粒子,如:光子;
輕子-不參與強相互作用的粒子,如:電子、中微子;
強子-參與強相互作用的粒子,如:重子(質子、中子、超子)和介子。
54、1964年蓋爾曼提出了誇克模型,認為介子是由誇克和反誇克所組成,重子是由三個誇克組成。

網上摘的,不是安人物成就,不過很全。

㈢ 求高中物理科學家的貢獻總結。

1、牛頓


艾薩克·牛頓是英格蘭物理學家、數學家、天文學家、自然哲學家。主要貢獻是他在1687年發表的論文《自然哲學的數學原理》里的萬有引力和三大運動定律。





2、愛因斯坦


愛因斯坦是美籍德裔猶太人,舉世聞名的物理學家,現代物理學的開創者和奠基人,相對論、「質能關系」、激光的提出者,「決定論量子力學詮釋」的捍衛者。



3、麥克斯韋


麥克斯韋(James Clerk Maxwell,1831.06.13-1879.11.5)——19世紀偉大的英國物理學家、數學家。麥克斯韋主要從事電磁理論、分子物理學、統計物理學、光學、力學、彈性理論方面的研究,他預言了電磁波的存在,這種理論預見後來得到了充分的實驗驗證。




4、玻爾


尼爾斯·亨利克·戴維·玻爾是丹麥物理學家。玻爾是哥本哈根學派的創始人,哥本哈根大學科學碩士和博士,丹麥皇家科學院院士,曾獲丹麥皇家科學文學院金質獎章,英國曼徹斯特大學和劍橋大學名譽博士學位,榮獲1922年諾貝爾物理學獎。




5、溫伯格


史蒂文·溫伯格生於紐約,美國物理學家,1979年獲諾貝爾物理學獎。他研究過粒子物理中的許多課題,包括量子場論的高能行為,他還發展了導出量子場論的方法,這些方法成為後來他的著作《場的量子理論》的第一章,並且著手寫《引力與宇宙學》。這兩本書,特別是後者,是在各自領域最有影響力的教材之一。

㈣ 高中物理,重要物理學家及其成就

1、胡克:英國物理學家;發現了胡克定律(F彈=kx)
2、伽利略:義大利的著名物理學家;推斷並檢驗得出,無論物體輕重如何,其自由下落的快慢是相同的;通過斜面實驗,推斷出物體如不受外力作用將維持勻速直線運動的結論.後由牛頓歸納成慣性定律.伽利略的科學推理方法是人類思想史上最偉大的成就之一.
3、牛頓:英國物理學家; 動力學的奠基人,他總結和發展了前人的發現,得出牛頓定律及萬有引力定律,奠定了以牛頓定律為基礎的經典力學.
4、開普勒:丹麥天文學家;發現了行星運動規律的開普勒三定律,奠定了萬有引力定律的基礎.
5、卡文迪許:英國物理學家;巧妙的利用扭秤裝置測出了萬有引力常量.
7、焦耳:英國物理學家;測定了熱功當量J=4.2焦/卡,為能的轉化守恆定律的建立提供了堅實的基礎.研究電流通過導體時的發熱,得到了焦耳定律.
9、庫侖:法國科學家;巧妙的利用「庫侖扭秤」研究電荷之間的作用,發現了「庫侖定律」.
10、密立根:美國科學家;利用帶電油滴在豎直電場中的平衡,得到了基本電荷e .
11、歐姆:德國物理學家;在實驗研究的基礎上,歐姆把電流與水流等比較,從而引入了電流強度、電動勢、電阻等概念,並確定了它們的關系.
12、奧斯特:丹麥科學家;通過試驗發現了電流能產生磁場.
13、安培:法國科學家;提出了著名的分子電流假說.
14、湯姆生:英國科學家;研究陰極射線,發現電子,測得了電子的比荷e/m;湯姆生還提出了「棗糕模型」,在當時能解釋一些實驗現象.
16、法拉第:英國科學家;發現了電磁感應,親手製成了世界上第一台發電機,提出了電磁場及磁感線、電場線的概念.
18、麥克斯韋:英國科學家;總結前人研究電磁感應現象的基礎上,建立了完整的電磁場理論.
20、惠更斯:荷蘭科學家;在對光的研究中,提出了光的波動說.發明了擺鍾.21、托馬斯·楊:英國物理學家;首先巧妙而簡單的解決了相干光源問題,成功地觀察到光的干涉現象.(雙孔或雙縫干涉)
23、普朗克:德國物理學家;提出量子概念—電磁輻射(含光輻射)的能量是不連續的,E與頻率υ成正比.其在熱力學方面也有巨大貢獻.
24、愛因斯坦:他提出了「光子」理論及光電效應方程,建立了狹義相對論及廣義相對論.提出了「質能方程」.

㈤ 高中物理科學家都有哪些,及各自貢獻是什麼

一、力學:
1.1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體不會比輕物體下落得快;他研究自由落體運動程序如下:
提出假說:自由落體運動是一種對時間均勻變化的最簡單的變速運動;
數學推理:由初速度為零、末速度為v的勻變速運動平均速度 和 得出 ;再應用 從上式中消去v,導出 即 。
實驗驗證:由於自由落體下落的時間太短,直接驗證有困難,伽利略用銅球在阻力很小的斜面上滾下,上百次實驗表明: ;換用不同質量的小球沿同一斜面運動,位移與時間平方的比值不變,說明不同質量的小球沿同一斜面做勻變速直線運動的情況相同;不斷增大斜面傾角,重復上述實驗,得出該比值隨斜面傾角的增大而增大,說明小球做勻變速運動的加速度隨斜面傾角的增大而變大。
合理外推:把結論外推到斜面傾角為90°的情況,小球的運動成為自由落體,伽利略認為這時小球仍保持勻變速運動的性質。(用外推法得出的結論不一定都正確,還需經過實驗驗證)
註:伽利略對自由落體的研究,開創了研究自然規律的一種科學方法。(回憶理想斜面實驗)
2.1683年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律。
3.17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
4.20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。
5.17世紀,德國天文學家開普勒提出開普勒三定律;牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較准確地測出了引力常量(體現放大和轉換的思想);1846年,科學家應用萬有引力定律,計算並觀測到海王星。
6.我國宋朝發明的火箭與現代火箭原理相同,但現代火箭結構復雜,其所能達到的最大速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家。
7.17世紀荷蘭物理學家惠更斯確定了單擺的周期公式。周期是2s的單擺叫秒擺。
8.奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。(相互接近,f增大;相互遠離,f減少)

㈥ 物理之中,著名人物與其發現 (高中部分)

高中教科書出現部份物理學家學術成就簡介

一、阿基米德;
1、發現了浮力定律;2、證明了杠桿定律;3、提出了精確地確定物體重心的方法;4、他還認為地球是圓球狀的,並圍繞著太陽旋轉, 5、發明「阿基米德螺旋」的揚水機。
二、牛頓:
1、建立微積分;2、發現了二項式定理。3、色散試驗。並計算出不同顏色光的折射率,精確地說明了色散現象,揭開了物質的顏色之謎。4、製成了第一架反射望遠鏡;5、提出了光的「微粒說」。6、發現著名的萬有引力定律和牛頓運動三定律。
三、焦耳:
1、發現焦耳-楞次定律;2、通過實驗否定了熱質說;3、測出了熱功當量近似值;並測得了熱功當量的平均值為423.9千克米/千卡。4、 計算出了氣體分子的熱運動速度值,從理論上奠定了波義耳-馬略特和蓋-呂薩克定律的基礎,並解釋了氣體對器壁壓力的實質。5、發現焦耳-湯姆遜效應。這個效應在低溫和氣體液化方面有廣泛的應用。焦耳對蒸汽機的發展也做出了不少有價值的工作。
四、愛因斯坦:
1、光電效應定律的發現。確立波粒二象性學說。解釋的光電效應,推導出光電子的最大能量同入射光的頻率之間的關系。
2、分子大小的新測定法,通過觀測由分子運動的漲落現象所產生的懸浮粒子的無規則運動,來測定分子的實際大小,證明原子的存在。
3、完整的提出了狹義相對論。狹義相對論最重要的結論是質量守恆原理失去了獨立性,他和能量守恆定律融合在一起,質量和能量是可以相互轉化的。使力學和電磁學也就在運動學的基礎上統一起來。
4、發現質能關系,為核能開發利用奠定基礎。
5、建成廣義相對論以;6、在輻射量子方面提出引力波理論,7、開創了現代宇宙學。
五、亞里士多德:
1、首次將哲學和其他科學區別開來,開創了邏輯、倫理學、政治學和生物學等學科的獨立研究。
2、他是形式邏輯學的奠基人,他力圖把思維形式和存在聯系起來,並按照客觀實際來闡明邏輯的范疇。
3、亞里士多德認為運行的天體是物質的實體,地是球形的,是宇宙的中心;
4、在物理學方面,他反對原子論,不承認有真空存在;他還認為物體只有在外力推動下才運動,外力停止,運動也就停止。
六、哥白尼
建立日心說。
七、笛卡兒:
1、創立了解析幾何學,為微積分的創立奠定了基礎,從而開拓了變數數學的廣闊領域。
2、對折射定律提出了理論上的推證。不過他的假定條件是錯誤的,他的推證得出了光由光疏媒質進入光密媒質時速度增大的錯誤結論。
3、對人眼進行光學分析,解釋了視力失常的原因是晶狀體變形,設計了矯正視力的透鏡。
4、比較完整地第一次表述了慣性定律;
5、第一次明確地提出了運動量守恆定律;
6、善於運用直觀「模型」來說明物理現象。運用假設和假說的方法研究物理,提倡理性、提倡科學為現代物理的研究提供範例。
笛卡兒堪稱17世紀及其後的歐洲哲學界和科學界最有影響的巨匠之一,被譽為「近代科學的始祖」。
八、伏特:
1、製造起電盤。2、設計了一種靜電計,3、發現了沼氣。並製成了一種稱為氣體燃化的儀器,可以用電火花點燃一個封閉容器內的氣體。4、發明了伏達電堆,這是歷史上的神奇發明之一。

九、伽利略:
1、在比薩斜塔上做了「兩個鐵球同時落地」的著名實驗,從此推翻了亞里斯多德「物體下落速度和重量成比例」的學說,糾正了這個持續了1900年之久的錯誤結論。
2、創制了天文望遠鏡(後被稱為伽利略望遠鏡),並用來觀測天體,他發現了月球表面的凹凸不平,並親手繪制了第一幅月面圖。人們爭相傳頌:「哥倫布發現了新大陸,伽利略發現了新宇宙」。
十、惠更斯
1、改進望遠鏡,並於1655年用新望遠鏡發現了土衛六,從此聞名於世。2、創立了光的波動學,在建立向心力概念和極光研究等方面也有重要貢獻。
十一、安培:
1、發現了安培定則: 2、發現電流的相互作用規律: 3、發明了電流計:4、提出分子電流假說
5、總結了電流元之間的作用規律——安培定律:
十二、開普勒:
1.發現了行星運行三定律,為牛頓建立萬有引力定律打下堅實基礎。因此,人們稱頌他是「天空法律創制者」、「天體力學奠基人」。
2.在1627年完成了《魯道夫星表》的編制,這是當時最完備最准確的一部星表,在以後的一百多年裡幾乎毫無修改地被天文學家和航海家尊為經典。
3.闡述了光是怎樣成像的,研究了大氣折射的計算,並且提出了折射望遠鏡的原理。開普勒望遠鏡光路圖。
十三、庫侖:
1、提出了一種可以精確測量微小力的扭秤。2、發現庫侖定律。3、提出過帶電物體因漏電而損失電量的衰減公式和分子的極化模型等,這種模型是A.M.安培提出分子電流的重要思想基礎。
十四、奧斯特
1、發現了電流對磁針的作用,即電流的磁效應。由此開辟了物理學的新領域——電磁學。
2、提出了光與電磁之間聯系的思想。
十五、法拉弟:
1、發現通電的導線能繞磁鐵旋轉以及磁體繞載流導體的運動,第一次實現了電磁運動向機械運動的轉換,從而建立了電動機的實驗室模型。2、發現了電磁感應定律。使人類掌握了電磁運動相互轉變以及機械能和電能相互轉變的方法,成為現代發電機、電動機、變壓器技術的基礎。3、發現電解第一和第二定律,為現代電化學工業奠定了基礎,4、發現了磁致光效應,成為人類第一次認識到電磁現象與光現象間的關系。5、最早提出了光的電磁本質的思想。他的思想和觀點完全正確,均為後人的實驗所驗證。6、首先提出了磁力線、電力線的概念,在電磁感應、電化學、靜電感應的研究中進一步深化和發展了力線思想,7、第一次提出場的思想,建立了電場、磁場的概念,8、否定了超距作用觀點。
十六、麥克斯韋:
1、集成並發展了法拉第關於電磁相互作用的思想,將所有電磁現象概括為一組偏微分方程組,預言了電磁波的存在,2、確認光也是一種電磁波,從而創立了經典電動力學。3、氣體運動理論、光學、熱力學、彈性理論等方面有重要貢獻。
十七:卡諾:
1、運用了理想模型的研究方法,構思了理想化的熱機——後稱卡諾可逆熱機(卡諾熱機),提出了作為熱力學重要理論基礎的卡諾循環和卡諾定理,從理論上解決了提高熱機效率的根本途徑。
2、指出了熱機工作過程中最本質的東西:熱機必須工作於兩個熱源之間,才能將高溫熱源的熱量不斷地轉化為有用的機械功;「熱的動力與用來實現動力的介質無關,動力的量僅由最終影響熱素傳遞的物體之間的溫度來確定」。
十八、開爾文:
1、創立了熱力學溫標。他指出:「這個溫標的特點是它完全不依賴於任何特殊物質的物理性質。」這是現代科學上的標准溫標。
2、與克勞修斯共同創立熱力學第二定律:「不可能從單一熱源吸熱使之完全變為有用功而不產生其他影響。」他從熱力學第二定律斷言,能量耗散是普遍的趨勢。
3、與焦耳合作進一步研究氣體的內能,對焦耳氣體自由膨脹實驗作了改進,進行氣體膨脹的多孔塞實驗,發現了焦耳-湯姆孫效應,即氣體經多孔塞絕熱膨脹後所引起的溫度的變化現象。這一發現成為獲得低溫的主要方法之一,廣泛地應用到低溫技術中。
4、從理論研究上預言了一種新的溫差電效應,即當電流在溫度不均勻的導體中流過時,導體除產生不可逆的焦耳熱之外,還要吸收或放出一定的熱量(稱為湯姆孫熱)。這一現象後叫湯姆孫效應。
5、發明了電像法,這是計算一定形狀導體電荷分布所產生的靜電場問題的有效方法。
6、推算了振盪的頻率,為電磁振盪理論研究作出了開拓性的貢獻。
7、成功地完成了電力、磁力和電流的「力的活動影像法」,這已經是電磁場理論的雛形了(如果再前進一步,就會深人到電磁波問題)。
8、 預言了城市將採用電力照明,並提出了遠距離輸電的可能性。他的這些設想以後都得以實現
9、 對電動機進行了改造,大大提高了電動機的實用價值。
10、建立電磁量的精確單位標准和設計各種精密的測量儀器。他發明了鏡式電流計(大大提高了測量靈敏度)、雙臂電橋、虹吸記錄器(可自動記錄電報信號)等等,大大促進了電測量儀器的發展。
11、研究了電纜中信號傳播情況,解決了長距離海底電纜通訊的一系列理論和技術問題。裝設了第一條大西洋海底電纜,這是開爾文相當出名的一項工作。
十九、克勞修斯:
1、發現了熱力學基本現象,得出了熱力學第二定律的克勞修斯陳述。
2、提出了熱力學第二定律的定義:「熱量不能自動地從低溫物體傳向高溫物體。」
3、推導了克勞修斯方程——關於氣體的壓強、體積、溫度和氣體普適常數之間的關系,修正了原來的范德瓦爾斯方程。
4、提出了熵的概念,進一步發展了熱力學理論。使熱力學第二定律公式化,使它的應用更為廣泛了。
5、提出了氣體分子繞本身轉動的假說。確定了實際氣體與理想氣體的區別。
6、研究了電解質和電介質。他重新解釋了鹽的電解質溶液中分子的運動;他建立了固體的電介質理論。
7、提出描述分子極性同電介質常數之間關系的方程。同時他還提出了電解液分解的假說。這一假說,後來經過阿侖尼烏斯的進一步發展成為電解液理論。
8、推導出了氣體分子平均自由程公式,找出了分子平均自由程與分子大小和擴散系數之間的關系。同時,他還提出分子運動自由程分布定律。他的研究也為氣體分子運動論的建立做出了傑出的貢獻。
9、計算出了氣體分子運動速度。後來,他確定了氣體對於器壁的壓力值相當於分子撞擊器壁的平均值。運用與概率論相結合的平均值方法,創建了統計物理學的學科。並推導出能表示受壓力影響的物體熔點(凝固點)的方程式,後來被稱為克拉珀龍-克勞修斯方程。
10、在晚年,他不恰當地把熱力學第二定律引用到整個宇宙,認為整個宇宙的溫度必將達到均衡而不再有熱量的傳遞,從而成為所謂的熱寂狀態,這就是克勞修斯首先提出來的「熱寂說」。熱寂說否定了物質不滅性在質上的意義,而且把熱力學第二定律的應用范圍無限的擴大了。
二十、玻爾茲曼:
1、應用熱力學理論,導出了熱輻射的斯特藩定律,取得了應用理論知識驗證實驗定律的一個重大成果。
2、與克勞修斯、麥克斯韋在充分研究氣體分子運動論的基礎上,開辟的一門新的理論物理學科。
3、在重力場中引進了速度分布率,並用H定理證明了速度分布率,給予熵以統計的意義;完成了輸運過程的數學理論。他用能的自發運動的觀點,解釋了熱力學第二定律。
4、建立了一系列的統計物理理論。在平衡態的統計理論中,他提出了各態歷經假說;在求宏觀平衡性質的方法研究中,他又提出了幾率法,並與麥克斯韋共同總結出了近獨立子系最可幾分布的麥克斯韋一玻爾茲曼分布律。
5、創立了系統的非平衡態的統計理論。他在研究了如何通過分子的相互碰撞而使速度分布趨於平衡態分布時,建立了H定理、它相當於熱力學中的熵增加原理,是熱力學第二定律的統計詮釋的基礎。
6、確立了非平衡態的分布函數 。 玻爾茲曼在哲學觀點上,反對馬赫的唯象論,1899年,他對馬赫的哲學理論進行過公開的批評,從而捍衛了原子論學說。
二十一、約翰.湯姆遜:
1、研究了陰極射線在磁場和電場中的偏轉,作了比值e/m(電子的電荷與質量之比)的測定,結果他從實驗上發現了電子的存在。
2、原子模型,把原子看成是一個帶正電的球,電子在球內運動。
3、與阿斯頓共同進行陽極射線的質量分析,發現了氖的同位素。
二十二、威廉•湯姆遜亦譯為湯姆生。
1、創立絕對溫標(亦稱開氏溫標);把熱力學第一定律和熱力學第二定律具體應用到熱學、電學和彈性現象等方面,對熱力學的發展起了一定作用。
2、製成靜電計、鏡式電流計、雙臂電橋等很多電學儀器。
3、證明了電容放電是一種振盪。19世紀末論述了原子的構造。堅持用力學模型來解釋一切物理現象。
二十三、盧瑟福
1、發現了鈾放射性輻射的不同成份的α輻射和β輻射。同時預言並證實,穿透能力更強的γ射線, 1900年提出了重元素自發衰變理論。 同時發現α射線的能量比β和γ射線大99倍左右。
2、1904年總結出放射性產物鏈式衰變理論,奠定了重元素放射系元素移位的基本原理。他的發現打破了元素不會改變的傳統觀念,使人們對物質結構的研究進人了原子內部的深層次,為開辟一個新的學科領域棗原子核物理做了開創性工作。
3、對α散謝實驗的研究,提出了原子的有核結構模型。把原子結構的研究引向正確的軌道。被譽為「原子物理學之父」。
4、1919年實現人工核反應。證明這是α粒子轟擊N之後使之衰變放出了氫原子核即質子:第一次實現了改變化學元素的人工核反應。
5、他還預言了重氫和中子的存在,這在後來都得到了證實。
二十四、倫琴
在進行陰極射線的實驗時第一次注意到放在射線管附近的氰亞鉑酸鋇小屏上發出微光。經過研究,他確定了熒光屏的發光是由於射線管中發出的某種射線所致。因為當時對於這種射線的本質和屬性還了解得很少,所以他稱它為X射線,後來,人們將這種射線命名為倫琴射線。
二十五、玻爾
1、引入了「定態」和「躍遷」這兩個全新的概念。「定態」概念把經典物理學在一定邊界條件和初始條件下所允許的各種連續狀態進行篩選,只允許某些分立狀態存在,從而排除了定態之間的其他狀態,形成若干鴻溝。「躍遷」(最初叫「過渡」)則把一個定態到另一定態的變化看作一種突然的、整體的、不需時間的行為,不允許經典物理那種逐漸的、連續的、分階段動作。兩個狀態之間的能量差形成了原子發射和吸收光的機制。
2、提出了對應原理:在同一問題的經典理論與量子理論之間,總可以從形式上找到相對應的類比關系。合理地解釋了眾多的現象,如各元素的光譜與X射線譜、原子中電子的組態和元素周期表等。
二十六、玻意耳
1、證實了「空氣的彈性有能力作出遠遠超過我們需要歸之於它的事實」,並發現了氣體的體積與壓強的反比關系,建立玻意耳-馬略特定律。
2、發現了水在結冰時會膨脹。他主張熱是分子的運動。他擁護原子論假說,認為一切物體都是由較小的、完全相同的粒子組成的。
3、首先提出色光是白光的變種,表述了白光的復雜性的思想,指出物體的顏色並不是物體本身的內在屬性,而是由光線在被照射面上發生的變異引起的。第一次記載了在肥皂泡和玻璃球中產生的彩色薄膜條紋。他觀察到靜電感應現象,指出化學發光現象是冷光等。在實驗過程中研製成氣壓計。
二十七、居里夫人
1、發現釷(Th)亦具有放射性,並且瀝青鈾礦的放射性比任何含量的鈾和釷能夠解釋的要強。
2、發現了放射性元素鐳。他們最終從8噸廢瀝青鈾礦中製得1克純凈的氯化鐳,還提出了β射線(現在已知它是由電子組成的)是帶負電荷的微粒的觀點。並於1899年從瀝青鈾礦中發現放射性元素錒Ac)一起分離出純凈的金屬鐳。
二十八、查德威克,
1、發現β射線能譜是連續的。並測出了原子核的電荷,從而完全證實了盧瑟福的原子理論和關於元素的核結構以及核電荷數與元素的原子序數相等的結論。
2、他根據約里奧-居里夫婦的實驗,他敏銳地覺察到鈹福射決不是γ輻射,很可能就是盧瑟福在1920年所預言的、也是他多年尋找的——中子輻射。通過一系列實驗研究,最後終於證實了中子的存在,鈹福射即是由鈹中射出的中子組成的。從而發現了中子。
二十九、恩利克•費米
1、發展了量子統計學,用它來描述某類粒子大量聚集的行為,這類粒子人稱費米子。由於電子、質子和中子——構成普通物質的三種「建築材料」都是費米子,所以費米學說具有重要的科學意義。
2、1934年用中子轟擊原子核產生人工放射現象。開始中子物理學研究。被譽為「中子物理學之父」。
3、1941年底,費米在哥倫比亞大學主持建造了世界上第一座原子反應堆,實現了自持式鏈式反應,為製造原子彈邁出了決定性的一步。1942年12月2日,在芝加哥,費米指導下設計和製造出來的核反應堆首次運轉成功。這是原子時代的真正開端,因為這是人類第一次成功地進行了一次核鏈式反應。
三十、哈恩
1、發現鐵核受快中子轟擊也會發生裂變,核裂變的發現使世界開始進人原子能時代。
三十一、普朗克
1、找到了一個適用於電磁波譜所有波段的黑體輻射的經驗公式。在公式推導中,他提出一個革命性的假定,認為能量只能取某一基本量hv(即能量量子)的整數倍 ,h為作用量子 ,即普朗克常量。對20世紀20年代量子理論的進一步發展起了主要作用。
三十二、康普頓
1、提出了電子有限線度(半徑1.85×10-10」cm)的假設,說明密度與散射角的觀察關系。形成的電子以及其它基本粒子的「康普頓波長」概念。這個概念後來在他自己的X射線散射的量子理論以及量子電動力學中都充分地得到了發展。
2、研究關於決定磁化效應對磁晶體X射線反射的密度問題。這項研究表明,電子軌道運動對磁化效應不起作用。他認為鐵磁性是由於電子本身的固有特性所引起的,這是一個基本磁荷。這一看法的正確性後來由他在芝加哥大學指導的學生斯特思斯(J•C•Stearns)用實驗得出的結果作了更有力的證明。
3、提出光量子不僅具有能量,而且具有某些類似力學意義的動量,在碰撞過程中,光子把一部分能量傳遞給電子,減少了它的能量,因而也就降低了它的頻率。另外,根據碰撞粒子的能量和動量守恆,可以導出頻率改變和散射角的依賴關系,這也就能很好地說明了康普頓所觀測到的事實。讓人們承認:光除了具有早巳熟知的波動性以外,還具有粒子的性質。這就說明了一束光是由互相分離的若干粒子所組成的,這種粒子在許多方面表現出和通常物質的粒子具有同樣的性質。
4、發現「康普頓效應」
另:α、β、γ射線與X射線
實質上x射線就是一種光子流,一種電磁波,具有光線的特性,是光譜家族中的成員,只是其振盪頻率高,波長短罷了,其波長在1~0.01埃(1埃=10-10米)。X射線在光譜中能量最高、范圍最寬,可從紫外線直到幾十甚至幾百兆電子伏特(MeV)。因為其能量高,所以能穿透一定厚度的物質。能量越高,穿透得越厚,所以在醫學上能用來透視、照片和進行放射治療。
科學家們在放射線研究的過程中,還發現放射性同位素在衰變時能放射三種射線:α、β、γ射線。α射線實質上就是氦原子核流,它的電離能力強,但穿透力弱,一張薄紙就可擋住;β射線實質上就是電子流,電離能力較α射線弱,而穿透力較強,故常用於放射治療;γ射線本質上同X射線一樣,是一種波長極短,能量甚高的電磁波,是一種光子流,不帶電,以光速運動,具有很強的穿透力。因此常常用於放射治療。

閱讀全文

與高中物理發明家以及發明的什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1345
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:879
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1018
win7如何刪除電腦文件瀏覽歷史 瀏覽:1050
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1694
西安瑞禧生物科技有限公司怎麼樣 瀏覽:958
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1646
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053