A. 周期怎麼算物理公式
物理中周期的演算法是T=1/f,衛星環繞地球,作勻速圓周運動,軌道周期,是指一顆行星(或其它天體)環繞軌道一周需要的時間,環繞太陽運行的星體有很多種不同的軌道周期。
行星,通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同。一般來說行星需具有一定質量,行星的質量要足夠的大且近似於圓球狀。
B. 周期怎麼算物理
物理中,周期的國際單位制單位是秒(s)。當然在有些情況下也可以是其它單位,比如天體物理中的年(y),粒子物理中的毫秒(ms)、微秒(μs)等等。周期就是物體做往復運動或物理量做周而復始的變化時,重復一次所經歷的時間。
物體或物理量(如交變電流、電壓等)完成一次振動(或振盪)所經歷的時間。在各種周期運動或周期變化中,物體或物理量從任一狀態開始發生變化,經過一個周期或周期的整數倍時間後,總是回復到開始的狀態。
勻速圓周運動是一種周期性運動,所謂周期性,是指運動物體經過一定時間後,又重復回到原來的位置,瞬時速度也重復回到原來的大小和方向。
C. 物理周期T公式
物理周期T公式是T=1/f(s)。周期的國際單位制單位是秒(s)。周期就是物體作往復運動或物抄理量作周而復始的變化時,重復一次所經歷的時間。物體或物理量完成一次振動所經歷的時間。在各種周期運動或周期變化襲中,物體或物理量從任一狀態開始發生變化,經過一個周期或周期的整百數倍時間後,總是回復到開始的狀態。
D. 物理中求周期的公式是
周期與頻率:T=1/f
衛星繞行速度、角速度、周期:V=(GM/r)^1/2;ω=(GM/r3)^1/2;T=2π(r3/GM)^1/2{M:中心天體質量}
具體見圖:
完成一次振動所需要的時間,稱為振動的周期。
若f(x)為周期函數,則把使得f(x+l)=f(x)對定義域中的任何x都成立的最小正數l,稱為f(x)的(基本)周期。
對於函數y=f(x),如果存在一個不為零的常數T,使得當x取定義域內的每一個值時,f(x+T)=f(x)都成立,那麼就把函數y=f(x)叫做周期函數,不為零的常數T叫做這個函數的周期。事實上,任何一個常數kT(k∈Z,且k≠0)都是它的周期。
並且周期函數f(x)的周期T是與x無關的非零常數,且周期函數不一定有最小正周期。
(4)物理的平均周期怎麼算擴展閱讀:
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
周期函數的判定方法分為以下幾步:
(1)判斷f(x)的定義域是否有界;
例:f(x)=cosx(≤10)不是周期函數。
(2)根據定義討論函數的周期性可知非零實數T在關系式f(x+T)= f(x)中是與x無關的,故討論時可通過解關於T的方程f(x+T)- f(x)=0,若能解出與x無關的非零常數T便可斷定函數f(x)是周期函數,若這樣的T不存在則f(x)為非周期函數。
例:f(x)=cosx^2 是非周期函數。
(3)一般用反證法證明。(若f(x)是周期函數,推出矛盾,從而得出f(x)是非周期函數)。
例:證f(x)=ax+b(a≠0)是非周期函數。
證:假設f(x)=ax+b是周期函數,則存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0與T≠0矛盾,∴f(x)是非周期函數。
例:證f(x)= ax+b是非周期函數。
證:假設f(x)是周期函數,則必存在T(≠0)對 ,有(x+T)= f(x),當x=0時,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)與f(x+T)= f(x)矛盾,∴f(x)是非周期函數。
E. 怎麼計算物理中的周期
周期T等於頻率f的倒數