導航:首頁 > 物理學科 > 物理學有多少知識

物理學有多少知識

發布時間:2023-03-09 13:19:25

Ⅰ 物理學包含哪些東西

物理學包含了以下幾方面:
1. 牛頓力學(Mechanics)與理論力學(Rational mechanics)---研究物體機械運動的基本規律及關於時空相對性的規律;
2. 電磁學(Electromagnetism)與電動力學(Electrodynamics)---研究電磁現象,物質的電磁運動規律及電磁輻射等規律;
2. 熱力學(Thermodynamics)與統計力學(Statistical mechanics)---研究物質熱運動的統計規律及其宏觀表現;
3. 相對論(Relativity)---研究物體的高速運動效應以及相關的動力學規律;
4. 量子力學(Quantum mechanics)----研究微觀物質運動現象以及基本運動規律;
此外,還有:
粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等等。

Ⅱ 物理學的含義是什麼包括哪些知識

物理學是研究自然界的物質結構、物體間的相互作用和物體運動最一般規律的自然科學。物理學研究的范圍 —— 物質世界的層次和數量級物理學 (Physics)質子 10-15 m空間尺度:物 質 結 構物質相互作用物質運動規律微觀粒子Microscopic介觀物質mesoscopic宏觀物質macroscopic宇觀物質cosmological類星體 10 26 m時間尺度:基本粒子壽命 10-25 s宇宙壽命 1018 s緒 論E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小 的細胞原子原子核基本粒子DNA長度星系團銀河系最近恆 星的距離太陽系太陽山哈勃半徑超星系團人蛇吞尾圖,形象地表示了物質空間尺寸的層次物理現象按空間尺度劃分:量子力學經典物理學宇宙物理學按速率大小劃分: 相對論物理學非相對論物理學按客體大小劃分: 微觀系統宏觀系統 按運動速度劃分: 低速現象高速現象 實驗物理理論物理計算物理今日物理學物理學的發展

【】● 牛頓力學 (Mechanics)研究物體機械運動的基本規律及關於時空相對性的規律

【】● 電磁學 (Electromagnetism)研究電磁現象,物質的電磁運動規律及電磁輻射等規律

【】● 熱力學 (Thermodynamics)研究物質熱運動的統計規律及其宏觀表現

【】● 相對論 (Relativity)研究物體的高速運動效應以及相關的動力學規律

【】● 量子力學 (Quantum mechanics)研究微觀物質運動現象以及基本運動規律二.物理學的五大基本理論物理學是一門最基本的科學;是最古老,但發展最快的科學;它提供最多,最基本的科學研究手段.物理學是一切自然科學的基礎物理學派生出來的分支及交叉學科物理學構成了化學,生物學,材料科學,地球物理學等學科的基礎,物理學的基本概念和技術被應用到所有自然科學之中.物理學與數學之間有著深刻的內在聯系粒子物理學原子核物理學原子分子物理學固體物理學凝聚態物理學激光物理學等離子體物理學地球物理學生物物理學天體物理學宇宙射線物理學三. 物理學是構成自然科學的理論基礎四. 物理學與技術20世紀,物理學被公認為科學技術發展中最重要的帶頭學科

【】● 熱機的發明和使用,提供了第一種模式:

【】● 電氣化的進程,提供了第二種模式:核能的利用激光器的產生層析成像技術(CT)超導電子技術技術—— 物理—— 技術物理—— 技術—— 物理粒子散射實驗X 射線的發現受激輻射理論低溫超導微觀理論電子計算機的誕生

【】● 1947年 貝爾實驗室的巴丁,布拉頓和肖克來發明了晶體管,標志著信息時代的開始

【】● 1962年 發明了集成電路

【】● 70年代後期 出現了大規模集成電路

【】● 1925 26年 建立了量子力學

【】● 1926年 建立了費米 狄拉克統計

【】● 1927年 建立了布洛赫波的理論

【】● 1928年 索末菲提出能帶的猜想

【】● 1929年 派爾斯提出禁帶,空穴的概念同年貝特提出了費米面的概念

【】● 1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子晶體晶體管的發明大規模集成電路電子計算機信息技術與工程

【】● 幾乎所有的重大新(高)技術領域的創立,事先都在物理學中經過長期的醞釀.

【】● 當今物理學和科學技術的關系兩種模式並存,相互交叉,相互促進"沒有昨日的基礎科學就沒有今日的技術革命". —— 李政道量子力學能帶理論人工設計材料五. 物理學的方法和科學態度提出命題推測答案理論預言實驗驗證修改理論現代物理學是一門理論和實驗高度結合的精確科學從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來建立模型;用已知原理對現象作定性解釋,進行邏輯推理和數學演算新的理論必須提出能夠為實驗所證偽的預言一切物理理論最終都要以觀測或實驗事實為准則當一個理論與實驗事實不符時,它就面臨著被修改或被推翻 六. 怎樣學習物理學著名物理學家費曼說:科學是一種方法.它教導人們:一些事物是怎樣被了解的,什麼事情是已知的,現在了解到了什麼程度,如何對待疑問和不確定性,證據服從什麼法則;如何思考事物,做出判斷,如何區別真偽和表面現象 .著名物理學家愛因斯坦說:發展獨立思考和獨立判斷地一般能力,應當始終放在首位,而不應當把專業知識放在首位.如果一個人掌握了他的學科的基礎理論,並且學會了獨立思考和工作,他必定會找到自己的道路,而且比起那種主要以獲得細節知識為其培訓內容的人來,他一定會更好地適應進步和變化 .

【】● 學習的觀點:從整體上邏輯地,協調地學習物理學,了解物理學中各個分支之間的相互聯系.
【】● 物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受某些自然界的規則,並試圖以這規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是我們物理,甚至是所有學科,所共同追求的目標

Ⅲ 物理學專業學什麼

物理學專業本科生知識體系由知識體系和主要實踐性教學環節兩部分構成。

其中,知識體系涉及通識類知識、學科基礎知識和專業知識。專業知識又分為專業基本知識和特定專業方向知識。以下內容規定的學科基礎知識和專業知識適用於所有高校的物理學專業本科生培養,而特定專業方向的知識體系則由各高校自主構建。

物理學是一門普通高等學校本科專業,屬物理學類專業,基本修業年限為四年,授予理學學位。

物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。

專業培養目標

物理學專業本科人才培養目標,主要是為從事物理學及相關學科前沿問題研究和教學的專業人才打下基礎,同時也培養能夠將物理學應用於現代高新技術和社會各領域的復合應用型人才。

經過物理學本科階段的專業學習和訓練,學生應具備在物理學及相關學科進一步深造的基礎,或滿足教學、科研、技術開發以及管理等方面工作的要求。

物理學專業所培養的本科人才應具備良好的數學基礎和數值計算能力,掌握物理學的基本理論、基本知識和基本技能;接受科學思維和物理學研究方法的訓練,具有良好的科學精神、科學素養、科學作風和創新意識;具備一定的獨立獲取知識的能力、實踐能力、研究能力或新技術開發能力。

Ⅳ 高中物理學習哪些知識內容

高一物理第一學期學習運動學、力學、牛頓運動定律、共點力平衡。高一物理第二學期學習曲線運動、平拋運動、圓周運動、天體運動、功和能、動量、動量守恆。高二上學期學習電場、恆定電流、磁場、電磁感應、交變電流。高二下學期學習熱學、振動和波、光學、近代物理。

高中物理特點:

1、知識深度,理解加深

高中物理,要加深對重要物理知識的理解,有些將由定性討論進入定量計算,如力和運動的關系、動能概念、電磁感應、核能等。

2、知識廣度,范圍擴大

高中物理,要擴大物理知識的范圍,學習很多初中未學過的新內容,如力的合成與分解、牛頓萬有引力定律、動量定理、動量守恆定律、光的本性等。

3、知識應用,能力提高

高中不僅要學習物理知識,更重要的是提高學習物理知識和應用物理知識的能力,高中階段主要是自學能力和物理解題能力,並學會一些常用的物理研究的方法。

以上內容參考網路—高中物理

Ⅳ 學習物理需要哪些知識

學好數學和邏輯學就足夠學好全部的物理了。最多加點天文學。

數學的建立就是為了解決物理學問題。
你要想把物理的所有分支都學好,就必須把數學的所有分支都學好,這一點沒商量的。實際上人的精力是有限的,就算是愛因斯坦那樣的天才的人也只能學好物理學的一兩個分支,同時要相應的學好數學的幾個分支。

Ⅵ 物理學的都是什麼

物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。

物理學研究的領域可分為下列四大方面:
1. 凝聚態物理:研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。
2. 原子、分子和光學物理:研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。
3. 高能/粒子物理:粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。
4. 天體物理:天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。 從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。
物理學(Physics):物理現象、物質結構、物質相互作用、物質運動規律

物理學研究的范圍 ——物質世界的層次和數量級
空間尺度:
原子、原子核、基本粒子、DNA長度、最小的細胞、太陽山哈勃半徑、星系團、銀河系、恆星的距離、太陽系、超星系團等。人蛇吞尾圖形象地表示了物質空間尺寸的層次。
微觀粒子Microscopic:質子 10⁻¹⁵ m
介觀物質mesoscopic
宏觀物質macroscopic
宇觀物質cosmological 類星體 10²⁶m
時間尺度:
基本粒子壽命 10⁻²⁵s
宇宙壽命 10¹⁸s
按空間尺度劃分:量子力學、經典物理學、宇宙物理學
按速率大小劃分: 相對論物理學、非相對論物理學
按客體大小劃分:微觀、介觀、宏觀、宇觀
按運動速度劃分: 低速,中速,高速
按研究方法劃分:實驗物理學、理論物理學、計算物理學
分類簡介
●牛頓力學(Mechanics)與理論力學(Rational mechanics)研究物體機械運動的基本規律及關於時空相對性的規律
●電磁學(Electromagnetism)與電動力學(Electrodynamics)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
●熱力學(Thermodynamics)與統計力學(Statistical mechanics)研究物質熱運動的統計規律及其宏觀表現
●相對論(Relativity)研究物體的高速運動效應以及相關的動力學規律
●量子力學(Quantum mechanics)研究微觀物質運動現象以及基本運動規律
此外,還有:
粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等等。
研究領域
物理學研究的領域可分為下列四大方面:
1.凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。
2.原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。
3.高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。現正尋找中。
4.天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。 從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。尤其是今後數年內,圍繞黑物質方面可能有許多發現。
物理學史
●伽利略·伽利雷(1564年-1642年)人類現代物理學的創始人,奠定了人類現代物理科學的發展基礎。
● 1900-1926年 建立了量子力學。
● 1926年 建立了費米狄拉克統計。
● 1927年 建立了布洛赫波的理論。
● 1928年 索末菲提出能帶的猜想。
● 1929年 派爾斯提出禁帶、空穴的概念,同年貝特提出了費米面的概念。
● 1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。
● 1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。
● 1958年傑克.基爾比發明了集成電路。
● 20世紀70年代出現了大規模集成電路。
物理與物理技術的關系:
● 熱機的發明和使用,提供了第一種模式:技術—— 物理—— 技術
● 電氣化的進程,提供了第二種模式:物理—— 技術—— 物理
當今物理學和科學技術的關系兩種模式並存,相互交叉,相互促進「沒有昨日的基礎科學就沒有今日的技術革命」。例如:核能的利用、激光器的產生、層析成像技術(CT)、超導電子技術、粒子散射實驗、X 射線的發現、受激輻射理論、低溫超導微觀理論、電子計算機的誕生。幾乎所有的重大新(高)技術領域的創立,事先都在物理學中經過長期的醞釀。
物理學的方法和科學態度:提出命題 → 理論解釋 → 理論預言 → 實驗驗證 →修改理論。
現代物理學是一門理論和實驗高度結合的精確科學,它的產生過程如下:
①物理命題一般是從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來;
②首先嘗試用已知理論對命題作解釋、邏輯推理和數學演算。如現有理論不能完美解釋,需修改原有模型或提出全新的理論模型;
④新理論模型必須提出預言,並且預言能夠為實驗所證實;
⑤一切物理理論最終都要以觀測或實驗事實為准則,當一個理論與實驗事實不符時,它就面臨著被修改或被推翻。
● 怎樣學習物理學?
著名物理學家費曼說:科學是一種方法,它教導人們:一些事物是怎樣被了解的,什麼事情是已知的,了解到了什麼程度,如何對待疑問和不確定性,證據服從什麼法則;如何思考事物,做出判斷,如何區別真偽和表面現象?著名物理學家愛因斯坦說:發展獨立思考和獨立判斷的一般能力,應當始終放在首位,而不應當把專業知識放在首位.如果一個人掌握了他的學科的基礎理論,並且學會了獨立思考和工作,他必定會找到自己的道路,而且比起那種主要以獲得細節知識為其培訓內容的人來,他一定會更好地適應進步和變化 。
● 學習的觀點:從整體上邏輯地,協調地學習物理學,了解物理學中各個分支之間的相互聯系。
● 物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受自然界的規則,並試圖以這些規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是物理學,甚至是所有自然科學共同追求的目標。
以物理學為基礎的相關科學:化學,天文學,自然地理學等。
學科性質
基本性質
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。
其次,物理又是一種智能。
誠如諾貝爾物理學獎得主、德國科學家玻恩所言:「如其說是因為我發表的工作里包含了一個自然現象的發現,倒不如說是因為那裡包含了一個關於自然現象的科學思想方法基礎。」物理學之所以被人們公認為一門重要的科學,不僅僅在於它對客觀世界的規律作出了深刻的揭示,還因為它在發展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系。正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶。
大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發展都有著重要的貢獻。有人統計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景;——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功。——反過來,卻從未發現有非物理專業出身的科學家問鼎諾貝爾物理學獎的事例。這就是物理智能的力量。難怪國外有專家十分尖銳地指出:沒有物理修養的民族是愚蠢的民族!
總之,物理學是對自然界概括規律性的總結,是概括經驗科學性的理論認識。
六大性質
1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。
2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動性實現了統一。愛因斯坦的相對論又把時間、空間統一了。
3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。
4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。
6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。

Ⅶ 物理學專業學什麼

物理學專業主要學習高等數學、力學、熱學、光學、電磁學、原子物理學、數學物理方法、理論力學、熱力學與統計物理、電動力學、量子力學、固體物理學、結構和物性、計算物理學入門等。物理學是一門普通高等學校本科專業,屬物理學類專業,基本修業年限為四年,授予理學學位。

(7)物理學有多少知識擴展閱讀

物理學專業在知識、素質和能力三方面的要求:

一、知識要求:

1、專業知識:具有科學的世界觀,較系統和完整地掌握物理學的`基本理論、基本知識和基本技能,以及所需的數學基礎知識。對物理學相關專業方向前沿、發展動態、應用前景有所了解。

2、工具知識:掌握數學、外語、計算機及信息技術應用等方面的知識。

3、人文社科知識:具有一定的哲學、政治學、法學、心理學、經濟學及管理科學等方面的知識。

4、其他自然科學和相關工程技術學科的基礎知識。

二、素質要求:

1、人文素質:具有良好的文化素養、藝術素養、現代意識、全球意識、團隊精神。

2、專業素質:具有科學思維方法、科學精神、創新意識,具有一定的技術創新和應用意識及工程技術素養。

3、身心素質:具有良好的身體素質和心理素質。

三、能力要求:

1、獲取知識的能力:具有自學能力、獲取和加工處理信息的能力。

2、應用知識的能力:具有綜合應用知識解決問題的能力、實驗和工程實踐能力、計算機及信息技術應用能力。

3、創新能力:具有一定的創造性思維能力、科學研究能力、技術創新和開發能力。

4、組織管理能力:具有技術管理能力、較好的書面和口語表達能力、與人溝通協調能力和活動策劃能力。

Ⅷ 物理學專業學什麼

物理學專業學什麼

物理學專業學什麼?

快車教育,某名企人力資源總監曾先生表示,物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。本專業學生主要學習物質運動的基本規律,接受運用物理知識和方法進行科學研究和技術開發訓練,獲得基礎研究或應用基礎研究的初步訓練,具備良好的`科學素養和一定的科學研究與應用開發能力。

那麼物理學專業好不好?下面讓快車教育我為各位看官總結一下物理學專業的主要課程、專業知識以及專業技能的情況吧!

一、物理學專業主要課程:

無機化學,有機化學,分析化學,物理化學,結構化學,儀器分析與技術,生物化學,高分子化學,高分子物理,高等無機化學,高等有機化學,無機材料化學;化工原理,化工熱力學,化學反應工程,綠色化學工藝學,化工設計,生物化工,化工分離工程,環境化工,化工安全與環保,功能材料物理性能,功能高分子材料,葯物分析,材料物理性能、材料結構分析等。

二、物理學專業知識與技能:

通過學習,將具備了以下幾方面的能力:

1. 掌握分子合成和改性的方法;

2. 掌握分子材料組成,結構和性能的關系;

3. 掌握聚合物加工流變學,成型加工工藝和成型模具設計的基本理論和基本技能;

4. 具有對分子材料進行改性和加工工藝研究,設計的分析測試,並開發新型分子材料及產品的初步能力;

5. 具有對分子材料加工過程進行技術經濟分析和管理的初步能力;

6. 具有一定的外語和計算機應用的能力;

以上是關於大學本科專業物理學專業學什麼的分析情況,更多高考專業物理學專業分析資訊敬請關注快車教育職業規劃頻道。

Ⅸ 物理學包含哪些東西

物理學(PHYSICS)是研究物質世界最基本的結構、最普遍的相互作用、最一般的運動規律及所使用的實驗手段和思維方法的自然科學,簡稱物理。物理學研究的范圍
——
物質世界的層次和數量級物理學
(Physics)質子
10-15
m空間尺度:物質結構物質相互作用物質運動規律微觀粒子Microscopic介觀物質mesoscopic宏觀物質macroscopic宇觀物質cosmological類星體
10
26
m時間尺度:基本粒子壽命
10-25
s宇宙壽命
1018
s緒
論E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小
的細胞原子原子核基本粒子DNA長度星系團銀河系最近恆
星的距離太陽系太陽山哈勃半徑超星系團人蛇吞尾圖,形象地表示了物質空間尺寸的層次物理現象按空間尺度劃分:量子力學經典物理學宇宙物理學按速率大小劃分:
相對論物理學非相對論物理學按客體大小劃分:
微觀系統宏觀系統
按運動速度劃分:
低速現象高速現象
實驗物理理論物理計算物理今日物理學物理學的發展。
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。
其次,物理又是一種智能。
誠如諾貝爾物理學獎得主、德國
科學家玻恩所言:「如其說是因為我發表的工作里包含了一個自然現象的發現,倒不如說是因為那裡包含了一個關於自然現象的科學思想方法基礎。」物理學之所以被人們公認為一門重要的科學,不僅僅在於它對客觀世界的規律作出了深刻的揭示,還因為它在發展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系。正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶。
大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發展都有著重要的貢獻。有人統計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景;——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功。——反過來,卻從未發現有非物理專業出身的科學家問鼎諾貝爾物理學獎的事例。這就是物理智能的力量。難怪國外有專家十分尖銳地指出:沒有物理修養的民族是愚蠢的民族!

閱讀全文

與物理學有多少知識相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1344
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:879
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1017
win7如何刪除電腦文件瀏覽歷史 瀏覽:1049
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1693
西安瑞禧生物科技有限公司怎麼樣 瀏覽:956
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1645
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053