Ⅰ 路用岩石有哪幾項主要物理性指標
物理指標有物源茄理常數(如雹激察密度、空隙率等)、級配、含泥量、壓碎值、磨光值、沖擊值、磨耗鉛伏值等
望採納
Ⅱ 岩石的物理性質
岩石的物理性質主要包括密度、磁性(包括磁化率、磁化強度、剩餘磁化強度以及剩餘磁化強度同感應磁化強度的比值等)、電性(包括電導率、電容率、極化率等)、孔隙度、滲透率、彈性波速度、導熱性、放射性、熱學性質(熱導率、熱容)、硬度等。這里僅介紹幾種對理解岩石過程和深部地質最重要的物理性質。
(一)密度
岩石的密度是岩石基本集合相(固相、液相和氣相)的單位體積質量。岩石的密度取決於它的礦物組成、結構構造、孔隙度和它所處的外部條件。大多數造岩礦物如長石、石英、輝石等具有離子型或共價型結晶鍵,密度為2.2~3.5g/cm3(極少數達4.5g/cm3)。結晶鍵為離子-金屬型或共價-金屬型的礦物,如鉻鐵礦、黃鐵礦、磁鐵礦等密度較大,為3.5~7.5g/cm3。
侵入岩從長英質到超鎂鐵質,隨著SiO2含量的減少和鐵鎂氧化物含量的增加,岩石的密度逐漸增大。岩石中金屬礦物的含量增高,岩石的密度就增大。礦區花崗岩的密度有的高達2.7g/cm3以上。噴出岩的孔隙度比侵入岩大因而與相應的侵入岩相比密度要小。另外,沉積岩的密度是由組成沉積岩的礦物密度、孔隙度和填充孔隙氣體和液體的密度決定的。變質岩的密度主要決定於其礦物組成。密度在重力勘探、油氣儲層中岩性識別、測井解釋等方面應用廣泛,此外對理論研究也很重要。
(二)磁性
岩石磁性是由岩石所含鐵磁性礦物產生的磁性。常用的岩石磁性參數是磁化率、磁化強度、剩餘磁化強度矢量,以及剩餘磁化強度同感應磁化強度的比值。岩石的磁性主要決定於組成岩石的礦物的磁性,並受成岩後地質作用過程的影響。一般說,橄欖岩、輝長岩、玄武岩等超基性、基性岩漿岩的磁性最強;變質岩次之;沉積岩最弱。火成岩的磁性取決於岩石中鐵磁性礦物的含量。結構構造相同的岩石,鐵磁性礦物含量愈高,磁化率值愈大。鐵磁性侵入岩的天然剩餘磁化強度,按酸性、中性、基性、超基性的順序逐漸變大;沉積岩的磁性主要也是由鐵磁性礦物的含量決定的;變質岩的磁性是由其原始成分和變質過程決定的。
圖4-15 火成岩的熱導率與溫度的關系(轉引自Williams et al.,1979)
(三)熱導率
熱導率是物質導熱能力的量度,是一個重要的物理量。符號為λ或k。其定義為:在物體內部垂直於導熱方向取兩個相距1m,面積為1m2的平行平面,若兩個平面的溫度相差1K,則在1s內從一個平面傳導至另一個平面的熱量就規定為該物質的熱導率,它既控制著穩態條件下地殼各層的地溫梯度,又決定著諸如侵入體的冷卻等非穩態的時間尺度。熱導率定義為在穩態熱傳導條件下,熱流密度(即通過單位面積的熱流量)除以一維導熱體中的溫度梯度所得的商。硅酸鹽熔體是熱的不良導體,它們的熱導率(圖15)與兩種傳熱體制有關,即正常晶格熱傳導和輻射熱傳遞。隨溫度升高和晶格結構膨脹,前一種機制的作用降低,而後一種的增大。到達熔融范圍內,兩種效應趨於平衡,但在高溫下基性岩漿的熱導率通常以一個不斷增大的速率降低,這種情況待續到1200℃。溫度更高時,晶體或流體的暗度快速降低,輻射熱傳遞增強,總的熱導率就要高得多。更酸性的岩石,如安山岩和流紋岩,暗度較低,因而在低得多的溫度范圍內就顯示了熱導率的增大。
岩石的熱導率取決於組成岩石的礦物和固體顆粒間的介質如空氣、水、石油等的絕熱性質。火成岩和變質岩的熱導率相對於沉積岩來說變化范圍不大,數值較高。侵入岩中,超基性岩的熱導率較高,花崗岩次之,中間成分的侵入岩又次之。噴出岩的熱導率比相應的侵入岩小。沉積岩的熱導率變化范圍大是熱導率較低的孔隙充填物造成的。岩石和礦物的熱導率與溫度、壓力有關系。一般說來,溫度升高,熱導率降低。
(四)熱容
岩漿和火成岩的最具特色的熱學性質之一是,它們比熱容小,而熔融熱或結晶熱很大。熱容(heat capacity)C的定義為C=△Q/△T(δ-17)。即當一系統接受一微小熱量△Q而溫度升高△T時,比值△Q/△T即為該系統的熱容C。比熱容(specific heat capacity)c,則是單位質量的熱容,亦即單位質量物質升高一度所需的熱量,c=C/m=△Q/(m·△T)。熔融熱或結晶熱△HF是在液相、固相共存的溫度下,使單位質量物質熔融或結晶所需增加或移出的熱量。對大多數火成岩,常壓下的比熱容cp約為1255J/(kg·K)(Mcbirney,1984)。例如,玄武岩漿cp可取1214J/(kg·K),而酸性岩漿的cp可取1340J/(kg·K)(馬昌前等,1994)。而熔融熱或結晶熱△HF的典型值約介於(2.5×105~4.2×105)J/kg之間。可見在相變溫度下,使岩石熔融所需吸收(或放出)的熱量,在其他溫度時則能使這些岩石(或岩漿)溫度改變200~300℃。
(五)彈性波速
橫波(S)是指振動方向與傳播方向相垂直的波,縱波(P)是指振動方向與傳播方向相同的波。在岩石和礦物中傳播的速度vP和vS是地球物理勘探中常用的兩個參數。岩石中的波速取決於其礦物成分和孔隙充填物的彈性。對固體礦產、油氣、工程中的地震勘探、垂直地震剖面(Vertical Seismic Profiling,VSP)等非常重要。
火成岩和變質岩的彈性波速度與岩石密度的關系接近於線性關系,密度越大,速度越高。火成岩和變質岩的含水飽和度增大時,vP變大,vS也變大,但不如vP的變化那樣顯著。氣飽和岩石的vP比相應的水飽和岩石的vP小。片麻岩等片理發育的岩石,沿片理面測量的波速大於垂直片理面測量的波速,有時相差1倍以上。與結晶岩相比,沉積岩中的彈性波速度受孔隙度的影響很大,變化范圍很寬。表4-11列出了一些火成岩的P波速資料,可見,在未蝕變的火成岩中,速度是比較高的,但火山碎屑岩和蝕變的火成岩,波速就變化很大。
表4-11 火成岩的波速
(據Schutter,2003)
Ⅲ 岩石的主要物理常數有幾項
岩石拍雹的主要物理性質:1.礦物的光學性質;2.礦物的力學性圓毀質;3.礦物的相對密度。
礦物的光學性質是指礦物對自然光的反射、折射和吸收等,所呈現的襲腔帆光學現象。主要有:顏色、條痕、光澤和透明度。
礦物的力學性質是指礦物抵抗外力作用(刻劃、打擊、壓拉等)所表現出來的性質,包括礦物的解理、斷口、硬度。
礦物的相對密度是指礦物的重量與4℃時同體積水的重量之比,習慣稱為比重。
Ⅳ 岩石的力學性質指標主要有哪些各自的含義及特徵如何
岩石的力學指標主要有抗壓強度、抗剪強度和彈性模量及變形模量等等。關於強度主要關注抗剪強度,岩石的抗剪強度和變形模量受到很多復雜因素影響,影響的規律也較復雜,一般受岩石的類型、完整性、風化程度及含水條件等諸多因素的控制;軟岩一般破碎、風化程度高,浸水狀態時,強度低,反之,則強度和模量都較大。
Ⅳ 岩石的物理性質指標有哪些
岩石物理性質指岩石的力學、熱學、電學、聲學、放射學等特性參數和物理量。
岩石的物理性質包括:顏色、條痕、光澤、透明度、硬度、解理、斷口、脆性和延展性、彈性和撓性、相對密度、磁性、發光性、電性、其它性質。在力學特徵中包括滲流特性和機械特性。
Ⅵ 岩石有哪些物理力學參數
密度(density),容重 (weight density)
單位體積岩石的重量 kN/m3 水:9.8kN/m3
比重:岩石的密度和水的密度的比值。
岩石比重平均為2.7
代表性結果。
滲透性(permeability)
岩石滲透性對許多岩石工程有決定性意義,如對大壩、水庫、地下隧道(臨水、高地下水地區等)、石油、核廢料儲存、瓦斯突出等。
滲透性與岩石孔隙度、岩石中的裂隙和應力水平有很大關系。
達西定律(Darcy』s law):
:在x方向的流量速率;( )
:流體壓力, = ( )
:流體容重 (kN/m3)
:流體(滲透體)柱高度 (m)
:流體的粘度;( )
對於水,20℃時, =1.005×10-3 ; =9.80 kN/m3。
:垂直於 方向的橫截面積;( )
:滲透系數,與流體(滲透體)的性質無關,與岩石性質有關,單位為面積( )
達西定律的另一種形式(滲透體為20℃的水)
:滲透體高度(水頭高度),單位:m
:滲透系數,單位為速度(cm/s)
代表性 系數值 附表3
和 互換:
滲透性單位:1darcy=9.87×10-9cm2 ( )
1Darcy=10-3cm/s ( )
2.1.4 聲波速度(在岩石中的傳播速度)(Sonic Velocity in Rock )
用於了解岩石中的裂隙程度
:岩石沒有孔隙縱波速度
: 成份在岩石中的比例
各種礦物成份的縱波速度