導航:首頁 > 物理學科 > 大學物理有哪些光學實驗

大學物理有哪些光學實驗

發布時間:2023-04-13 00:56:54

㈠ 大學光學實驗有哪些

大學光學實驗有哪些,我記得有旋光實驗,雀絕激光全息照相,偏振性實驗,好簡還有一些可以到網路上搜頃襪姿一搜,能不能做還得看實驗室條件

大學物理波動光學楊氏雙縫實驗

不鍵褲相同。

未放置薄透鏡時,清晰的干涉條紋成像在無窮遠,近處得不到清晰的完全分離的條紋;
放置薄透鏡後,根據幾何稿扮簡光學的原理,無窮遠點移到缺告了焦平面上,這時清晰的干涉條紋將成像在在焦平面上。

㈢ 大學物理實驗中有哪幾種測量光波波長的方法 急~

大學物理實驗中有哪幾種測量光波波長的方法 急~

大學物理實驗經常用:分光計測量法;牛頓環測量法;光柵測量法
其它方法:
法布里-珀羅干涉儀
密集光波分復用系統的波長測量
鐳射功率計(指標式)光功率表
菲涅耳雙棱鏡
雙縫

大學物理實驗中有哪幾種資料處理的方法

多次測量求平均值
線性擬合
逐差法

大學物理實驗中微小量的測量方法?

螺旋測微器又稱千分尺(micrometer)、螺旋測微儀、分厘卡,是比游標卡尺更精密的測量長度的工具,用它測長度可以准確到0.01mm,測量范圍為幾個厘米。右圖為一種常見的螺旋測微器。 螺旋測微器的分類 一種電子千分尺(螺旋測微器)螺旋測微器分為機械式千分尺和電子千分尺兩類。①機械式千分尺。簡稱千分尺,是利用精密螺紋副原理測長的手攜式通用長度測量工具。1848年,法國的J.L.帕爾默取得外徑千分尺的專利 。1869年,美國的J.R.布朗和L.夏普等將外徑千分尺製成商品,用於測量金屬線外徑和板材厚度。千分尺的品種很多。改變千分尺測量面形狀和尺架等就可以製成不同用途的千分尺,如用於測量內徑、螺紋中徑、齒輪公法線或深度等的千分尺。②電子千分尺。也叫數顯千分尺,測量系統中應用了光柵測長技術和積體電路等。電子千分尺是20世紀70年代中期出現的,用於外徑測量。 螺旋測微器的組成 螺旋測微器組成部分圖解圖上A為測桿,它的一部分加工成螺距為0.5mm的螺紋,當它在固定套管B的螺套中轉動時,將前進或後退,活動套管C和螺桿連成一體,其周邊等分成50個分格。螺桿轉動的整圈數由固定套管上間隔0.5mm的刻線去測量,不足一圈的部分由活動套管周邊的刻線去測量。所以用螺旋測微器測量長度時,讀數也分為兩步,即(1)從活動套管的前沿在固定套管的位置,讀出整圈數。(2)從固定套管上的橫線所對活動套管上的分格數,讀出不到一圈的小數,二者相加就是測量值。
螺旋測微器的尾端有一裝置D,擰動D可使測桿移動,當測桿和被測物相接後的壓力達到某一數值時,棘輪將滑動並有咔、咔的響聲,活動套管不再轉動,測桿也停止前進,這時就可以讀數了。
不夾被測物而使測桿和砧台相接時,活動套管上的零線應當剛好和固定套管上的橫線對齊。實際操作過程中,由於使用不當,初始狀態多少和上述要求不符,即有一個不等於零的讀數。所以再使用之前必須要先調零。 螺旋測微器原理和使用 螺旋測微器的讀數螺旋測微器是依據螺旋放大的原理製成的,即螺桿在螺母中旋轉一周,螺桿便沿著旋轉軸線方向前進或後退一個螺距的距離。因此,沿軸線方向移動的微小距離,就能用圓周上的讀數表示出來。螺旋測微器的精密螺紋的螺距是0.5mm,可動刻度有50個等分刻度,可動刻度旋轉一周,測微螺桿可前進或後退0.5mm,因此旋轉每個小分度,相當於測微螺桿前進或推後0.5/50=0.01mm。可見,可動刻度每一小分度表示0.01mm,所以以螺旋測微器可准確到0.01mm。由於還能再估讀一位,可讀到毫米的千分位,故又名千分尺。
測量時,當小砧和測微螺桿並攏時,可動刻度的零點若恰好與固定刻度的零點重合,旋出測微螺桿,並使小砧和測微螺桿的面正好接觸待測長度的兩端,那麼測微螺桿向右移動的距離就是所測的長度。這個距離的整毫米數由固定刻度上讀出,小數部分則由可動刻度讀出。

雙棱鏡干涉測量光波波長實驗

1.B 2.A 3.A 4.C 5.D

邁克爾遜干涉儀實驗中是如何測量光波波長的?

(一)調整邁克爾遜干涉儀,觀察非定域干涉、等傾干涉的條紋
① 對照實物和講義,熟悉儀器的結構和各旋鈕的作用;
② 點燃He—Ne鐳射器,使鐳射大致垂直M1。這時在屏上出現兩排小亮點,調節M1和M2背面的三個螺釘,使反射光和入射光基本重合(兩排亮點中最亮的點重合且與入射光基本重合)。這時,M1 和M2大致互相垂直,即M1/、M2大致互相平行。
③ 在光路上放入一擴束物鏡組,它的作用是將一束鐳射匯聚成一個點光源,調節擴束物鏡組的高低、左右位置使擴束後的鐳射完全照射在分光板G1上。這時在觀察屏上就可以觀察到干涉條紋(如完全沒有,請重復上面步驟)再調節M1下面的兩個微調螺絲使M1/、M2更加平行,屏上就會出現非定域的同心圓條紋。
④ 觀察等傾干涉的條紋。
(二)測量He—Ne鐳射的波長
① 回到非定域的同心圓條紋,轉動粗動和微動手輪,觀察條紋的變化:從條紋的「湧出」和「陷入」說明M1/、M2之間的距離d是變大?變小?觀察並解釋條紋的粗細、疏密和d的關系。
② 將非定域的圓條紋調節到相應的大小(左邊標尺的讀數為32mm附近),且位於觀察屏的中心。
③ 轉動微動手輪使圓條紋穩定的「湧出」(或「陷入」),確信已消除「空回誤差」後,找出一個位置(如剛剛「湧出」或「陷入」)讀出初始位置d1。
④ 緩慢轉動微動手輪,讀取圓條紋「湧出」或「陷入」中心的環數,每50環記錄相應的d2、d3、d4……
⑤ 反方向轉動微動手輪,重復②、③記錄下「陷入」(或「湧出」)時對應的di/。
⑥ 資料記錄參考表(如上),按公式計算出He—Ne鐳射的波長。用與其理論值相比較得出百分差表示出實驗結果。

物理實驗 光柵測量單色光波長

一般情況是這樣的。

大學物理實驗中單次測量是指測量幾次

顧名思義,大學物理實驗中單次測量就是指測量一次。單次測量中,沒有隨機誤差,所以不需要計算A類不確定度,只需要計算B類不確定度。
測量是按照某種規律,用資料來描述觀察到的現象,即對事物作出量化描述。測量是對非量化實物的量化過程。在機械工程裡面,測量指將被測量與具有計量單位的標准量在數值上進行比較,從而確定二者比值的實驗認識過程。
測量的主要要素有:
1.測量的客體即測量物件:主要指幾何量,包括長度、面積、形狀、高程、角度、表面粗糙度以及形位誤差等。由於幾何量的特點是種類繁多,形狀又各式各樣,因此對於他們的特性,被測引數的定義,以及標准等都必須加以研究和熟悉,以便進行測量。
2.計量單位:我國國務院於1977年5月27日頒發的《中華人民共和國計量管理條例(試行)》第三條規定中重申:「我國的基本計量制度是米制(即公制),逐步採用國際單位制。」1984年2月27日正式公布中華人民共和國法定計量單位,確定米制為我國的基本計量制度。在長度計量中單位為米(m),其他常用單位有毫米(mm)和微米(μm)。在角度測量中以度、分、秒為單位。
3.測量方法:指在進行測量時所用的按類敘述的一組操作邏輯次序。對幾何量的測量而言,則是根據被測引數的特點,如公差值、大小、輕重、材質、數量等,並分析研究該引數與其他引數的關系,最後確定對該引數如何進行測量的操作方法。
4.測量的准確度:指測量結果與真值的一致程度。由於任何測量過程總不可避免地會出現測量誤差,誤差大說明測量結果離真值遠,准確度低。因此,准確度和誤差是兩個相對的概念。由於存在測量誤差,任何測量結果都是以一近似值來表示。

有關測量光波長實驗中的問題

螺旋測位器的原理是一個螺釘,它每轉一圈,伸出或縮排0.5mm

大學物理實驗:超聲波聲速的測量

那麼接示波器的換能器是不是沒工作,或者故障

大學物理實驗中,全息光柵的製作及其引數測量用哪種方法

全息光柵的製作(實驗報告)完美版 (2009-10-12 23:25:34)轉載
標簽: 光柵 乾片 發散鏡 雙縫 白屏 教育
設計性試驗看似可怕,但實際操作還是比較簡單的~
我的實驗報告,僅供參考~
實驗報告封面
全息光柵的製作

一、 實驗任務
設計並製作全息光柵,並測出其光柵常數,要求所製作的光柵不少於每毫米100條。

二、 實驗要求
1、設計三種以上製作全息光柵的方法,並進行比較。
2、設計製作全息光柵的完整步驟(包括拍攝和沖洗中的引數及注意事項),拍攝出全息光柵。
3、給出所製作的全息光柵的光柵常數值,進行不確定度計算、誤差分析並做實驗小結。

三、 實驗的基本物理原理
1、光柵產生的原理
光柵也稱衍射光柵,是利用多縫衍射原理使光發生色散(分解為光譜)的光學元件。它是一塊刻有大量平行等寬、等距狹縫(刻線)的平面玻璃或金屬片。光柵的狹縫數量很大,一般每毫米幾十至幾千條。單色平行光通過光柵每個縫的衍射和各縫間的干涉,形成暗條紋很寬、明條紋很細的圖樣,這些銳細而明亮的條紋稱作譜線。譜線的位置隨波長而異,當復色光通過光柵後,不同波長的譜線在不同的位置出現而形成光譜。光通過光柵形成光譜是單縫衍射和多縫干涉的共同結果(如圖1)。
圖1
2、測量光柵常數的方法:
用測量顯微鏡測量;
用分光計,根據光柵方程d·sin =k 來測量;
用衍射法測量。鐳射通過光柵衍射,在較遠的屏上,測出零級和一級衍射光斑的間距△x及屏到光柵的距離L,則光柵常數d= L/△x。

四、 實驗的具體方案及比較
1、洛埃鏡改進法:
基本物理原理:洛埃鏡的特點是一部分直射光和另一部分反射鏡的反射光進行干涉,如原始光束是平行光,則可增加一全反鏡,同樣可做到一部分直射光和一部分鏡面反射光進行干涉,從而製作全息光柵。
優點:這種方法省去了製造雙縫的步驟。
缺點:光源必須十分靠近平面鏡。
實驗原理圖:
圖2

2、楊氏雙縫干涉法:
基本物理原理:S1,S2為完全相同的線光源,P是螢幕上任意一點,它與S1,S2連線的中垂線交點S'相距x,與S1,S2相距為rl、r2,雙縫間距離為d,雙縫到螢幕的距離為L。
因雙縫間距d遠小於縫到屏的距離L,P點處的光程差:
圖3

δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ
這是因為θ角度很小的時候,可以近似認為相等。
干涉明條紋的位置可由干涉極大條件δ=kλ得:
x=(L/d)kλ,
干涉暗條紋位置可由干涉極小條件δ=(k+1/2)λ得:
x=(D/d)(k+1/2)λ
明條紋之間、暗條紋之間距都是
Δx =λ(D/d)
因此干涉條紋是等距離分布的。
而且注意上面的公式都有波長引數在裡面,波長越長,相差越大。
條紋形狀:為一組與狹縫平行、等間隔的直線(干涉條紋特點)d= L/△x
優點:使用鐳射光源相干條件很容易滿足。
缺點:所需的實驗儀器較復雜,不易得到。
實驗原理圖:
圖4

3、馬赫—曾德干涉儀法:
基本物理原理:只要調節光路中的一面分光鏡的方位角,就可以改變透射光和反射光的夾角,從而改變干涉條紋的間距。
優點:這種方法對光路的精確度要求不高,實驗效果不錯,易於學生操作。
缺點:這種方法對光路的精確度要求不高,實驗可能不夠精確。
實驗原理圖:
圖5
五、 儀器的選擇與配套
綜合考慮各方面條件,本次試驗採用馬赫—曾德干涉儀法,所需的實驗儀器有He-Ne鐳射發射器1架、發散鏡1面、凸透鏡1面、半反半透鏡2面、全反鏡2面和白屏、光闌各一、拍攝光柵用的乾片若干、架子。

六、 實驗步驟
(一)製作全息光柵
1.開啟He-Ne鐳射發射器,利用白屏使鐳射束平行於水平面。
2.調節發散鏡和鐳射發射器的距離使鐳射發散。
3.調節凸透鏡和發散鏡的距離使之等於凸透鏡的焦距,得到平行光。
4. 調節2面半反半透鏡和2面全反鏡的位置和高度,使它們擺成一個平行四邊形(如圖5)。
5.調節半反半透鏡和全反鏡上的微調旋鈕,使得到的2個光斑等高,且間距為4-6cm。
6. 測出實驗中光路的光程差△l。
(在實驗中我們測得的光路的光程差△l=1.5cm)
(二)拍攝全息光柵
1.擋住鐳射束,把乾片放在架子上,讓鐳射束照射在乾片上1-2秒,擋住鐳射束,把乾片取下帶到暗房中。
2.把乾片泡在顯影液中適當的時間(時間長度由顯影液的濃度決定),取出,用清水沖洗,在泡在定影液中約5分鍾。取出,沖洗後晾乾。
3.用鐳射束檢驗沖洗好的乾片,若能看見零級、一級的光斑,說明此乾片可以用於測定光柵常數。
(三)測定所制光柵的光柵常數
實際圖:
此圖參照老師所給實驗內容報告上的圖來畫
圖6

原始資料表:

x
1
2
3
4
5
6
r(cm)
23.81
24.12
23.93
24.24
23.65
23.66
h(cm)
144.36
144.65
143.84
144.03
144.52
144.11
計算過程:
七、實驗注意事項
1、不要正對著鐳射束觀察,以免損壞眼睛。
2、半導體鐳射器工作電壓為直流電壓3V,應用專用220V/3V直流電源工作(該電源可避免接通電源瞬間電感效應產生高電壓的功能),以延長半導體鐳射器的工作壽命。

㈣ 大學物理實驗都有哪些

大學物理實驗有:楊氏模量,邁克爾遜干涉儀,全息照相,衍射光柵,單縫衍射,光電效應,用分光計測量玻璃折射率,透鏡組基點的測量,測量波的傳播速度,密里根油滴實驗,模擬示波器的使用,磁電阻巨磁電阻測量,半導體電光光電器件特性測量、等厚干涉

1、楊氏模量

楊氏模量是描述固體材料抵抗形變能力的物理量。當一條長度為L、截面積為S的金屬絲在力F作用下伸長ΔL時,F/S叫應力,其物理意義是金屬絲單位截面積所受到的力;ΔL/L叫應變,其物理意義是金屬絲單位長度所對應的伸長量。

2、邁克爾遜干涉儀

邁克爾遜干涉儀,是1881年美國物理學家邁克爾遜和莫雷合作,為研究「以太」漂移而設計製造出來的精密光學儀器。它是利用分振幅法產生雙光束以實現干涉。

3、等厚干涉

等厚干涉是由平行光入射到厚度變化均勻、折射率均勻的薄膜上、下表面而形成的干涉條紋.薄膜厚度相同的地方形成同條干涉條紋,故稱等厚干涉.(牛頓環和楔形平板干涉都屬等厚干涉.)

4、示波器的使用

波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。

5、電橋法測電阻

採用典型的四線制測量法。以期提高測量電阻(尤其是低阻)的准確度。程式控制恆流源、程式控制前置放大器、A/D轉換器構成了測量電路的主體。中央控制單元通過控制恆流源給外部待測負載施加一個恆定、高精度的電流,然後,將所獲得的數據(包括測試電壓、當前的測試電流等)進行處理,得到實際電阻值。

㈤ 大學物理實驗都有哪些

基本測量 液體粘滯系數的測定 三線扭擺法測轉動慣量 駐波實驗 電表的擴充與校準
電橋法測電阻 電位差計原理及其應用 用模擬法測繪靜電場 示波器的使用
分光計的使用 等厚干涉

㈥ 大學物理演示實驗的目錄

1 力、熱學
1.1 力學
1.1.1 向心力
1.1.2 彈性碰撞
1.1.3 圓錐爬坡
1.1.4 科里奧利力
1.1.5 傅科擺
1.1.6 質心運動
1.1.7 轉動定律
1.1.8 角速度合成
1.1.9 直升飛機的角動量守恆
1.1.10 角動量守恆轉台
1.1.11 常平架回轉儀
1.1.12 進動演示儀
1.1.13 混沌擺
1.2 空氣動力學
1.2.1 氣體流速與壓強演示儀
1.2.2 飛機升力
1.2.3 伯努利懸浮球
1.2.4 氣體渦旋演示儀
1.3 振動與波
1.3.1 旋轉喬量演示儀
1.3.2 簡諧振動合成儀
1.3.3 機械共振
1.3.4 音叉
1.4.5 拍頻擺
1.4.6 駐波共振
1.4.7 縱駐波
1.4.8 昆特管
1.4.9 魚洗
1.4.10 水波干涉
1.4.11 傅立葉振動合成儀
1.4.12 聲波波形演示儀
1.4.13 聲聚焦
1.4.14 超聲霧化
1.4 熱學
1.4.1 分子運動
1.4.2 伽爾頓板
1.4.3 模擬電冰箱實驗裝置
1.4.4 投影式相臨界點狀態演示儀
2 光學
2.1 幾何光學
2.1.1 分光計
2.1.2 三棱鏡
2.1.3 尼克爾棱鏡模型
2.1.4 方解石與雙折射
2.1.5 窺視無窮
2.1.6 人造火焰
2.1.7 光柵變換圖
2.1.8 激光反射運動合成儀
2.1.9 反射式運動合成儀
2.1.10 海市蜃景演示儀
2.1.11 光學幻影演示儀
2.1.12 光學分形演示儀
2.1.13 普氏擺
2.1.14 光瞳實驗演示儀
2.2 波動光學
2.2.1 動態多縫衍射強度實時顯示儀
2.2.2 旋轉式小孔衍射儀
2.2.3 散射光干涉演示儀
2.2.4 激光光纖干涉演示儀
2.2.5 台式皂膜
2.2.6 簾式皂膜
2.2.7 光柵視鏡系統
2.2.8 光學儀器解析度
2.2.9 反射白光全息圖
2.2.10 透射白光全患合成圖
2.3 偏振光學
2.3.1 自然光、偏振光模型
2.3.2 偏振光狀態演示儀
2.3.3 旋光色散演示儀
2.3.4 偏振光干涉、應力演示儀
2.4 光學綜合
2.4.1 熱輻射機
2.4.2 氦氖激光器
2.4.3 看得見的激光
2.4.4 綠激光器
2.4.5 激光光學演示儀
2.4.6 紅外接收演示儀
2.4.7 夢幻時鍾
2.4.8 夢幻球
2.4.9 激光多普勒試驗儀
2.4.10 超聲光柵演示儀
2.4.11 電光調制演示儀
2.4.12 法拉第磁旋光演示儀
2.4.13 光纖和互感通訊演示儀
2.4.14 3D立體影像演示儀
2.4.15 光纖陀螺演示儀
2.4.16 夫蘭克一赫茲演示儀
3 電學
3.1 靜電學
3.1.1 維氏起電機
3.1.2 高壓電源
3.1.3 指針驗電器
3.1.4 靜電擺球
3.1.5 靜電除塵
3.1.6 靜電跳球
3.1.7 靜電植絨
3.1.8 雅格布天梯
3.1.9 低氣壓下輝光放電
3.1.10 輝光球、輝光碟
3.1.11 電子束偏轉
3.1.12 庫侖扭秤
3.2 導體與電介質
3.2.1 靜電感應盤
3.2.2 卡文迪許球
3.2.3 導體靜電荷接曲率分布
3.2.4 尖端放電
3.2.5 電風輪、電風轉筒
3.2.6 避雷針
3.2.7 靜電屏蔽
3.2.8 高壓帶電作業
3.2.9 電介質極化
3.2.10 電介質對電容影響
3.2.11 PGM數字小電容測試儀
3.2.12 絕緣體轉換為導體
3.3 電學綜合
3.3.1 手觸式電池
3.3.2 壓電效應
3.3.3 基爾霍夫定律
3.3.4 RLC電路串並聯諧振
……
4 磁學
參考文獻

㈦ 大學物理實驗有哪些

牛頓第二運動定律的驗證、動量守恆定律的驗證、液體表面張力系數的測定、霍爾效應實驗、聲速的測定、霍耳效應、測量薄透鏡的焦距、鎢的逸出電位的測定。

1、牛頓第二運動定律

牛頓第二運動定律的常見表述是:物體加速度的大小跟作用力成正比,跟物體的質量成反比,且與物體質量的倒數成正比;加速度的方向跟作用力的方向相同。

該定律是由艾薩克·牛頓在1687年於《自然哲學的數學原理》一書中提出的。牛頓第二運動定律和第一、第三定律共同組成了牛頓運動定律,闡述了經典力學中基本的運動規律。

2、動量守恆定律

動量守恆定律和能量守恆定律以及角動量守恆定律一起成為現代物理學中的三大基本守恆定律。最初它們是牛頓定律的推論, 但後來發現它們的適用范圍遠遠廣於牛頓定律,是比牛頓定律更基礎的物理規律, 是時空性質的反映。

其中,動量守恆定律由空間平移不變性推出,能量守恆定律由時間平移不變性推出,而角動量守恆定律則由空間的旋轉對稱性推出。

3、液體表面張力

凡作用於液體表面,使液體表面積縮小的力,稱為液體表面張力。它產生的原因是 液體跟氣體接觸的表面存在一個薄層,叫做表面層,表面層里的分子比液體內部稀疏,分子間的距離比液體內部大一些,分子間的相互作用表現為引力。

就象你要把彈簧拉開些,彈簧反而表現具有收縮的趨勢。正是因為這種張力的存在,有些小昆蟲才能無拘無束地在水面上行走自如。

4、霍爾效應

霍爾效應是電磁效應的一種,這一現象是美國物理學家霍爾(E.H.Hall,1855—1938)於1879年在研究金屬的導電機制時發現的。

當電流垂直於外磁場通過半導體時,載流子發生偏轉,垂直於電流和磁場的方向會產生一附加電場,從而在半導體的兩端產生電勢差,這一現象就是霍爾效應,這個電勢差也被稱為霍爾電勢差。霍爾效應使用左手定則判斷。

5、聲速

音速是介質中微弱壓強擾動的傳播速度,其大小因媒質的性質和狀態而異。空氣中的音速在1個標准大氣壓和15℃的條件下約為340m/秒。

㈧ 美國大學近代物理實驗有哪些

您好,美國大學近代物理實驗包括:
1.熱力學實驗:探索熱力學定律,如熱容量、熱導率和熱傳導率的測量。做稿
2.光學實驗:探索光的性質,如光的衍射、折射、反射和折疊。
3.電磁學實驗:探索電磁學定律,如電場、磁場、電勢和磁勢的測量。
4.原子物理實驗:探索原子物理定律,如原子結構、原子譜和原子能旁芹級的測量。
5.核物理實驗:探索核物理定律,如核反應、核吸收和核裂變的測量。
6.量子力學實驗:探索量子力學定律,如量子力學的基本原理和量子力學的應用。
7.統計物理實驗:探索統計物理定律,如熱力學系統的熵和熱力學系統的熱力學性質的測量。
8.流體力學實驗:探索流體力學定律,如流體的壓力、流速和流量的測量。
9.固體力學實驗:運胡畢探索固體力學定律,如彈性模量、泊松比和應力應變關系的測量。
10.聲學實驗:探索聲學定律,如聲壓、聲速和聲音的傳播的測量。

閱讀全文

與大學物理有哪些光學實驗相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1692
西安瑞禧生物科技有限公司怎麼樣 瀏覽:949
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1642
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050