導航:首頁 > 物理學科 > 計算機網路物理層如何工作

計算機網路物理層如何工作

發布時間:2023-04-18 06:58:58

❶ 計算機網路中物理層的主要任務是什麼

❷ [計算機網路之二] 物理層

  物理層考慮的是怎樣才能在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。物理層的作用是盡可能地屏蔽掉不同傳輸媒體和通信手段的差異,使物理層上面的數據鏈路層感覺不到這些差異,這樣就可使數據鏈路層只需要考慮如何完成本層的協議和服務,而不必考慮網路具體的傳輸媒體和通信手段是什麼。

  物理層的協議也稱為物理層 規程

(1)機械特性

  指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖戚銀定裝置等。

(2)電氣特性

  指明在介面電纜的各條線上出現的電壓的范圍。

(3)功能特性

  指明在某條線上出現的某一電平的意義。

(4)過程特性

  指明對於不同功能的各種可能事件的出現順序。

   數據在計算機內部多採用並行傳輸方式,但在通信線路上的傳輸方式一般都是串列傳輸 ,即逐個比特按照事件順序傳輸。因此物理層還要完成傳輸方式的轉換。



  一雹談個數據通信系統可劃分為三大部分高肆宴,即 源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)


消息 :通信的目的是傳遞消息,如語音、文字、圖像視頻。

數據 :運送消息的實體,使用特定方式表示的信息,通常是有意義的符號序列。

信號 :數據的電氣或電磁的表現。

碼元 :代表不同離散數值的基本波形。


  信道不等同於電路,信道一般都是用來表示向某一個方向傳送信息的媒體,一條通信電路往往包含一條發送信道和一條接收信道。

  又稱為 單工通信 ,即只能有一個方向的通信而沒有反方向的交互。無線電廣播或有線電廣播以及電視廣播就屬於這種類型。

  又稱為 半雙工通信 ,即通信的雙方都可以發送信息,但不能雙方同時發送(當然也不能同時接收)。這種通信方式是一方發送另一方接收,過一段時間後可以再反過來。

PS. 一般對講機屬於半雙工!!!

  又稱為 全雙工通信 ,即通信的雙方可以同時發送和接收信息。


數字信號一般用方形脈沖來表示:





  對於模擬信道,信道帶寬 W = f2 - f1,f1 是信道能通過的最低頻率,f2 是信道能通過的最高頻率,兩者都是由信道的物理特性決定的。

  數字信道時一種離散信道,它只能傳送取離散值的數字信號,信道的帶寬決定了信道中能不失真地傳輸脈沖序列的最高速率。

一個數字脈沖稱為一個碼元,用碼元速率表示單位時間內信號波形的變換次數,即單位時間內通過信道傳輸的碼元個數。若信號碼元的寬度為 T 秒,則碼元速率 B = 1/T,單位為波特(Baud),所以碼元速率也叫波特率。

有限帶寬無雜訊信道的極限碼元速率為:

     B = 2W(Baud) // W 為信道帶寬

一個碼元所帶的位數是由碼元所取的離散值種類所決定的,存在如下關系:

     n = log 2 N // n 為碼元所帶位數,N 為碼元種類數

根據上述兩個公式,可以計算出理想無雜訊狀況下,信道的最大數據傳輸速率為:

     R = B log 2 N = 2W log 2 N


有限帶寬有雜訊信道的極限數據速率:

     C = W log 2 (1+S/N)

【解析】W 為信道帶寬,S 為信號的平均功率,N 為雜訊的平均功率,S/N 叫作信噪比,在實際使用中 S 與 N 的比值太大,故常取其分貝數(dB),分貝與信噪比的關系為:

     dB = 10 log10(S/N)


(1)導引型

(2)非導引型



   頻分復用 FDM(Frequency Division Multiplexing) 的所有用戶在同樣的時間佔用不同的帶寬(頻率帶寬)資源,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。

  時分復用 TDM(Time Division Multiplexing) 是將時間劃分為一段段等長的時分復用幀。每一個時分復用的用戶在每一個 TDM 幀中佔用固定序號的時隙。

   統計時分復用 STDM(Statistic TDM)

   波分復用 WDM(Wavelength Division Multiplexing) 就是光的頻分復用。

   碼分復用 CDM(Code Division Multiplexing) :在相同的時間使用相同的頻帶進行通信。

  在 CDMA(碼分多址:Code Division Multiplexing Access) 中,每一個比特時間被劃分為 m 個短的間隔,稱為 碼片(chip) 。使用 CDMA 的每個站被指派一個唯一的 m bit 碼片序列(chip sequence) ,發送比特 1 使用 m bit 碼片序列,發送比特 0 使用碼片序列的反碼。

  CDMA 系統的一個重要特點就是這種體制給每一個站分配的碼片序列不僅必須各不相同,並且還必須互相正交。



  非對稱數字用戶線 ADSL(Asymmetric Digital Subscriber Line)技術是 用數字技術對現有的模擬電話用戶線進行改造 ,使它能夠承載寬頻數字業務。

  光纖同軸混合網(HFC 網,Hybrid Fiber Coax)是在目前覆蓋面很廣的有線電視網的基礎上開發的一種居民寬頻接入網。
















❸ 計算機網路的物理層是怎麼回事

在OSI/RM協議模型的物理層,數據傳輸的基本單位是位(比特流)
OSI模型的第一層是物理層(Physical
Layer),使用權數據路由經過大型網路
相當於郵局中的排序工人。
在局部區域網上傳送數據幀(data
frame),它負責管理計算機通信設備和網路媒體之間的互通。包括了針腳、電壓、線纜規范、集線器、中繼器、網卡、主機適配器等。
(3)計算機網路物理層如何工作擴展閱讀:
OSI參考模型各層主要功能、傳輸數據單位
1、物理層PhysicalLayer:原始比特流的傳輸,基本單位:(比特bit)
2、數據鏈路層DataLinkLayer:建立相鄰節點數據鏈路傳輸,基本單位:(幀frame)
3、網路層Network
layer :基於IP地址的路由選路傳輸數據,基本單位:
(數據包packet)
4、傳輸層Transport
layer: 常規數據傳遞,面向連接或者無連接,基本單位:(數據段segment)
5、會話層Session
layer: 建立會話關系
6、表示層Presentation
layer:統一數據傳輸格式
7、應用層Application
layer :為用戶應用程序提供服務介面
參考資料:搜狗網路-OSI模型

❹ 簡述物理層的主要功能


物理層是計算機網路模型中最低的一層。物理層規定為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。
物理層的主要功能:
為數據端設備提供傳送數據的通路:數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成。一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接。所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路。傳輸數據:物理層要形成適合數據傳輸需要的實體,為數據傳送服務。一是要保證數據能在其上正確通過,二是要提供足夠的帶寬,以減少信道上的擁塞。傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要。

❺ 物理層的功能是什麼其主要特點是什麼

為數據端設備提供傳送數據的通路:數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成。一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接。所謂激活就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路。

在通信中,機械特性是網路物理層協議一個方面的特徵,定義物理連接的邊界點,規定物理連接時所採用的接插件的規格、引腳的數量和排列情況等(尺寸、形狀、管腳數及排列順序)。

(5)計算機網路物理層如何工作擴展閱讀:

注意事項:

物理層解決如何在鏈接各種計算機的傳輸媒體(光纖,雙絞線等)上傳輸數據比特流(0和1),而不是指具體的傳輸媒體。

在使用時間域的波形表示數字信號時,則代表不同離散數值的基本波形就成為碼元。

在數字通信中常常用時間間隔相同的符號來表示一個二進制數字,這樣的時間間隔內的信號稱為二進制碼元,而這個間隔被稱為碼元長度。1碼元可以攜帶n比特的信息量。

❻ 計算機網路(2)| 物理層

首先要知道的是,物理層考慮的是怎樣才能在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。因為現在的計算機網路中的硬體設備和傳輸媒體的種類非常的多。而物理層的作用就是要盡可能地屏蔽掉這些不同的差異,從而使得物理層上面的數據鏈路層感覺不到這些差異,這樣就可以讓數據鏈路層「安心」的完成自己的本職工作而不必考慮網路的具體傳輸媒體和通信手段是什麼。

物理層的主要任務描述為確定與傳輸媒體介面有關的一些特性,即以下幾個方面:
(1) 機械特性 :指明介面所用的接線器的形狀與尺寸,引腳數目和排列,固定和鎖定裝置等等
(2) 電氣特性 :指明在介面電纜的各條線上出現的電壓的范圍。
(3) 功能特性 :指明某條線上出現的某一電平的電壓表示何種意義。
(4) 過程特性 :指明對於不同功能的各種可能事件的出現順序。

因為物理連接的方式有很多,所以具體的物理協議的種類也有很多,從而傳輸媒體的種類也是非常之多,所以在介紹物理層時,我們應該先對「介面與通信」有一定的了解。

一個通信系統可以劃分為三大部分,即 源系統 傳輸系統 目的系統

首先介紹源系統,源系統一般包括以下兩個部分:
源點: 源點設備產生要傳輸的數據,例如從計算機的鍵盤輸入漢字,計算機產生輸出的數字比特流。源點又稱為 源站 或者 信源
發送器: 通常源點生成的數字比特流要通過發送器編碼後才能夠在傳輸系統中進行傳輸。最典型的發送器就是調制器,現在的很多計算器使用的都是內置的解調器(包括調制器和解調器)。

目的系統一般也包括以下兩個部分:
接收器: 接收傳輸系統傳送過來的信號,並把它轉換為能夠被目的設備處理的信息。典型的接收器就是解調器,
終點: 終點設備從接收器獲取傳送來的數字比特流,然後把信息輸出。終點又稱為 目的站 或者 信宿

在源系統和目的系統之間的傳輸系統可以是簡單的傳輸線,也可以是連接睜碧在源系統和目的系統之間的復雜網路系統。

然後我們要來辨別一下下面的常用術語:
消息: 指語音,文字,圖像等等。
數據: 指使用特定方式表示的信息,通常是有意義的符號序列。這種信息的表示可用計算機或其他機器處理或者產生。
信號: 指數據的電氣或電磁的表現。

根據信號中代表消息的參數的取值方式不同,信號可以分為以下兩大類:
(1)模擬信號: 代表消息的握判參數的取值是連續的。
(2)數字信號: 代表消息的參數的取值是離散的。

信道 是用來表示向某一個方向傳送消息的媒體,一條通信電路往往包含一條發送信道和一條接收信道。

從通信的雙方信息交互的方式來看,可以有段早改以下三種基本方式:
(1)單向通信: 又稱為單工通信,即只能有一個方向的通信而沒有反方向的交互。無線電廣播或有線電廣播就是這種類型。
(2)雙向交替通信: 又稱為半雙工通信,即通信雙方都可以發送消息,但不能雙方同時發送(也不能同時接收)。這種通信方式是一方發送另一方接收。
(3)雙向同時通信: 也稱為全雙工通信,即通信雙方都可以同時發送和接收消息。

來自信源的信號稱為 基帶信號 。像計算機輸出的代表各種文字或文件的數據信號都屬於基帶信號。由於基帶信號往往包含有較多的低頻成分和直流成分,但是許多信道並不能傳輸這種低頻分量或是直流分量。所以為了解決這一問題,就必須對基帶信號進行 調制

調制主要是分為兩大類。一類是對基帶信號的波形進行變換,使它能夠與信道的特徵相適應,但是變換後的信號仍然是基帶信號,這一類的調制稱為 基帶調制 ,這一過程也被稱為編碼。還有一類調制則是需要使用載波進行調制,將基帶信號的頻率范圍搬移到較高的頻段,並轉換為模擬信號,這樣就能更好的在模擬信道中傳輸,經過載波調制的信號稱為帶通信號,而使用載波的調制稱為 帶通調制

不歸零制: 正電平代表1,負電平代表0。
歸零制: 正脈沖代表1,負脈沖代表0。
曼徹斯特編碼: 位周期中心的向上跳變代表0,位周期中心的向下跳變代表1,但是也可以反過來定義。
差分曼徹斯特編碼: 在每一位的中心處始終有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。

調幅(AM): 即載波的振幅隨著基帶數字信號而變化。例如,0或1分別對應於無載波或有載波的輸出。
調頻(FM): 即載波的頻率隨著基帶數字信號而變化。例如,0或1分別對應於頻率的 f1 f2
調相(PM): 即載波的初始相位隨著基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
當然,有時為了達到更高的信息傳輸速率,也必須採用技術上更為復雜但傳輸效果更好的混合調制方法,例如正交振幅調制等等。

限制信息在信道上的傳輸速率的因素主要是以下兩個。
(1)信道能夠通過的范圍頻率
具體信道所能通過的頻率范圍總是有限的。信號中的許多高頻分量往往不能通過信道,就是因為它的頻率超過了信道所能承受的最大頻率,因此就會造成失真現象。

(2)信噪比
雜訊存在於所有的電子設備和通信信道中。由於雜訊是隨機產生的,因此它的瞬時值有時會很大,所以雜訊會使接收端對碼元的判決產生錯誤。但是雜訊的影響是相對的,當信號較強時,雜訊的影響就相對較小。所以我們就要了解到 信噪比 的概念。信噪比就是指信號的平均功率和雜訊的平均功率之比,單位是分貝:

W是帶寬,S是信道內所傳信號的平均功率,N為信道內高斯雜訊的功率。香農公式指出:信道的帶寬或者信噪比越大,則信息的極限傳輸速率就越高。

傳輸媒體也稱傳輸介質或傳輸媒介。傳輸媒體大致可以分為兩大類: 導引型傳輸媒體和非導引型傳輸媒體 。下面來具體介紹。

雙絞線就是指將兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合起來。絞合可以減少對相鄰導線的電磁干擾。電話系統是使用雙絞線最多的地方,從用戶電話機到交換機的雙絞線稱為 用戶線

模擬傳輸和數字傳輸都會用到雙絞線,其通信距離一般是為幾到幾十公里。

為了提高雙絞線的對抗電磁干擾能力,可以在雙絞線外面再加一層用金屬絲編織而成的屏蔽層,這就是屏蔽雙絞線。,簡稱為 STP

同軸電纜內由導體銅質芯線、絕緣層、網狀編織的外導體屏蔽層以及保護塑料外層組成。由於其特有的構造,所以同軸電纜有著良好的抗干擾特性,被廣泛用於傳輸較高速率的數據。目前同軸電纜主要用在有線電視網的信號傳輸當中。它的帶寬是取決於它的質量的。

光纖是光纜通信的傳輸媒體,由於可見光的頻率非常之高,因此一個光纖通信系統的傳輸帶寬遠遠大於目前其他各種傳輸媒體的帶寬。

當光纖從高折射率的傳輸媒體到低折射率的傳輸媒體時,其折射角就會大於入射角。因此如果當入射角足夠大時,就會產生全反射,光也就能沿著光纖傳輸下去。

正是由於上面的原理,所以只要將入射角的角度把握好,就能夠產生全反射來進行傳輸,這也就是光纖傳輸的原理。

光纖不僅具有通信容量大的特點,還有其他的一些特點:
1.傳輸損耗小。
2.抗雷電和電磁干擾性能好。
3.無串音干擾,保密性很高。
4.體積小,重量輕。

我們將自由空間稱為非導引型傳輸媒體,簡單來說就是指無線傳輸。無線傳輸可以使用的頻段很廣,人們已經利用了好幾個波段來進行通信,但是紫外線以及更高的波段現在暫時還是不能用於通信。

短波通信(高頻通信)主要是靠電離層的反射來進行傳輸。但是短波信道的通信質量較差,傳輸速率較低。

無線電微波通信在數據通信中佔有重要的地位。微波在空間中主要是以直線傳播。傳統的微波通信主要有兩種方式,即 地面微波接力通信和衛星通信

要使用某一段無線電頻譜進行通信,通常必須得到本國政府有關無線電頻譜管理機構的許可證。但是也有一些無線電頻段是可以自由使用的。例如ISM,各國的ISM標准可能略有差異。

復用是通信中的基本概念,它是指允許用戶使用一個共享信道來進行通信,達到降低成本,提高利用率的效果。

先來介紹 頻分復用FDM ,頻分復用是指將帶寬分為多份,用戶在分到一定的頻帶後,在通信過程中自始至終都佔用著這一條頻帶,也就是說頻分復用的用戶是在同樣的時間佔用不同的帶寬資源。

然後是 時分復用TDM ,它是指將時間劃分為一段段等長的時分復用幀(TDM幀)。每一個時分復用的用戶在每一個TDM幀中佔用固定序號的時隙。而每一個用戶所佔用的時隙是周期性地出現(其周期就是TDM幀的長度)。時分復用的所有用戶是在不同的時間佔用同樣的頻帶寬度。

最後是 統計時分復用STDM ,它是有一點類似於TDM的,只是STDM幀不是固定分配時隙,而是按需動態的分配時隙。因此統計時分復用可以提高線路的利用率。

波分復用WDM 就是光的頻分復用,也就是使用一根光纖來同時傳輸多個光載波信號。

碼分復用CDM 是另一種共享信道的方法。而人們更常使用碼分多址CDMA來稱呼它。這種復用方式的具體做法是可以讓每一個用戶在同樣的時間使用同樣的頻帶進行通信,由於各個用戶使用經過特殊的不同碼型,因此各用戶之間不會造成干擾。而且通過這種方式發送的信號具有很強的抗干擾能力,其頻譜類似於白雜訊,不容易被他人發現。

碼分復用的工作原理是將每一個比特時間再劃分為m個短的間隔,稱之為碼片。一般情況下m的值是64或128。

使用CDMA的每一個站被指派一個唯一的m bit碼片序列。一個站如果要發送比特1,則發送它自己的m bit碼片序列。如果要發送比特0,則發送該碼片序列的二進制反碼。舉例來說:

有時為了方便起見,我們會將碼片中的0寫為-1,1寫為+1。

現假定S站要發送信息的數據率為b bits/s,由於每一個比特要轉換成m個比特的碼片,因此S站實際上發送的數據率提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原來數值的m倍。這種方式就是 擴頻 的一種。擴頻通信通常有兩大類,一種是直接序列擴頻DSSS,另一種是跳頻擴頻FHSS。

CDMA系統的重要特點是每個站分配的碼片序列不僅必須各不相同,並且還必須互相正交,並且在實用的系統中是使用偽隨機碼序列。

在早期的電話網當中,從電話局到用戶電話機的用戶線採用最廉價的雙絞線電纜,而長途干線採用的是頻分復用FDM的模擬傳輸方式。由於數字通信與模擬通信相比,無論數傳輸質量上還是從經濟上都有明顯的優勢,所以現在長途干線大都採用時分復用PCM的數字傳輸方式。

但是早期的數字傳輸系統有著許多的缺點,其中最主要的是以下兩個:
(1)速率標准不統一: 由於歷史的原因,多路復用的速率體系有兩個互不兼容的國際標准。所以國際范圍的基於光纖高速數據傳輸就很難實現。
(2)不是同步傳輸: 在過去各國的數字網主要是採用准同步的方式,所以當數據傳輸速率很高時,收發雙方的時鍾同步就成為很大的問題。

所以為了解決這些問題,美國推出了一個數字傳輸標准,叫做同步光纖網SONET。整個的同步網路的各級時鍾都來自一個非常精確的主時鍾。同時,SONET為光纖傳輸系統定義了同步傳輸的線路速率等級結構:

寬頻的接入技術主要包括有線寬頻接入和無線寬頻接入。在這里先來介紹有線寬頻接入。

ADSL技術的全稱是非對稱數字用戶線技術,具體指的是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。具體來說ADSL技術就是把0-4 kHZ這一段低端頻譜留給傳統電話使用,而把原來沒有被利用的高端頻譜留給用戶上網使用。

ADSL的 傳輸距離 取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。而ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。

ADSL在 數據率 方面由於用戶在線的具體條件相差較大,因此ADSL採用自適應調制技術使用戶線能夠傳送盡可能高的數據率。當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到干擾的情況以及在每一個頻率上測試信號的傳輸質量。但是ADSL不能保證固定的數據率,所以對於用戶線很差的甚至無法開通ADSL。

基於ADSL的接入網由以下三大部分組成:數字用戶線接入復用器,用戶線和用戶家中的一些設施。

ADSL技術也在發展,現在已經有了更高速率的ADSL標准,稱之為 第二代ADSL ,第二代ADSL改進的地方主要是:
1. 通過提高調制效率得到了更高的數據率。
2. 採用了無縫速率自適應技術SRA,可在運營中不中斷通信和不產生誤碼的情況下,自適應的調整數據率。
3. 改善了線路質量評測和故障定位功能。

HFC網是目前覆蓋面很廣的有線電視網CATV的基礎上開發的一種居民寬頻接入網,除了可以傳送CATV外,還能提供電話、數據和其他寬頻交互型業務。

為了提高傳輸的質量,HFC網將原有線電視網中的同軸電纜主幹部分改換為光纖,而光纖從頭端連接到光纖結點,在光纖結點光信號被轉換為電信號,最後信號被送到每一個用戶的家庭。

FTTx是一種實現寬頻居民接入網的方案,代表多種寬頻接入的方式。這里的x代表不同的光纖接入地點,例如FTTH光纖到戶,FTTB光纖到大樓等等。

現在的長距離信號傳輸大都是採用光纖傳輸,只有在到了臨近用戶家中時,才將光纖轉換為銅纜。但是一個用戶是遠用不了一根光纖的通信容量,因此我們在光纖干線和用戶之間安裝一種轉換裝置即 光配線網 ,使得許多用戶能夠共享一根光纖的通信容量。由於光配線網無需使用電源,因此我們將其稱為無源光網路。

❼ 物理層要解決哪些問題物理層的主要特點是什麼

物理層要解決的問題:

1、物理層要盡可能屏蔽掉物理設備、傳輸媒體和通信手段的不同,使上面的數據鏈路層感覺不到這些差異的存在,而專注於完成本曾的協議與服務。

2、給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力。為此,物理層應解決物理連接的建立、維持和釋放問題。

3、在兩個相鄰系統之間唯一地標識數據電路。

物理層的主要特點:

由於在OSI之前,許多物理規程或協議已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備鎖採用。

加之,物理層協議涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套心的物理層協議,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械、電氣、功能和規程特性。

由於物理連接的方式很多,傳輸媒體的種類也很多,因此,具體的物理協議相當復雜。

規程與協議的區別:

在數據通信的早期,對通信所使用的各種規則都稱為「規程」(procere),後來具有體系結構的計算機網路開始使用「協議」(protocol)這一名詞,以前的「規程」其實就是「協議」,但由於習慣,對以前制定好的規程有時仍常用舊的名稱「規程」。

❽ 計算機網路中五層協議它們分別的主要功能是什麼它們具體分別是在哪裡(從硬體層面上談)實現的

1,物理層;其主要功能是:主要負責在物理線路上傳輸原始的二進制數據。

2、數據鏈路層;其主要功能是:主要負責在通信的實體間建立數據鏈路連接。

3、網路層;其主要功能是:要負責創建邏輯鏈路,以及實現數據包的分片和重組,實現擁塞控制、網路互連等功能。

4、傳輸層;其主要功能是:負責向用戶提供端到端的通信服務,實現流量控制以及差錯控制。

5、應用層;其主要功能是:為應用程序提供了網路服務。

物理層和數據鏈路層是由計算機硬體(如網卡)實現的,網路層和傳輸層由操作系統軟體實現,而應用層由應用程序或用戶創建實現。

(8)計算機網路物理層如何工作擴展閱讀:

應用層是體系結構中的最高層。應用層確定進程之間通信的性質以滿足用戶的需要。這里的進程就是指正在運行的程序。

應用層不僅要提供應用進程所需要的信息交液攜換
和遠地操作,而且還要作為互相作用的應用進程的用戶代理,來完成一些為進行語義上有意義的信息交換所必須的功能。應用層直接為用戶的應用進程提供服務。

傳輸層的任務就是負責主機中兩個進程之間鬧扮伏的通信。網際網路缺頃的傳輸層可使用兩種不同協議:即面向連接的傳輸控制協議TCP,和無連接的用戶數據報協議UDP。

面向連接的服務能夠提供可靠的交付,但無連接服務則不保證提供可靠的交付,它只是「盡最大努力交付」。這兩種服務方式都很有用,備有其優缺點。在分組交換網內的各個交換結點機都沒有傳輸層。

網路層負責為分組交換網上的不同主機提供通信。在發送數據時,網路層將運輸層產生的報文段或用戶數據報封裝成分組或包進行傳送。

在TCP/IP體系中,分組也叫作IP數據報,或簡稱為數據報。網路層的另一個任務就是要選擇合適的路由,使源主
機運輸層所傳下來的分組能夠交付到目的主機。

❾ 簡述計算機網路的組成,以及各個組成部分的作用

計算機網路由七層組成:

1、物理層:傳遞信息需要利用一些物理傳輸媒體,如雙絞線、同軸電纜、光纖等。物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。

2、數據鏈路層:數據鏈路層負責在2個相鄰的結點之間的鏈路上實現無差錯的數據幀傳輸。在接收方接收到數據出錯時要通知發送方重發,直到這一幀無差錯地到達接收結點,數據鏈路層就是把一條有可能出錯的實際鏈路變成讓網路層看起來像不會出錯的數據鏈路。

3、網路層:網路中通信的2個計算機之間可能要經過許多結點和鏈路,還可能經過幾個通信子網。網路層數據傳輸的單位是分組。網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。

4、傳輸層:傳輸層的主要任務是通過通信子網的特性,最佳地利用網路資源,並以可靠與經濟的方式為2個端系統的會話層之間建立一條連接通道,以透明地傳輸報文。傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節。

5、會話層:在會話層以及以上各層中,數據的傳輸都以報文為單位,會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。

6、表示層:這一層主要解決用戶信息的語法表示問題。它將要交換的數據從適合某一用戶的抽象語法,轉換為適合OSI內部表示使用彎皮的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。

7、應用層:這是OSI參考模型的最高層。應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。

(9)計算機網路物理層如何工作擴展閱讀:

傳輸層作為整個計算機網路的核心,是惟一負責總體數據傳輸和控制的一層。因為網路層不一定保證服務的可靠,而用戶也不能直接對通信子網加以控制埋旦差,因此在網路層之上,加一層即傳輸層以改善傳輸質量。

傳輸層利用網路層提供的服務,並通過傳輸層地址提供給高層用戶傳輸數據的通信埠,遲唯使系統間高層資源的共享不必考慮數據通信方面和不可靠的數據傳輸方面的問題。

❿ 物理層功能和作用

物理層作用:

1、物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。

2、給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。

3、在兩個相鄰系統之間唯一地標識數據電路。

物理層主要功能:

1、為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成。一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接。所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路。

2、傳輸數據,物理層要形成適合數據傳輸需要的實體,為數據傳送服務。一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞。

傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要。

3、完成物理層的一些管理工作。

(10)計算機網路物理層如何工作擴展閱讀:

物理層的主要特點:

由於在OSI之前,許多物理規程或協議已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備所採用。

加之,物理層協議涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套新的物理層協議,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械,電氣,功能和規程特性。

由於物理連接的方式很多,傳輸媒體的種類也很多,因此,具體的物理協議相當復雜。[2]

信號的傳輸離不開傳輸介質,而傳輸介質兩端必然有介面用於發送和接收信號。因此,既然物理層主要關心如何傳輸信號,物理層的主要任務就是規定各種傳輸介質和介面與傳輸信號相關的一些特性。

信號的傳輸離不開傳輸介質,而傳輸介質兩端必然有介面用於發送和接收信號。因此,既然物理層主要關心如何傳輸信號,物理層的主要任務就是規定各種傳輸介質和介面與傳輸信號相關的一些特性。

機械特性

也叫物理特性,指明通信實體間硬體連接介面的機械特點,如介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等。這很像平時常見的各種規格的電源插頭,其尺寸都有嚴格的規定。

已被ISO 標准化了的DCE介面的幾何尺寸及插孔芯數和排列方式。

DTE(Data Terminal Equipment,數據終端設備,用於發送和接收數據的設備,例如用戶的計算機)的連接器常用插針形式,其幾何尺寸與。

DCE(Data Circuit-terminating Equipment,數據電路終接設備,用來連接DTE與數據通信網路的設備,例如Modem數據機)連接器相配合,插針芯數和排列方式與DCE連接器成鏡像對稱。

電氣特性

規定了在物理連接上,導線的電氣連接及有關電路的特性,一般包括:接收器和發送器電路特性的說明、信號的識別、最大傳輸速率的說明、與互連電纜相關的規則、發送器的輸出阻抗、接收器的輸入阻抗等電氣參數等。

功能特性

指明物理介面各條信號線的用途(用法),包括:介面線功能的規定方法,介面信號線的功能分類--數據信號線、控制信號線、定時信號線和接地線4類。

規程特性

指明利用介面傳輸比特流的全過程及各項用於傳輸的事件發生的合法順序,包括事件的執行順序和數據傳輸方式,即在物理連接建立、維持和交換信息時,DTE/DCE雙方在各自電路上的動作序列。

以上4個特性實現了物理層在傳輸數據時,對於信號、介面和傳輸介質的規定。

參考資料來源:網路-物理層

閱讀全文

與計算機網路物理層如何工作相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1692
西安瑞禧生物科技有限公司怎麼樣 瀏覽:949
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1642
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050