Ⅰ 初中物理速度例題!有問題和答案的那種!只要應用題
運動快慢的描述、速度典型例題
[例1] 一列火車沿平直軌道運行,先以10m/s的速度勻速行駛15min,隨即改以15m/s的速度勻速行駛10min,最後在5min內又前進1000m而停止.則該火車在前25min及整個30min內的平均速度各為多大?它通過最後2000m的平均速度是多大?
[分析] 根據勻速直線運動的規律,算出所求時間內的位移或通過所求位移需要的時間,即可由平均速度公式算出平均速度.
[解答] 火車在開始的15min和接著的10min內的位移分別為:
s1=v1t1=10×15×60m=9×103m
s2=v2t2=15×10×60m=9×103m
所以火車在前25min和整個30min內的平均速度分別為:
因火車通過最後2000m的前一半位移以v2=15m/s勻速運動,經歷時間為:
所以最後2000m內的平均速度為:
[說明]由計算可知,變速運動的物體在不同時間內(或不同位移上)的平均速度一般都不相等.
[例2]某物體的位移圖象如圖所示.若規定向東為位移的正方向,試求:物體在OA、AB、BC、CD、DE各階段的速度.
[分析]物體在t=0開始從原點出發東行作勻速直線運動,歷時2s;接著的第3s~5s內靜止;第6s內繼續向東作勻速直線運動;第7s~8s勻速反配春衡向西行,至第8s末回到出發點;在第9s~ 12s內從原點西行森圓作勻速直線運動.
[解]由s-t圖得各階段的速度如下:
AB段:v2=0;
[說明] 從圖中可知,經t=12s後,物體位於原點向西4m處,即在這12s內物體的位移為-4m.而在這12s內物體的路程為培做(12+12+4)m=28m.由此可見,物體不是作單向勻速直線運動時,位移的大小與路程不等.
[例3] 圖1所示為四個運動物體的位移圖象,試比較它們的運動情況.
[分析]這四個物體的位移圖象都是直線,其位移又都隨時間增加,說明都向著同方向(位移的正方向)作勻速直線運動,只是其速度的大小和起始情況不同.
[答]a、b兩物體從t=0開始,由原點出發向正方向作勻速直線運動.c物體在t=0時從位於原點前方s1處向正方向作勻速直線運動.d物體在時間t1才開始向正方向作勻速直線運動.由圖中可知,任取相同時間△t,它們的位移△s大小不同:△Sc>△SB>△Sa>△Sd,所以它們的速度大小關系為vc>vB>va>vd.
[說明]這四條圖線所對應的物體的運動,可以想像為四個百米賽跑的運動員.發令槍響,a、b兩運動員從起跑線上以不同速度勻速出發.c運動員則「搶跑」——在發令槍響前t0時刻已開始出發,因此在發令槍響時刻(t=0)已跑到正前方s1處.d運動員則反應遲緩,發令槍響後經一段時間t1才開始出發——相當於在發令槍響時(t=0)從位於起跑線後s0處出發的(圖2).
根據圖線斜率的意義可知,勻速直線運動位移圖象斜率的大小等於速度,即
[例4] 對於作勻速直線運動的物體,則 [ ]
A.任意2s內的位移一定等於1s內位移的2倍
B.任意一段時間內的位移大小一定等於它的路程
C.若兩物體的速度相同,則它們的速率必然相同,在相同時間內通過的路程相等
D.若兩物體的速率相同,則它們的速度必然相同,在相同時間內的位移相等
[分析] 物體作勻速直線運動時,速度v的大小、方向恆定不變,由公式s=vt知,其位移與時間成正比.又由於速度v方向不變,其軌跡是一條單向的直線,任意時間內的位移大小與路程相等.當v1=v2時,表示兩者的大小、方向都相同,相同時間內的路程必相等.但當速率|v1|=|v2|時,兩物體的運動方向可能不同,相同時間內的位移可以不等.
[答] A、B、C.
[例5]甲、乙、丙三個物體運動的 S—t圖象如圖所示,下列說法中正確的是 [ ]
A.丙物體作加速直線運動
B.甲物體作曲線運動
[誤解]選(B),(C),(D)。
[正確解答] 選(A)。
[錯因分析與解題指導] 物體運動的位移圖象(簡稱S—t圖)表示作直線運動物體的位移隨時間的變化規律,位移圖象不是物體的運動軌跡。選項(B)把圖線誤認為是物體的運動軌跡,是完全錯誤的。
位移圖象中圖線的斜率表示物體運動速度的大小,故選項(A)正確。
平均速度=位移/時間,0—t0 時間內三物體有相同的位移,故應有
平均速率=路程/時間,0—t0時間內乙、丙兩物體路程相等,而甲物體運動路程大,
[例6]甲乙兩車沿平直公路通過同樣的位移,甲車在前半段位移上以v1=40km/h的速度運動,後半段位移上以v2=60km/h的速度運動;乙車在前半段時間內以v1=40km/h的速度運動,後半段時間以v2=60km/h的速度運動,則甲、乙兩車在整個位移中的平均速度大小的關系是 [ ]
[分析] 設總位移為s,則甲車運動時間為
所以甲車的平均速度
設乙車運動總時間為t乙,則乙車的總位移為
所以乙車的平均速度
[答] C.
計算,它不等於速度的平均在變速直線運動中,若物體運動的前一半時間平均速度為v1,後一 求出。若運動的前一半位移平均速度為v1,後一半位移的平均速度為v2,則全程的平
[例7]列車進站前先關閉汽閥,當它勻減速滑行300m時,列車的速度已經減半,以後又繼續滑行20s後恰好停於站台上.求列車滑行的總位移和最後10s內的位移.
[分析] 這里的研究對象是列車,根據題意作出的運動示意圖如圖所示.
設列車行至A處開始剎車滑行的速度為v,至B處速度為
=20s.
[解] 因vB 恰等於整個滑行過程中的平均速度,即
vB =
車在AB段和BC段的運動時間必定相等,即
t1=t2=20s
因列車在AB段和BC段的平均速度分別為
即
v1∶v2=3∶1,
如果從終點C逆著原列車運動方向考慮,列車做的是初速為零的勻加速運動.根據s∝t2的關系,最後10s(即逆向觀察時的第1個10s)內的位移僅為最後20s(即逆向觀察時最初兩個10s)內位移的1/4,故
[說明] 本題由於靈活應用了「時間中點」的速度特點、位移的比例關系和逆向轉換的思考方法,得以能較迅速的求解,請讀者予以體會.
[例8] 一列隊伍長L=120m,行進速度v1=1.6m/s.為了傳達一個命令,通訊員從隊伍排尾跑步趕到隊伍排頭,其速度v2=3m/s,然後又立即用與隊伍行進速度相同大小的速度返回排尾.問:
(1)通訊員從離開隊伍到重又回到排尾共需多少時間?
(2)通訊員歸隊處與離隊處相距多遠?
[分析]這里有兩個研究對象:通訊員和行進中的隊伍,兩者都作勻速直線運動,其運動示意圖如圖所示.設隊伍原位置為AB,通訊員從排尾趕到排頭時,排頭已到位置A',所用時間為t,通訊員返回排尾時,排頭的位置為A〃,所用時間為t′.在時間t內,通訊員與隊伍位移之差等於L;在時間t′內, 通訊員與隊伍位移大小之和等於L.
[解](1)通訊員從排尾趕到排頭時,有關系式:
v2t-v1t=L ①
設通訊員從排頭返回排尾的速度為v2′,其值為v2′=v1= 1.6m/s,又有關系式:
v1t'+v'2t'=2v1t'=L ②
聯立兩式,得通訊員從離開隊伍(排尾)到重新返回排尾共需時間:
(2)通訊員歸隊處與離隊處相隔距離就是整個隊伍在同樣時間內行進的距離,即
s'=v1T=1.6×123.2m=197.1m
[說明] 根據運動的相對性,如果把行進中的隊伍作為參照物,就可以簡化為一個研究對象,即通訊員相對於「靜止」隊伍的勻速直線運動.離隊時,通訊員以大小等於(v2-v1)的速度向排頭做勻速運動,趕
到歸隊的時間:
Ⅱ 初中物理關於速度的題要10道,做好把答案附上
(1)相距4500米的甲乙兩車站之間是一條筆直的公路,每隔半分鍾有一輛貨車從甲站出發,以10m/s的速度勻速開往乙站,共開出50輛;與第一輛貨車開出的同時有一輛客車從乙站出發,勻速開往甲站,若客車速度是貨車速度的兩倍,那麼客車途中遇到第一輛貨車與最後一次遇到貨車相隔的時間為多少秒?
首先考慮第一輛貨車和最後一輛貨車的距離。10×30×49=14700米。那麼如果不出意外的話,時間應該是14700/(10+20)=490s。
但是客車遇到第一輛貨車的時間是4500/(10+20)=150s。客車到達甲站的時間是4500/20=225s。
所以意外出現了,不可能有490s給他們相遇。
所以遇到的最後一輛貨車應該族祥是在210s時從甲站出發的貨車。因為225s時到站了,240s出發的貨車將不會相遇。
那麼接下來只要算210s出發兆頌搏的貨車何時與客車相遇即可。210s時,客車距甲站300m。所以還剩下的時間是300/(10+20)=10s。所以220s時相遇了。
那麼客車途中遇到第一輛貨車與最後一次遇到貨車相隔的時間為:220-150=70s
答案是70s
(2)
一隻排球以水平速度10米/秒碰撞一靜止的汽車後,以6米/秒的速度被彈回來,球碰汽車後的速度大小是碰撞前速度的0.6倍.如果排球以10米/秒的水平速度碰撞沿同一方向以5米/秒的速度向前行駛的櫻唯汽車,則碰後球的運動速度的大小是________米/秒,方向是_________.
2m/s
向前
Ⅲ 初中物理關於速度的選擇題
1、甲、乙頭同學在平直的馬路上騎車勻速前進,甲同學的速度比乙的速度大,以下說茄頃法正確的是( c )
A.甲運動的嫌蘆路程比乙長
B.甲運動的時間比乙斷
C.在相同的時間內甲運動的路程比乙長
D.運動相同的路程甲用的時間比乙長
2、從速度公式v=s/t可知:一個做勻芹納帶速直線運動的物體的速度( d )
A.與路程成正比 B.與時間成反比
C.隨時間和路程而改變 D.與時間、路程無關
Ⅳ 有關初中物理速度計算題目
一支長為150m的隊伍勻速前進,通信兵從隊尾前進300m後趕到隊前傳達命令後立即返回,當通信兵回到隊尾時,隊伍已前進了200m,則這個過程中通信兵的路程為多少?
人到隊前時,隊伍前進的棗寬敗距離為S1=300m-150m=150m;
人到隊尾時,隊伍前進的距凳顫離是S2=200m-150m=50m;
所以人向後跑了S3=150m-50m=100m,
因此這個過程中通信兵的路巧迅程為向前300m+向後100m=400m.
答:這個過程中通信兵的路程為400m.
Ⅳ 初二物理速度公式
初二物理速度公式如下:
速度:用來表示物體運動快慢的物理量。
定義:物體體在單位時間內通含和過的路程。
計算公式:v=s t
勻速直線運動:速度不變、經過答老伏的路線是直線的運動。這是最簡單的機械運動。
變速運動:物體運動速度是變化的運動。
平均速度=總路程/對應的總時間。公式:v=s/t 。 日常所說的速度多是指平均速清攜度。
根據公式:v=s/t的變形,可求路程:s=vt;時間:t=s/v
速度:V=S/t ,t=s/v,s=vt,t時間,s路程。
速度v=s/t;
密度ρ=m/v;
壓強P=F/s=ρgh;
浮力F=G排=ρ液gV排=G(懸浮或漂浮)=F向上-F向下=G-F』;
機械效率η=W有/W總=Gh/Fs=G/nF=G/(G+G動)=fL/Fs(滑輪組水平拉物體克服摩擦力作功);
熱量:熱傳遞吸放熱Q=cm△t;燃料完全燃燒Q=mq=Vq;電熱:Q=I2Rt;
電學公式:電流:I=U/R=P/U電阻:R=U/I=U2/P電壓:U=IR=P/I
Ⅵ 求初二物理上冊 有關速度、路程、時間的計算題
有關速度、路程、時間的問題是初中學習物理涉及的第一個有難度的問題。這里主要記住公式以及熟練運用燃畝公式解決問題。公式為v=s/t,由此公式可以推倒出另外的兩個公式:s=vt,t=s/v。當然還要知道平均速度的計算公式:v(平均)=s(總)/t(總)。
有關速度的計算問題在初二物理學習初期會一直遇到,考試中也會出現選擇、計算問題。
建議上課認真聽講,下課把物理習題好好練習,有能力的話買本課外輔導書,只要認真學習這些問題會很容易的。當然,會利用公式的前提還要把數學學習好。
例題皮緩森:某人走一段路程,前半程平均速度是v1,後半程平均速度是v2,此人全程的平均速度。
某人走一段路程,用了一段時間,前半時平均速度為v3,後半時平均速度哪譽為v4,求此人全程的平均速度。
此題就需要認真理解平均速度的概念,以及速度路程時間之間的關系,求求看。