導航:首頁 > 物理學科 > 物理層過程有哪些

物理層過程有哪些

發布時間:2023-05-25 20:54:02

A. 寫出OSI七層封裝和解封裝的過程

OSI(Open System Interconnection)參考模型把網路分為七層:

1.物理層(Physical Layer)

物理層主要傳輸原始的比特流,集線器(Hub)是本層的典型設備;

2.數據鏈路層(Data Link Layer)

數據鏈路層負責在兩個相鄰節點間無差錯的傳送以幀為單位的數據,本層的典型設備是交換機(Switch);

3.網路層(Network Layer)

網路層主要完成的工作是:選擇合適的網間宏褲路由和交換節點,網路層將數據層提供的幀組成數據包,包中封裝有網路層包頭,包頭中含有邏輯地址信息(源主機和目標主機的網路地址),典型設備是路由器(Router);

4.傳輸層(Transport Layer)

傳輸層為兩個端系統(即源主機和目標主機)的回話提供建立,維護和取消傳輸連接的功能.這一層傳輸的信息以報文為單位.

5.會話層(Session Layer)

會話層及以上層中數據傳送的單位不再另外命名,統稱為報文.

會話層管理進程之間的會話過程,即負責建立,管理,終止進程之間的會話.會話層還通過在數據中插入校驗點來實現數據的攜絕喚同步.

6.表示層(Presentation Layer)

表示層負責對上層數據進行轉換,以保證一個主機的應用層的辯凱數據可以被另一個主機的應用層理解.表示層的數據轉換包括對數據的加密,解密,壓縮,解壓和格式轉換.

7.應用層(Application Layer)

應用層確定進程之間通信的實際用途;

B. 計算機網路——2.物理層

確定與傳輸媒體的 介面 的一些特性,解決在各種傳輸媒體上傳輸 比特流 的問題
1.機械特性 :介面的形狀尺寸大小。
2.電氣特性 :在介面電纜上的各條線的電壓范圍。
3.功能特性 :在某一條線上出現的某個電平電壓表示的意義。
4.過程特性 :對於不同功能的各種可能事件的出現順序。
傳輸媒體主要可以分為 導引型傳輸媒體 非導引型傳輸媒體
導引型傳輸媒體 :信號沿著固體媒體(銅線或光纖,雙絞線)進行傳輸, 有線傳輸
非導引型傳輸媒體 :信號在自由空間傳輸,常為 無線傳輸

數據通信系統:包括 源系統 (發送方), 傳輸系統 (傳輸網路), 目的系統 (接收方)。
一般來說源系統發出的信號(數字比特流)不適合直接在傳輸系統上直接傳輸,需要轉化(模擬信號)。
調制 :數字比特流-模擬信號
解調 :模擬信號-數字比特流

數據 ——運送消息的實體。
信號 ——數據的電氣化或電磁化的表現。
模擬信號 ——代表消息的參數的取值是 連續 的。
數字信號 ——代表消息的參數的取值是 離散 的。
碼元 ——在使用時間域代表不同離散值的基本波形。

信道 :表示向某一個方向傳送信息的媒體。
單向通信(單工通信) :只有一個方向的通信,不能反方向。
雙向交替通信(半雙工通信) :能兩個方向通信,但是不能同時。
雙向同時通信(全雙工通信) :能同時在兩個方向進行通信。
基帶埋旦稿信號 :來自信源的信號(源系統發送的比特流)。

基帶調制 :對基帶信號的波形進行變換,使之適應信道。調制後的信號仍是基帶信號。基帶調制的過程叫做 編碼
帶通調制 :使用載波進行調制,把基帶信號的頻率調高,並轉換為模擬信號。調制後的信號是 帶通信號

1.歸零制 :兩個相鄰信號中間信號記錄電流要恢復到 零電平 正脈沖表示1,負脈沖表示0 。在歸零制中,相鄰兩個信號之間這段磁層未被磁化,因此在寫入信息之前必須去磁。
2.不歸零制 正電平代表1,負電平代表0 ,不用恢復到零電平。難以分辨開始和結束,連續記錄0或者1時必須要有時鍾同步,容易出現直流分量出錯。
3.曼徹斯特編碼 :在每一位中間都有一個跳變。 低->高表示0,高->低表示1
4.差分曼徹斯特編碼 :在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,沒有跳變代表彎孝1。 位中間的跳變代表時鍾,位前跳變代表數據

調幅( AM ):載波的 振幅 隨著基帶數字信號而變化。
調頻( FM ):載波的 頻率 隨著基帶數字信號而變化。
調相( PM ):載波的 初始相位 隨著基帶數字信號而變化。

失真 :發送方的數據和接收方的數據並不完全一樣。
限制碼元在信道上的傳輸速率的因素:信道能夠通過的 頻率范圍 信噪比

碼間串擾 :由於系統特性,導致前後碼元的波形畸變。
理想低通信號的最遲做高碼元傳輸速率為 2W ,單位是波特,W是理想低通信道的 帶寬 ,理想帶通特性信道的最高碼元傳輸速率為W。
信噪比 :信號的平均功率與雜訊的平均功率的比值,單位是 dB 值=10log10(S/N)
信噪比對信道的 極限 信息傳輸速率的影響:速率 C=Wlog2(1+S/N)——香農公式 ,單位為 bit/s
信噪比越大,極限傳輸速率越高。實際速率比極限速率低不少。還可以用編碼的方式來提高速率(讓一個碼元攜帶更多的比特量)。

所謂 復用 就是一種將若干個彼此獨立的信號合並成一個可以在 同一信道 上同時傳輸的 復合信號 的方法。
比如,傳輸的語音信號的頻譜一般在300~3400Hz內,為了使若干個這種信號能在 同一信道(相當於共享信道,能夠降低成本,提高利用率) 上傳輸,可以把它們的頻譜調制到不同的頻段,合並在一起而不致相互影響,並能在接收端彼此分離開來( 分用 )。
信道復用技術就是將一個物理信道按照一定的機制劃分多個互不幹擾互不影響的邏輯信道。信道復用技術可分為以下幾種: 頻分復用,時分復用和統計時分復用,波分復用,碼分復用

1.頻分復用技術FDM(也叫做頻分多路復用技術): 條件是傳送的信號的帶寬是有限的,而 信道的帶寬要遠遠大於信號的帶寬 ,然後採用 不同頻率 進行調制的方法,是各個信號在信道上錯開。頻分復用的各路信號是在 時間 上重疊而在 頻譜 上不重疊的信號。將整個帶寬分為多份,用戶分配一定的帶寬後通信過程 自始至終都佔用 這個頻帶。另外,為保證各個子信道傳輸不受干擾,可以設立 隔離帶
2.時分復用技術TDM:採用同一物理連接的不同時段來傳輸不同的信號。 也就是在信道帶寬上劃分出幾個子信道後,A用戶在某一段時間使用子信道1,用完之後將子信道1釋放讓給用戶B使用,以此類推。將整個信道傳輸時間劃分成若干個時間片(時隙),這些時間片叫做 時分復用幀 。每一個時分用戶在每一個TDM幀中佔用 固定時序 的時隙。

4.波分復用技術WDM: 將兩種或多種不同波長的光載波信號在發送端經過 復用器匯合 在一起,並耦合到光線路的 同一根光纖 中進行傳輸,在接收端經過 分波器 將各種波長的光載波分離進行 恢復 。整個過程類似於頻分復用技術的共享信道。波分復用其實就是光的頻分復用。

1.比特時間,碼片
1比特時間就是發送 1比特 需要的時間,如數據率是10Mb/s,則100比特時間就等於10微秒。
每一個比特時間劃分為m個短的間隔,稱為碼片。每個站被指派一個唯一的m bit 的碼片序列(例如S站的8 bit 碼片序列是00011011)。
如果發送 比特1 ,則發送自己的m bit 碼片序列。如果發送 比特0 ,則發送該碼片序列的二進制反碼。
S站的碼片序列:(-1,-1,-1,+1,+1,-1,+1,+1) -1代表0,+1代表1
用戶發送的信號先受 基帶數字信號 的調試,又受 地址碼 的調試。就比如數據發送後受到基帶數字信號的調試之後變為10,然後又受到地址碼的調試後1就變為了00011011(上面的S站碼片序列),0就變成了11100100。
由於每個比特要轉換成m個比特的碼片序列,因此原本S站的數據率b bit/s要提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原本數值的m倍。這種方式是擴頻通信中的一種。
擴頻通信通常有兩大類:直接序列擴頻DSSS(上述方式);跳頻擴頻FHSS。
2.碼分多址(CDMA)
CDMA的重要特點 :每個站分配的碼片序列不僅必須 各不相同 ,並且還必須 相互正交 。在實用系統中使用的是 偽隨機碼序列
碼片的互相 正交 的關系:令向量S表示站S的碼片向量,令T表示其他任何站的碼片向量。兩個不同站的碼片序列正交,就是向量S和T的 規格化內積 等於0。

即S T=(S1 T1+S2 T2+......Sm Tm)/m(其實就相當於 兩個向量垂直 ,/m對結果其實也沒多大關系)
推論 1. 一個碼片向量和另一碼片反碼的向量的規格化內積值為0(如果ST=0,那麼ST'也=0)
2. 任何一個碼片向量和該碼片向量自己的規格化內積都是1,即S S=1
3. 一個碼片向量和該碼片向量的規格化內積值是-1,即S
S'=-1
CDMA的工作原理:
用一個列子來說明,假設S站的碼片序列為(-1,-1,-1,+1,+1,-1,+1,+1),S站的擴頻信號為Sx,即若數據比特=1那麼S站發送的是碼片序列本身Sx=S,若數據比特=0那麼S站發送的是碼片序列的反碼Sx=S』。T站的碼片序列為(-1,-1,+1,-1,+1,+1,+1,-1),T站的擴頻信號為Tx。因為所有的站都使用相同的頻率,因此每一個站都能夠收到所有的站發送的擴頻信號。所有的站收到的都是疊加的信號 Sx+Tx
當接收站打算收S站發送的信號時,就用S站的碼片序列與收到的信號求規格化內積,即S (Sx+Tx)=S Sx+S Tx。前者等於+1或0,後者一定等於0,具體看下面(參考上面的 CDMA的工作原理 ):
當數據比特=1時,Sx=S,那麼S
Sx=S S=1;同理 ,當數據比特=0時,Sx=S』,那麼S Sx=S S』=0
當數據比特=1時,Tx=S,那麼S
Tx=S T=0(參考上面 碼片序列的正交關系 );同理 ,當數據比特=0時,Sx=S』,那麼S Tx=S*T』=0

C. 物理層要解決哪些問題物理層的主要特點是什麼

物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。

物理層要盡可能地屏蔽掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協議和服務。

給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連接的建立、維持和釋放問題。在兩個相鄰系統之間唯一地標識數據電路。


(3)物理層過程有哪些擴展閱讀:

物理層的組成部分

物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE即數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連接設備,如數據機等。

數據傳輸通常是經過DTE──DCE,再經過DCE──DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。



D. 計算機網路(2)| 物理層

首先要知道的是,物理層考慮的是怎樣才能在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。因為現在的計算機網路中的硬體設備和傳輸媒體的種類非常的多。而物理層的作用就是要盡可能地屏蔽掉這些不同的差異,從而使得物理層上面的數據鏈路層感覺不到這些差異,這樣就可以讓數據鏈路層「安心」的完成自己的本職工作而不必考慮網路的具體傳輸媒體和通信手段是什麼。

物理層的主要任務描述為確定與傳輸媒體介面有關的一些特性,即以下幾個方面:
(1) 機械特性 :指明介面所用的接線器的形狀與尺寸,引腳數目和排列,固定和鎖定裝置等等
(2) 電氣特性 :指明在介面電纜的各條線上出現的電壓的范圍。
(3) 功能特性 :指明某條線上出現的某一電平的電壓表示何種意義。
(4) 過程特性 :指明對於不同功能的各種可能事件的出現順序。

因為物理連接的方式有很多,所以具體的物理協議的種類也有很多,從而傳輸媒體的種類也是非常之多,所以在介紹物理層時,我們應該先對「介面與通信」有一定的了解。

一個通信系統可以劃分為三大部分,即 源系統 傳輸系統 目的系統

首先介紹源系統,源系統一般包括以下兩個部分:
源點: 源點設備產生要傳輸的數據,例如從計算機的鍵盤輸入漢字,計算機產生輸出的數字比特流。源點又稱為 源站 或者 信源
發送器: 通常源點生成的數字比特流要通過發送器編碼後才能夠在傳輸系統中進行傳輸。最典型的發送器就是調制器,現在的很多計算器使用的都是內置的解調器(包括調制器和解調器)。

目的系統一般也包括以下兩個部分:
接收器: 接收傳輸系統傳送過來的信號,並把它轉換為能夠被目的設備處理的信息。典型的接收器就是解調器,
終點: 終點設備從接收器獲取傳送來的數字比特流,然後把信息輸出。終點又稱為 目的站 或者 信宿

在源系統和目的系統之間的傳輸系統可以是簡單的傳輸線,也可以是連接睜碧在源系統和目的系統之間的復雜網路系統。

然後我們要來辨別一下下面的常用術語:
消息: 指語音,文字,圖像等等。
數據: 指使用特定方式表示的信息,通常是有意義的符號序列。這種信息的表示可用計算機或其他機器處理或者產生。
信號: 指數據的電氣或電磁的表現。

根據信號中代表消息的參數的取值方式不同,信號可以分為以下兩大類:
(1)模擬信號: 代表消息的握判參數的取值是連續的。
(2)數字信號: 代表消息的參數的取值是離散的。

信道 是用來表示向某一個方向傳送消息的媒體,一條通信電路往往包含一條發送信道和一條接收信道。

從通信的雙方信息交互的方式來看,可以有段早改以下三種基本方式:
(1)單向通信: 又稱為單工通信,即只能有一個方向的通信而沒有反方向的交互。無線電廣播或有線電廣播就是這種類型。
(2)雙向交替通信: 又稱為半雙工通信,即通信雙方都可以發送消息,但不能雙方同時發送(也不能同時接收)。這種通信方式是一方發送另一方接收。
(3)雙向同時通信: 也稱為全雙工通信,即通信雙方都可以同時發送和接收消息。

來自信源的信號稱為 基帶信號 。像計算機輸出的代表各種文字或文件的數據信號都屬於基帶信號。由於基帶信號往往包含有較多的低頻成分和直流成分,但是許多信道並不能傳輸這種低頻分量或是直流分量。所以為了解決這一問題,就必須對基帶信號進行 調制

調制主要是分為兩大類。一類是對基帶信號的波形進行變換,使它能夠與信道的特徵相適應,但是變換後的信號仍然是基帶信號,這一類的調制稱為 基帶調制 ,這一過程也被稱為編碼。還有一類調制則是需要使用載波進行調制,將基帶信號的頻率范圍搬移到較高的頻段,並轉換為模擬信號,這樣就能更好的在模擬信道中傳輸,經過載波調制的信號稱為帶通信號,而使用載波的調制稱為 帶通調制

不歸零制: 正電平代表1,負電平代表0。
歸零制: 正脈沖代表1,負脈沖代表0。
曼徹斯特編碼: 位周期中心的向上跳變代表0,位周期中心的向下跳變代表1,但是也可以反過來定義。
差分曼徹斯特編碼: 在每一位的中心處始終有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。

調幅(AM): 即載波的振幅隨著基帶數字信號而變化。例如,0或1分別對應於無載波或有載波的輸出。
調頻(FM): 即載波的頻率隨著基帶數字信號而變化。例如,0或1分別對應於頻率的 f1 f2
調相(PM): 即載波的初始相位隨著基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
當然,有時為了達到更高的信息傳輸速率,也必須採用技術上更為復雜但傳輸效果更好的混合調制方法,例如正交振幅調制等等。

限制信息在信道上的傳輸速率的因素主要是以下兩個。
(1)信道能夠通過的范圍頻率
具體信道所能通過的頻率范圍總是有限的。信號中的許多高頻分量往往不能通過信道,就是因為它的頻率超過了信道所能承受的最大頻率,因此就會造成失真現象。

(2)信噪比
雜訊存在於所有的電子設備和通信信道中。由於雜訊是隨機產生的,因此它的瞬時值有時會很大,所以雜訊會使接收端對碼元的判決產生錯誤。但是雜訊的影響是相對的,當信號較強時,雜訊的影響就相對較小。所以我們就要了解到 信噪比 的概念。信噪比就是指信號的平均功率和雜訊的平均功率之比,單位是分貝:

W是帶寬,S是信道內所傳信號的平均功率,N為信道內高斯雜訊的功率。香農公式指出:信道的帶寬或者信噪比越大,則信息的極限傳輸速率就越高。

傳輸媒體也稱傳輸介質或傳輸媒介。傳輸媒體大致可以分為兩大類: 導引型傳輸媒體和非導引型傳輸媒體 。下面來具體介紹。

雙絞線就是指將兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合起來。絞合可以減少對相鄰導線的電磁干擾。電話系統是使用雙絞線最多的地方,從用戶電話機到交換機的雙絞線稱為 用戶線

模擬傳輸和數字傳輸都會用到雙絞線,其通信距離一般是為幾到幾十公里。

為了提高雙絞線的對抗電磁干擾能力,可以在雙絞線外面再加一層用金屬絲編織而成的屏蔽層,這就是屏蔽雙絞線。,簡稱為 STP

同軸電纜內由導體銅質芯線、絕緣層、網狀編織的外導體屏蔽層以及保護塑料外層組成。由於其特有的構造,所以同軸電纜有著良好的抗干擾特性,被廣泛用於傳輸較高速率的數據。目前同軸電纜主要用在有線電視網的信號傳輸當中。它的帶寬是取決於它的質量的。

光纖是光纜通信的傳輸媒體,由於可見光的頻率非常之高,因此一個光纖通信系統的傳輸帶寬遠遠大於目前其他各種傳輸媒體的帶寬。

當光纖從高折射率的傳輸媒體到低折射率的傳輸媒體時,其折射角就會大於入射角。因此如果當入射角足夠大時,就會產生全反射,光也就能沿著光纖傳輸下去。

正是由於上面的原理,所以只要將入射角的角度把握好,就能夠產生全反射來進行傳輸,這也就是光纖傳輸的原理。

光纖不僅具有通信容量大的特點,還有其他的一些特點:
1.傳輸損耗小。
2.抗雷電和電磁干擾性能好。
3.無串音干擾,保密性很高。
4.體積小,重量輕。

我們將自由空間稱為非導引型傳輸媒體,簡單來說就是指無線傳輸。無線傳輸可以使用的頻段很廣,人們已經利用了好幾個波段來進行通信,但是紫外線以及更高的波段現在暫時還是不能用於通信。

短波通信(高頻通信)主要是靠電離層的反射來進行傳輸。但是短波信道的通信質量較差,傳輸速率較低。

無線電微波通信在數據通信中佔有重要的地位。微波在空間中主要是以直線傳播。傳統的微波通信主要有兩種方式,即 地面微波接力通信和衛星通信

要使用某一段無線電頻譜進行通信,通常必須得到本國政府有關無線電頻譜管理機構的許可證。但是也有一些無線電頻段是可以自由使用的。例如ISM,各國的ISM標准可能略有差異。

復用是通信中的基本概念,它是指允許用戶使用一個共享信道來進行通信,達到降低成本,提高利用率的效果。

先來介紹 頻分復用FDM ,頻分復用是指將帶寬分為多份,用戶在分到一定的頻帶後,在通信過程中自始至終都佔用著這一條頻帶,也就是說頻分復用的用戶是在同樣的時間佔用不同的帶寬資源。

然後是 時分復用TDM ,它是指將時間劃分為一段段等長的時分復用幀(TDM幀)。每一個時分復用的用戶在每一個TDM幀中佔用固定序號的時隙。而每一個用戶所佔用的時隙是周期性地出現(其周期就是TDM幀的長度)。時分復用的所有用戶是在不同的時間佔用同樣的頻帶寬度。

最後是 統計時分復用STDM ,它是有一點類似於TDM的,只是STDM幀不是固定分配時隙,而是按需動態的分配時隙。因此統計時分復用可以提高線路的利用率。

波分復用WDM 就是光的頻分復用,也就是使用一根光纖來同時傳輸多個光載波信號。

碼分復用CDM 是另一種共享信道的方法。而人們更常使用碼分多址CDMA來稱呼它。這種復用方式的具體做法是可以讓每一個用戶在同樣的時間使用同樣的頻帶進行通信,由於各個用戶使用經過特殊的不同碼型,因此各用戶之間不會造成干擾。而且通過這種方式發送的信號具有很強的抗干擾能力,其頻譜類似於白雜訊,不容易被他人發現。

碼分復用的工作原理是將每一個比特時間再劃分為m個短的間隔,稱之為碼片。一般情況下m的值是64或128。

使用CDMA的每一個站被指派一個唯一的m bit碼片序列。一個站如果要發送比特1,則發送它自己的m bit碼片序列。如果要發送比特0,則發送該碼片序列的二進制反碼。舉例來說:

有時為了方便起見,我們會將碼片中的0寫為-1,1寫為+1。

現假定S站要發送信息的數據率為b bits/s,由於每一個比特要轉換成m個比特的碼片,因此S站實際上發送的數據率提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原來數值的m倍。這種方式就是 擴頻 的一種。擴頻通信通常有兩大類,一種是直接序列擴頻DSSS,另一種是跳頻擴頻FHSS。

CDMA系統的重要特點是每個站分配的碼片序列不僅必須各不相同,並且還必須互相正交,並且在實用的系統中是使用偽隨機碼序列。

在早期的電話網當中,從電話局到用戶電話機的用戶線採用最廉價的雙絞線電纜,而長途干線採用的是頻分復用FDM的模擬傳輸方式。由於數字通信與模擬通信相比,無論數傳輸質量上還是從經濟上都有明顯的優勢,所以現在長途干線大都採用時分復用PCM的數字傳輸方式。

但是早期的數字傳輸系統有著許多的缺點,其中最主要的是以下兩個:
(1)速率標准不統一: 由於歷史的原因,多路復用的速率體系有兩個互不兼容的國際標准。所以國際范圍的基於光纖高速數據傳輸就很難實現。
(2)不是同步傳輸: 在過去各國的數字網主要是採用准同步的方式,所以當數據傳輸速率很高時,收發雙方的時鍾同步就成為很大的問題。

所以為了解決這些問題,美國推出了一個數字傳輸標准,叫做同步光纖網SONET。整個的同步網路的各級時鍾都來自一個非常精確的主時鍾。同時,SONET為光纖傳輸系統定義了同步傳輸的線路速率等級結構:

寬頻的接入技術主要包括有線寬頻接入和無線寬頻接入。在這里先來介紹有線寬頻接入。

ADSL技術的全稱是非對稱數字用戶線技術,具體指的是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。具體來說ADSL技術就是把0-4 kHZ這一段低端頻譜留給傳統電話使用,而把原來沒有被利用的高端頻譜留給用戶上網使用。

ADSL的 傳輸距離 取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。而ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。

ADSL在 數據率 方面由於用戶在線的具體條件相差較大,因此ADSL採用自適應調制技術使用戶線能夠傳送盡可能高的數據率。當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到干擾的情況以及在每一個頻率上測試信號的傳輸質量。但是ADSL不能保證固定的數據率,所以對於用戶線很差的甚至無法開通ADSL。

基於ADSL的接入網由以下三大部分組成:數字用戶線接入復用器,用戶線和用戶家中的一些設施。

ADSL技術也在發展,現在已經有了更高速率的ADSL標准,稱之為 第二代ADSL ,第二代ADSL改進的地方主要是:
1. 通過提高調制效率得到了更高的數據率。
2. 採用了無縫速率自適應技術SRA,可在運營中不中斷通信和不產生誤碼的情況下,自適應的調整數據率。
3. 改善了線路質量評測和故障定位功能。

HFC網是目前覆蓋面很廣的有線電視網CATV的基礎上開發的一種居民寬頻接入網,除了可以傳送CATV外,還能提供電話、數據和其他寬頻交互型業務。

為了提高傳輸的質量,HFC網將原有線電視網中的同軸電纜主幹部分改換為光纖,而光纖從頭端連接到光纖結點,在光纖結點光信號被轉換為電信號,最後信號被送到每一個用戶的家庭。

FTTx是一種實現寬頻居民接入網的方案,代表多種寬頻接入的方式。這里的x代表不同的光纖接入地點,例如FTTH光纖到戶,FTTB光纖到大樓等等。

現在的長距離信號傳輸大都是採用光纖傳輸,只有在到了臨近用戶家中時,才將光纖轉換為銅纜。但是一個用戶是遠用不了一根光纖的通信容量,因此我們在光纖干線和用戶之間安裝一種轉換裝置即 光配線網 ,使得許多用戶能夠共享一根光纖的通信容量。由於光配線網無需使用電源,因此我們將其稱為無源光網路。

E. 物理層主要包括哪些內容

物理層的四個特性如下:

①機械特性: 指明介面所用接線器的形狀和尺寸、引腳數神猜目和排列、固定和鎖定裝置等。

②電氣特性: 指明在介面電纜的各條線上出現的電壓范圍。

③功能特性: 指明某瞎鋒條線上游神型出現某一電平的電壓意義。

④過程特性: 指明對於不同功能的各種可能事件的出現順序。

物理層的主要任務可描述為:確定與傳輸媒體的介面有關的一些特性。

物理層的主要特點:

(1)由於在OSI之前,許多物理規程或協議已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備所採用,加之,物理層協議涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套新的物理層協議,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械,電氣,功能和規程特性。

(2)由於物理連接的方式很多,傳輸媒體的種類也很多,因此,具體的物理協議相當復雜。

F. 簡述數據在OSI參考模型中的流動過程,並解釋數據的封裝與解裝。

1、應用層為用戶的應用程序提供接入網路的介面。

2、表示層將用戶數據進行相應的編碼畝襲或格式轉換。

3、會話層區分通信中的不同上層程序,為每個進程建立單獨的鏈接,並維護和管理通信的過程。

4、傳輸層為數據的可靠傳輸提供一種安全可靠的方式。

5、網路層完成數據在網路中的實際傳輸,確定地址和最佳路徑

6、數據鏈路層使用硬體地址來定位遠程主機,傳輸數據並進行必要的流量控制和差錯校驗。

7、物理層傳輸比特流。將鏈路層的數據用高低不同的電平值表示發送到物理線路上。物理層規定了設備的介面形狀、針腳個數、針腳不同電平值的含義。

OSI參考模型採用了分層結構技術

把一個網路系統分成若干層,每一層都去實現不同的功能,每一層的功能都以協議形式正規描述,協議定義了某層同遠方一個對等層通信所使用的一套規則和約定。每一層向相鄰上層提供一套確定的服務,並且使用與之相鄰的下層所提供的服務。

從概念銷歲上來講,每一層都與一個遠方對等層通信,但實際上該層所產生的協議信息單元是藉助於相鄰下層所提供的服務傳送的。因此,對等層之間的通信稱為虛擬通信。

以上內容參考:網路百虧耐睜科-OSI參考模型

G. 物理層詳細資料大全

物理層 (或稱物理層,Physical Layer)是計算機網路OSI模型中最低的一層。物理層規定:為傳輸數據所需要的物理鏈路創建、維持、拆除,而提供具有機械的,電子的,功能的和規范的特性。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。區域網路與廣域網皆屬第1、2層。

物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。如果您想要用盡量少的詞來記住這個第一層,那就是「信號和介質」。

OSI採納了各種現成的協定,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理層協定。

基本介紹

主要功能,組成部分,重要內容,重要標准,特性,介面協定,通信硬體,編程方法,DOS通信,PC通信,BIOS,常見的物理層設備,

主要功能

物理層 物理層要解決的主要問題: (1)物理層要盡可能地禁止掉物理設備和傳輸媒體,通信手段的不同,使數據鏈路層感覺不到這些差異,只考慮完成本層的協定和服務。 (2)給其服務用戶(數據鏈路層)在一條物理的傳輸媒體上傳送和接收比特流(一般為串列按順序傳輸的比特流)的能力,為此,物理層應該解決物理連線的建立、維持和釋放問題。 (3)在兩個相鄰系統之間唯一地標識數據電路。 物理層主要功能:為數據端設備提供傳送數據通路、傳輸數據。 1.為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連線而成。一次完整的數據傳輸,包括激活物理連線,傳送數據,終止物理連線。所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連線起來,形成一條通路。 2.傳輸數據,物理層要形成適合數據傳輸需要的實體,為數據傳送服務。一是要保證數據能在其上正確通過,二是要提供足夠的頻寬(頻寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞。傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要。 3. 完成物理層的一些管理工作。

組成部分

物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE即數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連線設備,如數據機等。數據傳輸通常是經過DTE──DCE,再經過DCE──DTE的路徑。互連設備指將DTE、DCE連線起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,傳送器,中繼器等都屬物理層的媒體和連線器。 物理層

重要內容

物理層的介面的特性 (1) 機械特性 指明介面所用的接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等等。 (2) 電氣特性 指明在介面電纜的各條線上出現的電壓的范圍。 (3) 功能特性 指明某條線上兆笑出現的某一電平的電壓表示何意。 (4)規程特性 指明對於不同功能的各種可能事件的出現順序。 物理層的主要特點: (1)由於在OSI之前,許多物理規程或協定已經制定出來了,而且在數據通信領域中,這些物理規程已被許多商品化的設備所採用,加之,物理層協定涉及的范圍廣泛,所以至今沒有按OSI的抽象模型制定一套新的物理層協定,而是沿用已存在的物理規程,將物理層確定為描述與傳輸媒體介面的機械,電氣,功能和規程特性。 (2)由於物理連線的方式很多,傳輸媒體的種類也很多,因此,具體的物理協定相當復雜。 信號的傳輸離不開傳輸介質,而傳輸介質兩端必然有介面用於傳送和接收信號。因此,既然物理層主要關心如何傳輸信號,物理層的主要任務就是規定各種傳輸介質和介面與傳輸信號相關的一些特性。 1.機械特性 也叫物理特性,指明通信實體間硬體連線介面的機械特點,如介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等。這很像平時常見的各種規游滑格的電源插頭,其尺寸都有嚴格的規定。 已被ISO 標准化了的DCE介面的幾何尺寸及插孔芯數和排列方式。 DTE(Data Terminal Equipment,數據終端設備,用於傳送和接收數據的設備,例如用戶的計算機)的連線器常用插針形式,其幾何尺寸與.DCE(Data Circuit-terminating Equipment,數據電路終接設備,用來連線DTE與數據通信網路的設備,例如Modem數據機)連線器相配合,插針芯數和排列方式與DCE連線器成鏡像對稱。 2.電氣特性 規定了在物理連線上,導線的電氣連線及有關電路的特性,一般包括:接收器和傳送器電路特性的說明、信號的識別、最大傳輸速率的說明、與互連電纜相關的規則、傳送器的輸出阻抗、接收器的輸入阻抗等電氣參數等。 3.功能特性 指明物理介面各條信號線的用途(用法),包括:介面線功能的規定方法,介面信號線的功能分類--數據信號線、控制信號線、定時信號線和接地線4類。 4.規程特性 指明利用介面傳輸比特流的全過程及各項用於傳輸的事件發生的合法順序,包括事件的執行順序和數據傳輸方式,即在物理連線建立、維持和交換信息時,DTE/DCE雙方在各自電路上的動作序列。 以上4個特性實現了物理層在傳輸數據時,對於信號、介面和傳輸介質的規定。

重要標准

物理層的一些標准和協定早在OSI/TC97/C16 分技術委員會成立之前就已制定並在套用了, 物理層 OSI也制定了一些標准並採用了一些已有的成果。下面將一些重要的標准列出,以便讀者查閱。 ISO2110:稱為"數據通信----25芯DTE/DCE介面連線器和插針分配"。它與EIA(美國電子工業協會)的"RS-232-C"基本兼容。 ISO2593:稱為"數據通信----34芯DTE/DCE----介面連線器和插針分配"。 ISO4902:稱為"數據通信----37芯DTE/DEC----介面連線器和插針分配"。與EIARS-449兼容。 CCITT V。24:稱為"數據終端設備(DTE)和數據電路終接設備之間的介面電路定義表"。其功 能與EIARS-232-C及RS-449兼容於100序列線上。

特性

反映在物理介面協定中的物理介面的4個特性是機械特性、電氣特性、功能特性與規程特性。: (1)機械特性, 指明介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等。這很像平時常見的各種規格的電源插頭的尺寸都有嚴格的規定。 物理層 (2)電氣特性, 指明在介面電纜的各條線上出現的電壓的范圍。 物理層的電氣特性規定了在物理連線上傳輸二進制位流時線路上信號電壓高低、阻抗匹配情況、傳輸速率和距離的限制等.早期的電氣特性標準定義物理連線邊界點上的電氣特性,而較新的電氣特性標準定義的都是傳送器和接收器的電器特性,同時還給出了互連電纜的有關規定.比較起來,較新的標准更有利於傳送和接收線路的集成化工作.物理層介面的電氣特性主要分為三類:非平衡型,新的非平衡型和新的平衡型。 非平衡型的信號傳送器和接收器均採用非平衡方式工作,每個信號用一根導線傳輸,所有信號共用一根地線.信號的電平是用+5V~+15V,表示二進制"0",用-5V~-15V,表示二進制"1".信號傳輸速率限於20Kbps以內,電線長度限於15M以內.由於信號線是單線,因此線間干擾大,傳輸過程中的外界干擾也很大。 在新的非平衡型標准中,傳送器採用非平衡方式工作.接收器採用平衡方式工作(即差分接收器).每個信號用一根導線傳輸.所有信號共用兩根地線,即每個方向一根地線.信號的電平使用+4v~+6v表示二進制"0",用-4V~-6V表示二進制"1".當傳輸距離達到1000M時,信號傳輸速率在3kbps以下,隨著傳輸速率的提高,傳輸距離將縮短.在10M以內的近距離情況下,傳輸速率可達300kbps。由於接收器採用差分方式接收,且每個方向獨立使用信號地,因此減少了線間干擾和外界干擾. 物理層 新的平衡型標准規定,傳送器和接收器均以差分方式工作,每個信號用兩根導線傳輸,整個介面無需共用信號就可以正常工作,信號的電平由兩根導線上信號的差值表示.相對於某一根導線來說,差值在+4V~+6V表示二進制"0",差值在-4V~-6V表示二進制"1".當傳輸距離達到1000M時,信號傳輸率在100kbps以下;當在10m以內的近距離傳輸時,速率可達10Mbps。由於每個信號均使用雙線傳輸,因此線間干擾和外界干擾大大削弱,具有較高的抗共模干擾能力。 (3)功能特性,規定了介面信號的來源、作用以及其他信號之間的關系。即物理介面上各條信號線的功能分配和確切定義。物理介面信號線一般分為數據線、控制線、定時線和地線。 DTE/DCE標准介面的功能特性主要是對各介面信號線作出確切的功能定義,並確定相互間的操作關系。對每根介面信號線的定義通常採用兩種方法:一種方法是一線一義法,即每根信號線定義為一種功能,CCITT V24、EIA RS-232-C、EIA RS-449等都採用這種方法;另一種方法是一線多義法,指每根信號線被定義為多種功能,此法有利於減少介面信號線的數目,它被CCITT X。21所採用。 常用連線機械特性 介面信號線按其功能一般可分為接地線、數據線、控制線、定時線等類型。對各信號線的命名通常採用數字、字母組合或英文縮寫三種形式,如EIA RS-232-C採用字母組合,EIA RS-449採用英文縮寫,而CCITT V。24則以數字命名。在CCITT V。24建議中,對DTE/DCE介面信號線的命名以1開頭,所以通常將其稱為100系列介面線,而用於DTE/ACE介面信號線命名以2開頭,故將它稱做200系列介面信號線。 (4)規程特性, 定義了再信號線上進行二進制比特流傳輸的一組操作過程,包括各信號線的工作順序和時序,使得比特流傳輸得以完成。 DTE/DCE標准介面的規程特性規定了DTE/DCE介面各信號線之間的相互關系、動作順序以及維護測試操作等內容。規程特性反映了在數據通信過程中,通信雙方可能發生的各種可能事件。由於這些可能事件出現的先後次序不盡相同,而且又有多種組合,因而規程特性往往比較復雜。描述規程特性一種比較好的方法是利用狀態變遷圖。因為狀態變遷圖反映了系統狀態的變遷過程,而系統狀態遷移正是由當前狀態和所發生的事件(指當時所發生的控制信號)所決定的。 不同的物理介面標准在以上4個重要特性上都不盡相同。實際網路中比較廣泛使用的是物理介面標准有EIA-232-E、EIA RS-449和CCITT的X。21建議。EIA RS-232C仍是目前最常用的計算機非同步通信介面。

介面協定

  1. 電話網路modems-V。92
  2. IRDA物理層
  3. USB物理層
  4. EIARS-232,EIA-422,EIA-423,RS-449,RS-485
  5. Ether physical layerIncluding10BASE-T,10BASE2,10BASE5,100BASE-TX,100BASE-FX。100BASE-T,1000BASE-T,1000BASE-SX還有其他類型
  6. Varieties of802。11Wi-Fi物理層
  7. DSL
  8. ISDN
  9. T1 and otherT-carrierlinks, and E1 and otherE-carrierlinks
  10. SONET/SDH
  11. Optical Transport Neork(OTN)
  12. GSMUm air interface物理層
  13. Bluetooth物理層
  14. ITURecommendations: seeITU-T
  15. IEEE 1394 interface
  16. TransferJet物理層
  17. Etherloop
  18. ARINC 818航空電子數字視頻匯流排
  19. G。hn/G。9960物理層
  20. CAN bus(controller area neork)物理層

通信硬體

物理層常見設備有:網卡光纖、CAT-5線(RJ-45接頭)、集線器有整波作用、Repeater加強信號、串口、並口等。 通信硬體包括通信適配器(也稱通信介面)和數據機(MODEM)以及通信線路。從原理上講,物理層只解決DTE和DCE之間的比特流傳輸,盡管作為網路節點設備主要組成部分的通信控制裝置,其本身內涵在物理層、數據鏈路層、甚至更高層,在內容上分界並不很分明,但它所包含的MODEM介面、比特的采樣傳送、比特的緩沖等功能是確切屬於物理層范疇的。為了實現PC機與數據機或其它串列設備通信,首先必須使用電子線路將PC機內的並行數據轉成與這些設備相兼容的比特流。除了比特流的傳輸之外,還必須解決一個字元由多少個比特組成及如何從比特流中提取字元等技術問題,這就需要使用通信適配。通信適配器可以認為是用於完成二進制數據的串、並轉換及一其它相關功能的電路。通信適配器按通信規程來劃分可分為TTY(Tele Type Writer,電傳打字機)、BSC(Birary Synchronous Commuication,二進制同步通信)和HDLC(High-level Data link Control,高級數據鏈路控制)三種。 IBM PC 非同步通信適配器:使用TTY規程的非同步通信適配採用RS-232C介面標准。這種通信適配器除可用於PC機在線上通信外,還可以連線各種採用RS-232C介面的外部設備。例如,可連線採用RS-232C介面的滑鼠器、數位化儀等輸入設備;可連線採用RS-232C介面的印表機、繪圖儀及CRT顯示器等各種輸出設備。可見,非同步通信適配器的用途是很廣泛的。非同步通信規程將每個字元看成一個獨立的信息,字元可順序出現在比特流中,字元與字元間的間隔時間是任意的(即字元間採用非同步定時),但字元中的各個比特用固定的時鍾頻率傳輸。字元間的非同步定時和字元中比特之間的同步定時,是非同步傳輸規程的特徵。
  1. 非同步傳輸規程中的每個字元均由四個部分組成:
  2. 1位起始位:以邏輯「0」表示,通信中稱「空號」(SPACE)。
  3. 5~8位數據位:即要傳輸的內容。
  4. 1位奇/偶檢驗位:用於檢錯。
  5. 1~2位停止位:以邏輯「1」表示,用以作字元間的間隔。這種傳輸方式中,每個字元以起始位和停止位加以分隔,故也稱「起--止」式傳輸。串列口將要傳送的數據中的每個並行字元,先轉換成串列比特串,並在串前加上起始位,串後加上檢驗位和停止位,然後傳送出去。接收端通過檢測起始位,檢驗位和停止位來保證接收字元中比特串的完整性,最後再轉換成並行的字元。串列非同步通信適配器本身就象一個微型計算機,上述功能均由它透明地完成,不須用戶介入。早期的非同步通信適配器被做成單獨的外掛程式板形成,可直接插在PC機的系統擴充槽內供使用,後來大多將非同步通信適配器與其他適配器(如印表機、磁碟驅動器等的適配器)做在一塊稱作多功能板的外掛程式板上。也有一些高檔微機,已將非同步通信適配器做在系統主機板上,作為微機系統的一個常規部件。

編程方法

PC機的非同步串列通信編程方法內容包括DOS、WINDOWS和BIOS級PC通信、基於非同步通信與器的系統的PC通信以及通信編程方法。

DOS通信

PC機一般常有兩個非同步串列連線埠,分別稱作COM1和COM2,它們都符合RS-232C標准。在DOS作業系統中,COM1、COM2被作為I/O設備進行管理,COM1、COM2便是它們的邏輯設備名。據此,DOS便可通過對COM1、COM2操作實現非同步串列通信。DOS的MODE命令可用以設定非同步串列連線埠的參數,DOS的COPY命令允許將非同步串列連線埠作為一個特殊的"檔案",進行數據傳輸。下面舉一個利用DOS的MODE、COPY命令,進行雙機鍵盤輸入字元傳輸的例子。 MODE命令的格式如下: MODE 連線埠名:速率,校驗方式,數據位數,停止位位數 其中連線埠名為COM1或COM2;傳輸速率可選110、150、300、600、1200、2400、4800或9600bps;校驗方式為E(偶校驗)、(奇校驗)或N(無校驗);數據位數為7或8位;停止位位數為1或2位。通信雙方設定的參數應一致,如雙方都打入如下命令:MODE COM1:1200,E,7,1則表示雙方以COM1為非同步通信連線埠以1200bps、偶校、7位數據位、1位停止位的設定參數進行通信。DOS中有一標准控制台COM,實際上作輸入時COM即鍵盤,作輸出時COM即顯示器。 准備傳送的PC機執行如下命令:COPY CON:COOM1:表示將從鍵盤收到的信息通過COM1串列口傳送。 准備接收的PC機執行如下命令:COPY COM1:CON:則表示將接收來自COM1串列口信息,並在顯示器上顯示。 兩台PC機分別執行完上述命令後,在傳送方鍵盤上輸入的字元便會在接收方顯示器上顯示出來。上面介紹的是用DOS的MODE、COPPPY命令實現的最簡單的PC通信。在MS-DOS的高版本中(例如MS-DOS V6。0)還提供了一條命令,叫作INTERLNK,實際上它是一個通信程式。使用INTERLNK命令和一根連線兩台PC機串列連線埠的電纜,可以使一台PC機從另一台PC機的磁碟驅動器中存取數據並運行程式,無需再使用軟碟去拷貝檔案。用以鍵入命令的PC機叫客戶機(Client),與客戶機相連的PC機叫伺服器(Server)。客戶機使用伺服器的驅動器和印表機,伺服器顯示兩台PC 機的連機狀態。 當兩台PC機被INTERLNK連線以後,伺服器上的驅動器便以擴驅動器的形式映象到客戶機上,若兩台PC機原來均有A、B、C三個驅動器,則連線後客戶機除了自身的三個驅動器外,又多了E、F、G(伺服器驅動器映象)三個擴展驅動器,客戶機可以象使用自己的驅動器一樣使用這些擴展驅動器。使用INTERLNK時,每台PC機上至少要有一個空閑的串列口,還要一根3號線或7號線的零數據機(Null MODEM)串列電纜線,客戶機上至少有16K空閑記憶體,伺服器上至少有130K空閑記憶體。 在客戶機的CONFIG系統配置檔案。SYS中添加如下命令:devive=c:dosinterlnk。exe/drives:5 再重新啟動客戶機,便可裝入INTERLNK。這里假設interlnk。exe存於客戶機C驅動器的DOS子目錄中,/drives:5參數用於映象5個伺服器驅動器,預設情況下為3個驅動器。伺服器上啟動INTERLNK不需要其CONFIG。SYS作任何改動,只需在DOS命令提示符下鍵入intersvr即可。此時,螢幕底部出現一行狀態信息,顯示INTERLNK的連線狀態。

PC通信

Microsoft Windows的應用程式Terminal允許用戶PC機與其它計算機連線並交換數據,也可模擬為將與之交換數據的遠程計算機所要求的終端類型。下面給出一台PC機套用WINDOWS的Terminal從具有連機服務的遠程系統讀取檔案的通信過程。 打開終端——使用設定(Settings)選單設定參數——查閱檔案——使用傳輸(Transfers)選單接收一個檔案——與遠程計算機離線——使用phone選單掛起數據機——使用檔案(File)選單存儲檔案——退出終端

BIOS

在PC機的基本輸入輸出系統(BIOS)中的中斷14H提供了非同步串列連線埠的服務功能,通過INT 14H提供的四種功能,可訪問串列通信連線埠,實現連機通信。INT 14H的串列口功能為。

常見的物理層設備

集線器有整波作用。 Repeater加強信號。 串口 並口

H. 哪些過程是lte的物理層處理過程

通過小區搜索的過程,終端與服務小區實現下行信號時間和頻率的同步,並且確定小區的物理層ID。
物理層小區搜索的過程主要涉及兩個同步信號,即主、輔同步信號(PSS/SSS)。過程中包括了下行時間和頻率的同步、小區物理ID的檢測和OFDM信號CP長度的檢測(Normal或ExtendedCP)。完成這些操作後,終端就可以開始讀取服務小區的廣播信道(PBCH)中的系統信息,進行進一步的操作。
這期間,在通過同步信號的檢測與服務小區獲得同步以後,終端可以利用下行導頻信號(CRS)進行更精確的時間與頻率同步以及同步的維持。小區搜索過程
通過上行傳輸時間的調整,終端與服務小區實現上行信號時間的同步,使得不同用戶的上行信號同步到達基站。相關過程包括非同步隨機接入過程中的傳輸時間調整,以及連接狀態下的上行同步保持。
在非同步隨機接入過程中,作為隨機接入的響應消息,基站向終端發送長度為11bit的定時調整命令(TimingAdvanceCommand),終端根據該信息調整上行的發送時間,實現上行同步。
在連接狀態下,MAC層的控制信息攜帶了長度為6bit的定時調整命令,終端將根據該信息對上行的發送時間進行調整,實現上行同步的保持。
定時調整命令的精度是(即15/(15000*2048)),從收到命令到調整後上行發送之間的延時是6ms,即在子幀收到調整命令之後,該信息將終端應用於從子幀開始的上行發送中
針對上行和下行信號的發送特點,LTE物理層定義了相應的功率控制機制。
對於上行信號,終端的功率控制在節電和抑制用戶間干擾的方面具有重要意義,所以,相應地採用閉環功率控制的機制,控制終端在上行單載波符號上的發送功率。
對於下行信號,基站合理的功率分配和相互間的協調能夠抑制小區間的干擾,提高同頻組網的系統性能,所以,相應地採用開環功率分配的機制,控制基站在下行各個子載波上的發送功率。

I. 計算機網路-02-物理層和數據鏈路層

物理層主要功能是為數據端設備提供傳送數據的通路以及傳輸數據。

信道是往一個方向傳送信息的媒體,一條通信電路包含一個接收信道和一個發送信道。

分用-復用技術 允許多個用戶使用一個共享信道進行通信,可以降低成本,提高利用率。

數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的功能是向該層用戶提供透明的和可靠的數據傳送基本服務。

數據鏈路層有兩個功能: 幀編碼 和 差錯控制 。

物理層只負責傳輸比特流,為了使傳輸過程發生差錯後只將有限數據進行重發,數據鏈路層將比特流組合成以太幀作為單位傳送。

每個幀除了要傳送的數據外,還包括校驗碼,以使接收方能發現傳輸中的差錯。

假設現在從網路層過來了一個IP數據報,數據鏈路層會將這個數據報作為幀進行傳送。

當然物理層是不管你幀不幀的,它只會將數據鏈路層傳過來的幀以比特流的形式發送給另一台物理設備。

由前面的文章可知: 總時延 = 發送時延 + 排隊時延 + 傳播時延 + 處理時延

數據鏈路層的數據幀不是無限大的,數據幀過大或過小都會影響傳輸的效率,數據鏈路層使用MTU來限制數據幀長度。

乙太網MTU一般為1500位元組, 路徑MTU由鏈路中MTU的最小值決定

一個實用的通信系統必須具備發現(即檢測)這種差錯的能力,並採取某種措施糾正之,使差錯被控制在所能允許的盡可能小的范圍內,這就是差錯控制過程。物理層只管傳輸比特流,無法控制是否出錯,所以差錯檢測成了數據鏈路層的主要功能之一。

一般的檢測方法有 奇偶校驗碼 和 CRC循環冗餘校驗碼 。

網路中需要唯一標識物理設備的地址,用於確定數據傳輸時的發送地址和目的地址。

MAC地址(物理地址、硬體地址)共48位,使用十六進製表示,每一個設備都擁有唯一的MAC地址。

雖然MAC地址是物理硬體地址,但其屬於數據鏈路層的MAC子層。

乙太網(Ethernet)是一種使用廣泛的區域網技術,它是應用於數據鏈路層的協議,使用乙太網可以完成相鄰設備的數據幀傳輸。

乙太網數據報文主要由五個部分組成:

類型主要表示幀數據的類型,例如網路層的IP數據。

定義完數據結構後,就需要進行數據傳輸。由上文可知,MAC地址唯一標識了設備,那麼怎麼獲得目的設備的MAC地址呢?

MAC地址表記錄了與本設備相連的設備的MAC地址。

假設主機A發送了一個乙太網數據報文,數據幀到達路由器,路由器取出前6位元組(通過報文數據結構可知前6位位目的地址)。

路由器匹配MAC地址表,找到對應的網路介面,路由器往該網路介面發送數據幀。

當路由器的MAC地址表中沒有目的地址,此時路由器會將此MAC地址進行廣播(發送方A除外),接收區域網中與該路由其相連的其他設備的MAC地址並記錄。

由於MAC地址表只能知道當前設備的下一個設備的MAC地址,簡而言之就是只能進行相鄰物理節點的數據傳輸。

有關跨設備傳輸數據的功能是交由網路層處理的,具體見下一章。

J. 手機通常會經歷哪些物理層過程

電轉光能。手圓臘扮脊機有屏幕啊,就是橘缺滑電能轉換成光能啦,還有一部分轉化成了聲音信號的能量(電能變機械能)。玩手機要發熱啊有木有,電能變熱能。

閱讀全文

與物理層過程有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1258
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1348
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:824
武大的分析化學怎麼樣 瀏覽:1211
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016