㈠ 固體物理的內容簡介
《固體物理》作為一本簡明的固體物理教材,作者力圖從原創的科學家的思想出發,介紹固體物理學中主要的概念、實驗和理論,其中包括了固體物理學史、化學鍵與晶體形成、固體結構、晶體振動和固體熱性質、固體電子理論、固體的電性質(輸運過程)、固體的磁性、固體的介電性質和光學性質等內容。本書適合於涉及電子、器件與材料專業的本科生或研究生學習。
㈡ 固體物理和普通物理的區別是什麼固體物理和理論物理有怎樣的聯系詳細說明
物理系的大一大二學習的是普通物理,它的內容包含物理學的全部內容,力、熱、電、固、液、氣都是有,但是各部分的深度還只是一般的。至多用到微積分就可以解決了。
到大三才開固體物體,它的主要內容是研究固體的一系列特殊的性質,更專業,更深透。
理論物體是一系列更深刻的專業物理理論的總稱,包括固體物體、電動力學、數學物理方法等。
㈢ 固體物理學
固體物理就是研討固體(主要是晶體)材料物理特性的一門科學。它是從固體中的原子和電子狀態的根本特點出發來討論固體的物理性質,所以是最基礎的、又同專業關系最密切的一門課程,它也討論非晶體材料的性質,是學習金屬物理、半導體物理、電介質物理、磁學等的基礎、先行課程。
雖然固體物理主要是討論固體材料的問題,但是實際上對於討論液體、氣體材料也有參考價值。對於物理類和電子科學類的專業,固體物理是必修課。
㈣ 固體物理是門怎樣的學科
從電子、原子和分子的角度研究固體的結構和性質(主要是物理性質) 的一門基礎理論學科。它和普通物理、 熱力學與統計物理、金屬物理、材料科學、特別是量子力學等學科有著密切關系。例如,固體物理也討論晶體學、 晶體的結合鍵、晶體缺陷、擴散、相圖等問題。但它著重研究的是晶格振動和晶體的熱學性質、固體電子論(包括自由電子論和能帶理論)、半導體、固體的磁性、超導體等專題。
㈤ 固體物理學的解釋
固體物理學的解釋研究 固體的結構及其物理 性質 的物理學分支學科。主要研究晶體結構、晶體中粒子的 運動 規律 、 金屬 、半導體、電 介質 、超導體、液晶等。
詞語分解
固體的解釋 物質 存在的一種 狀態 ,有 一定 體積和一定形狀、質地比較堅硬的物體。與液體 和氣 體相區別詳細解釋有一定體積、形狀和硬度的物體。如金屬、岩石、木材、玻璃、橡氏蠢明皮等,在常溫下都是固體。 物理學的解釋 自殲告然 科學的一個 基礎 部門。研究物質的基本構造和物質運動的最一般規律。在希臘文中,它原意「自然」。在古代歐洲,是自然科學的總稱。在化學、天文學、地學、生物學等分別從自然科學中獨立出來以後,物理學檔桐的規律和研
㈥ 固體物理學
固體物理學是研究固體物質的物理性質、微觀結構、構成物質的各種粒子的運動形態,及其相互關系的科學。它是物理學中內容極豐富、應用極廣泛的分支學科。
固體通常指在承受切應力時具有一定程度剛性的物質,包括晶體和非晶態固體。簡單地說,固體物理學的基本問題有:固體是由什麼原子組成?它們是怎樣排列和結合的?這種結構是如何形成的?在特定的固體中,電子和原子取什麼樣的具體的運動形態?它的宏觀性質和內部的微觀運動形態有什麼聯系?各種固體有哪些可能的應用?探索設計和制備新的固體,研究其特性,開發其應用。
在相當長的時間里,人們研究的固體主要是晶體。早在18世紀,阿維對晶體外部的幾何規則性就有一定的認識。後來,布喇格在1850年導出14種點陣。費奧多羅夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶體對稱性的群理論。這為固體的理論發展找到了基本的數學工具,影響深遠。
1912年勞厄等發現X射線通過晶體的衍射現象,證實了晶體內部原子周期性排列的結構。加上後來布喇格父子1913年的工作,建立了晶體結構分析的基礎。對於磁有序結構的晶體,增加了自旋磁矩有序排搭渣列的對稱性,直到20世紀50年代舒布尼科夫才建立了磁有序晶體的對稱群理論。
第二次世界大戰後發展的中子衍射技術,是磁性晶體結構分析的重要手段。70年代出現了高分辨電子顯微鏡點陣成像技術,在於晶體結構的觀察方面有所進步。60年代起,人們開始研究在超高真空條件下晶體解理後表面的原子結構。20年代末發現的低能電子衍射技術在60年代經過改善,成為研究晶體表面的有力工具。近年來發展的掃描隧道顯微鏡,可以相當高的解析度探測表面的原子結構。
晶體的結構以及它的物理、化學性質同晶體結合的基本形式有密切關系。通常晶體結合的基本形式可分成:高子鍵合、金屬鍵合、共價鍵合、分子鍵合(范德瓦耳斯鍵合)和氫鍵合。根據X射線衍射強度分析和晶體的物理、化學性質,或者依據晶體價電子的局域密度分布的自洽理論計算,人們可以准確地判定該晶體具有何種鍵合形式。
固體中電子的狀態和行為是了解固體的物理、化學性質的基礎。維德曼和夫蘭茲於1853年由實驗確定了金屬導熱性和導電性之間關系的經驗定律;洛倫茲在1905年建立了自由電子的經典統計理論,能夠解釋上述經驗定律,但無法說明常溫下金屬電子氣對比熱容貢獻甚小的原因;泡利在1927年首先用量子統計成功地計算了自由電子氣的順磁性,索末菲在1928年用量子統計求得電子氣的比熱容和輸運現象,解決了經典理論的困難。
布洛赫和布里淵分別從不同角度研究了周期場中電子運動的基本特點,為固體電子的能帶理論奠定了基礎。電子的本徵能量,是在一定能量范圍內准連續的能級組成的能帶。相鄰兩個能帶之間的能量范圍是完整晶體中電子不許可具有的能量,稱為禁帶。利用能帶的特徵以及泡利不相容原理,威耳遜在1931年提出金屬和絕緣體相區別的能帶模型,並預言介於兩者之間存在半導體,為爾後的半導體的發展提供理論基礎。
貝爾實驗室的科學家對晶體的能帶進行了系統的實驗和理論的基礎研究,知擾悄同時掌握了高質量半導體單晶生長和摻雜技術,導致巴丁、布喇頓以及肖克萊於1947~1948年發明晶體管。
固體中每立方厘米內有1022個粒子,它們靠電磁互作用聯系起來。因此,固體物理學所面對的實際上是多體問題。在固體中,粒子之間種種各具特點的耦合方式,導致粒子具有特定的集體運動形式和個體運動形式,造成不同的固體有千差萬別的物理性質。
漢密爾頓在1839年討論了排成陣列的質點系的微振動;1907年,愛因斯坦首先用量子論處理固體李游中原子的振動。他的模型很簡單,各個原子獨立地作同一頻率的振動;德拜在1912年採用連續介質模型重新討論了這問題,得到固體低溫比熱容的正確的溫度關系;玻恩和卡門同時開始建立點陣動力學的基礎,在原子間的力是簡諧力的情況下,晶體原子振動形成各種模式的點陣波,這種波的能量量子稱為聲子。它對固體的比熱容、熱導、電導、光學性質等都起重要作用。
派尼斯和玻姆在1953年提出:由於庫侖作用的長程性質,固體中電子氣的密度起伏形成縱向振盪,稱為等離子體振盪。這種振盪的能量量子稱為等離激元。實驗證明,電子束通過金屬薄膜的能量損耗來源於激發電子氣的等離激元。考慮到電子間的互作用,能帶理論的單電子狀態變成准電子狀態,但准電子的有效質量包含了多粒子相互作用的效應。同樣,空穴也變成准粒子。在半導體中電子和空穴之間有屏蔽的庫侖吸引作用,它們結合成激子,這是一種復合的准粒子。
在很低的溫度,由於熱擾動強度降低,在某些固體中出現宏觀量子現象。其中最重要的是開默林-昂內斯在1911年發現金屬汞在4.2K具有超導電性現象,邁斯納和奧克森菲爾德在1933年又發現超導體具有完全的抗磁性。以這些現象為基礎,30年代人們建立了超導體的電動力學和熱力學的理論。
後來,倫敦在1946年敏銳地提出超導電性是宏觀的量子現象,並預言磁通是量子化的。1961年果真在實驗上發現了磁通量子,實驗值為倫敦預計值的一半,正好驗證了庫珀提出的電子配對的概念。弗羅利希在1950年提出超導電性來源於金屬中電子和點陣波的耦合,並預言存在同位素效應,同年得到實驗證實。
1957年巴丁、庫珀和施里弗成功地提出超導微觀理論,即有名的BCS理論。50年代蘇聯學者京茨堡、朗道、阿布里考索夫、戈科夫建立並論證了超導態宏觀波函數應滿足的方程組,並由此導出第二類超導體的基本特性。繼江崎玲於奈在1957年發現半導體中的隧道效應之後,加埃沃於1960年發現超導體的單電子隧道效應,由此效應可求得超導體的重要的信息。不久,約瑟夫森在1962年預言了庫珀對也有隧道效應,幾個月之後果然實驗證實了。從此開拓了超導宏觀量子干涉現象及其應用的新領域。
固體磁性是一個有很久歷史的研究領域。抗磁性是物質的通性,來源於在磁場中電子的軌道運動的變化。從20世紀初至30年代,經過許多學者努力建立了抗磁性的基本理論。范扶累克在1932年證明在某些抗磁分子中會出現順磁性;朗道在1930年證明導體中傳導電子的非局域的軌道運動也產生抗磁性,這是量子的效應;居里在1895年測定了順磁體磁化率的溫度關系,朗之萬在1905年給出順磁性的經典統計理論,得出居里定律。順磁性的量子理論連同大量的實驗研究,導致順磁鹽絕熱去磁致冷技術出現,電子順磁共振技術和微波激射放大器的發明,以及固體波譜學的建立。
在固體物理學中相變佔有重要地位。它涉及熔化、凝聚、凝固、晶體生長、蒸發、相干衡、相變動力學、臨界現象等,19世紀吉布斯研究了相平衡的熱力學。後來厄任費斯脫在1933年對各種相變作了分類。60年代以後,人們對發生相變點的臨界現象做了大量研究,總結出標度律和普適性。卡達諾夫在1966年指出在臨界點粒子之間的關聯效應起重要作用。威耳遜在1971年採用量子場論中重正化群方法,論證了臨界現象的標度律和普適性,並計算了臨界指數,取得成功。
晶體或多或少都存在各種雜質和缺陷,它們對固體的物性,以及功能材料的技術性能都起重要的作用。半導體的電學、發光學等性質依賴於其中的雜質和缺陷;大規模集成電路的工藝中控制和利用雜質及缺陷是極為重要的。貝特在1929年用群論方法分析晶體中雜質離子的電子能級的分裂,開辟了晶體場的新領域。數十年來在這領域積累了大量的研究成果,為順磁共振技術、微波激射放大器、固體激光器的出現准備了基礎。
硬鐵磁體、硬超導體、高強度金屬等材料的功能雖然很不同,但其技術性能之所以強或硬,卻都依賴於材料中一種缺陷的運動。在硬鐵磁體中這缺陷是磁疇壁,在超導體中它是量子磁通線,在高強度金屬中它是位錯線,採取適當工藝使這些缺陷在材料的微結構上被釘住不動,有益於提高其技術性能。
高分辨電子顯微術正促使人們在更深的層次上來研究雜質、缺陷和它們的復合物。電子順磁共振、穆斯堡爾效應、正電子堙沒技術等已成為研究雜質和缺陷的有力手段。在理論上藉助於拓撲學和非線性方程的解,正為缺陷的研究開辟新的方向。
從60年代起,人們開始在超高真空條件下研究晶體表面的本徵特性,以及吸附過程等通過粒子束(光束、電子束、高子束或原子束)和外場(溫度、電場或磁場)與表面的相互作用,獲得有關表面的原子結構、吸附物特徵、表面電子態以及表面元激發等信息,加上表面的理論研究,形成表面物理學。
同體內相比,晶體表面具有獨特的結構和物理、化學性質。這是由於表面原子所處的環境同體內原子不一樣,在表面幾個原子層的范圍,表面的組分和原子排列形成的二維結構都同體內與之平行的晶面不一樣的緣故。表面微觀粒子所處的勢場同體內不一樣,因而形成獨具特徵的表面粒子的運動狀態,限制粒子只能在表面層內運動並具有相應的本徵能量,它們的行為對表面的物理、化學性質起重要作用。
非晶態固體的物理性質同晶體有很大差別,這同它們的原子結構、電子態以及各種微觀過程有密切聯系。從結構上來分,非晶態固體有兩類。一類是成分無序,在具有周期性的點陣位置上隨機分布著不同的原子或者不同的磁矩;另一類是結構無序,表徵長程序的周期性完全破壞,點陣失去意義。但近鄰原子有一定的配位關系,類似於晶體的情形,因而仍然有確定的短程序。
例如,金屬玻璃是無規密積結構,而非晶硅是四面體鍵組成的無規網路。20年代發現,並在70年代得到發展的擴展X射線吸收精細結構譜技術,成為研究非晶態固體原子結構的重要手段。
無序體系的電子態具有其獨特的性質,安德森在他的富有開創性的工作中,探討了無序體系中電子態局域化的條件,10年之後,莫脫在此基礎上建立了非晶態半導體的能帶模型,提出遷移率邊的概念。
在無序體系中,電子態有局域態和擴展態之分。在局域態中的電子只有在聲子的合作下才能參加導電,這使得非晶態半導體的輸運性質具有新穎的特點。1974年人們掌握了在非晶硅中摻雜的技術,現在非晶硅已成為制備高效率太陽能電池的重要材料。
非晶態合金具有特殊的物理性質。例如,它們的電阻率較大而其溫度系數小。有的材料有很大的拉伸強度,有的具有優異的抗腐蝕性,可與不銹鋼相比。非晶態磁性合金具有隨機變化的交換作用,可導致居里溫度的改變(大多數材料居里溫度變低),同時在無序體系中,缺陷失去原有的意義。因而非晶態磁性固體可以在較低的外磁場下達到飽和,磁損耗減小。所以,非晶態合金具有多方面用途。
無序體系是一個復雜的新領域,非晶態固體實際上是一個亞穩態。目前對許多基本問題還存在著爭論,有待進一步的探索和研究。
新的實驗條件和技術日新月異,為固體物理不斷開拓出新的研究領域。極低溫、超高壓、強磁場等極端條件、超高真空技術、表面能譜術、材料制備的新技術、同步輻射技術、核物理技術、激光技術、光散射效應、各種粒子束技術、電子顯微術、穆斯堡爾效應、正電子湮沒技術、磁共振技術等現代化實驗手段,使固體物理性質的研究不斷向深度和廣度發展。
由於固體物理本身是微電子技術、光電子學技術、能源技術、材料科學等技術學科的基礎,也由於固體物理學科內在的因素,固體物理的研究論文已佔物理學中研究論文三分之一以上。同時,固體物理學的成就和實驗手段對化學物理、催化學科、生命科學、地學等的影響日益增長,正在形成新的交叉領域。
㈦ 固體物理學是什麼
研究固體性質、微觀結構及其各種內部運動,以及這種微觀結構和內部運動同固體的宏觀性質的關系的學科。它是物理學中內容極豐富、應用極廣泛的分支學科。
固體的內部結構和運動形式很復雜,這方面的研究是從晶體開始的,因為晶體的內部結構簡單,而且具有明顯的規律性,較易研究。1912年勞厄等發現X射線通過晶體的衍射現象,證實了晶體內部原子周期性排列的結構。加上後來喇格父子1913年的工作,建立了晶體結構分析基礎。對於磁有序的結構的晶體,增加了自旋磁矩有序排列的對稱性,直到20世紀50年代舒布尼科夫才建立了磁有序的對稱理論。以後進一步研究一切處於凝聚狀態的物體的內部結構、內部運動以及它們和宏觀物理性質的關系。這類研究統稱為凝聚態物理學。
㈧ 固體物理
固體物理(材料科學與工程系列)
目錄: 第1章緒論1 1.1人類對固體的研究歷史1 1.2自然界中的固體及固體物理學4 本章參考書7 第2章化學鍵與晶體形成8 2.1離子鍵和離子晶體11 2.2共價鍵和共價晶體14 2.3金屬鍵和典型金屬15 2.4原子、分子固體16 本章參考書18 附錄團簇電荷的偶極相互作用19 習題19 第3章固體結構21 3.1晶體的幾何描述21 3.2對稱性與晶格結構的分類25 3.2.1由二維晶格的對稱性推導二維布喇菲點陣的分類27 3.2.2三維晶格中布喇菲點陣的分類和點群符號29 3.3晶體結構的形成33 3.3.1金屬和元素晶體的結構33 3.3.2泡林規則和離子晶體的結構35 3.4倒易點陣與布里淵區39 3.4.1倒易點陣40 3.4.2布里淵區42 3.5晶格結構測定與衍射44 3.5.1X射線衍射、電子衍射與中子衍射46 3.5.2衍射理論50 3.6非晶體和准晶體的結構58 3.7軟性凝聚體: 液晶和凝膠的結構64 本章參考書71 習題72 第4章晶格振動和固體熱性質74 4.1固體中熱現象的研究歷史74 4.2晶格動力學76 4.2.1晶格振動與聲子76 4.2.2聲學支和光學支的色散關系82 4.2.3聲子能譜的測定86 4.3固體熱性質89 4.3.1固體比熱容的愛因斯坦模型91 4.3.2固體比熱容的德拜模型93 本章參考書99 習題99 第5章固體電子理論100 5.1傳統電子導電理論: 德魯德模型101 5.2自由電子費密氣體: 索末菲模型108 5.3自由電子模型的局限性115 5.4布洛赫能帶理論116 5.5能帶的計算120 5.5.1緊束縛近似122 5.5.2弱晶格勢近似125 5.6能帶電子的准經典近似和有效質量127 5.7金屬中的費密面130 5.7.1鹼金屬130 5.7.2貴金屬131 5.7.3二價金屬131 本章參考書131 習題132 第6章固體的電性質: 輸運過程134 6.1能帶電子的輸運過程、導體134 6.1.1能帶電子的非平衡量子統計、固體按電性質分類135 6.1.2導體的直流電導率和熱導率138 6.2半導體140 6.2.1半導體的特性140 6.2.2載流子的濃度和遷移率145 6.2.3p\|n結,半導體\|金屬結,MOS晶體管和半導體超晶格154 6.3超導體163 6.3.1傳統超導體和高溫超導體的特性163 6.3.2BCS理論及其局限性169 本章參考書173 習題173 第7章固體的磁性176 7.1原子磁矩的量子力學根源178 7.2抗磁性與順磁性182 7.2.1抗磁性182 7.2.2順磁性183 7.2.3傳導電子的泡利順磁性185 7.3鐵磁性與反鐵磁性185 7.3.1鐵磁體和亞鐵磁體185 7.3.2反鐵磁體190 7.3.3鐵磁性和反鐵磁性的量子力學解釋: 海森堡模型190 7.4中子的磁性衍射和自旋波192 7.4.1順磁體的中子磁性衍射193 7.4.2鐵磁體和反鐵磁體的中子磁性衍射193 7.4.3中子的非彈性磁性衍射: 自旋波能譜的測量194 7.4.4自旋波對鐵磁體比熱容的貢獻194 7.5核磁共振和電子自旋共振195 本章參考書197 附錄朗道磁矢量勢和洛倫茲力197 習題198 第8章固體的介電性質和光學性質199 8.1電極化過程200 8.2介電擊穿、壓電體和鐵電體206 8.3光在固體中的傳播210 8.4固體的發光機制214 本章參考書216 習題216 正文索引(按照第一個字的漢語拼音排列)218 習題參考答案233 附錄A物理學常數及單位制換算239 附錄B化學元素英文名稱與符號一覽表及化學元素周期表240
從電子、原子和分子的角度研究固體的結構和性質(主要是物理性質) 的一門基礎理論學科。它和普通物理、 熱力學與統計物理、金屬物理、材料科學、特別是量子力學等學科有著密切關系。例如,固體物理也討論晶體學、 晶體的結合鍵、晶體缺陷、擴散、相圖等問題。但它著重研究的是晶格振動和晶體的熱學性質、固體電子論(包括自由電子論和能帶理論)、半導體、固體的磁性、超導體等專題。
第1章 緒論1 1.1 古希臘的原子論1 1.2 固體物理的發展史4 1.3 自然界中的固體及固體物理學7 本章小結10 本章參考文獻10 第2章 化學鍵和晶體形成11 2.1 原子的量子模型12 2.2 離子鍵和離子晶體15 2.3 共價鍵和共價晶體19 2.4 金屬鍵和典型金屬23 2.5 原子和分子固體25 本章小結29 本章參考文獻30 本章習題30 第3章 固體結構32 3.1 晶體的幾何描述32 3.2 對稱性與晶格結構的分類36 3.2.1 對稱性與二維布拉菲點陣的分類37 3.2.2 點群與三維布拉菲點陣的分類39 3.3 晶體的自然結構43 3.3.1 元素晶體的結構43 3.3.2 化合物的結構: 泡林規則47 3.4 倒易點陣和布里淵區51 3.4.1 倒易點陣51 3.4.2 布里淵區53 3.5 衍射與晶體結構的測定56 3.5.1 X射線衍射、電子衍射和中子衍射58 3.5.2 衍射理論65 3.6 無序固體結構71 3.6.1 非晶體73 3.6.2 准晶體75 3.6.3 液晶78 本章小結85 本章參考文獻86 本章習題87 第4章 晶格振動和固體熱性質89 4.1 愛因斯坦聲子模型91 4.2 德拜聲子模型94 4.3 晶格動力學和中子衍射98 4.3.1 晶格動力學98 4.3.2 光學支和聲學支101 4.3.3 聲子能譜的中子衍射測定105 本章小結108 本章參考文獻109 本章習題109 第5章 固體電子理論111 5.1 德魯德模型: 自由電子氣體113 5.2 索末菲模型: 自由電子費密氣體117 5.2.1 電子的比熱容121 5.2.2 電導率和熱導率123 5.2.3 電子從金屬表面的熱發射125 5.2.4 霍爾效應127 5.3 能帶理論129 5.3.1 布洛赫定理130 5.3.2 緊束縛模型132 5.3.3 弱晶格勢近似136 5.3.4 密度泛函理論與能帶計演算法的介紹139 5.3.5 真實能帶和費密面141 5.3.6 半經典模型和有效質量146 本章小結149 本章參考文獻149 本章習題151 第6章 固體的電性質: 輸運過程154 6.1 導體155 6.2 半導體159 6.2.1 半導體的特性161 6.2.2 載流子濃度和遷移率167 6.2.3 半導體器件的基本概念179 6.3 超導體189 6.3.1 超導體的特性191 6.3.2 唯象理論194 6.3.3 微觀BCS理論199 本章小結202 本章參考文獻202 本章習題204 第7章 固體的磁性207 7.1 磁性的量子力學根源210 7.1.1 單原子近似: 原子磁矩211 7.1.2 自由電子近似: 朗道能級214 7.2 磁性的類別217 7.2.1 抗磁性217 7.2.2 順磁性219 7.2.3 鐵磁性225 7.2.4 反鐵磁性和亞鐵磁性230 7.3 自旋與基本粒子的相互作用233 7.3.1 中子磁性衍射和磁結構233 7.3.2 自旋波與中子非彈性散射235 7.3.3 電子自旋共振和核磁共振239 本章小結242 本章參考文獻243 本章習題245 第8章 固體的介電性質和光學性質247 8.1 固體的光性質、電性質和磁性質的統一249 8.2 洛倫茲光學模型和電極化過程251 8.2.1 德魯德金屬光學模型256 8.3 激光: 愛因斯坦的受激輻射理論258 8.3.1 輻射的量子力學理論258 8.3.2 微波激射器和激光器260 本章小結263 本章參考文獻264 本章習題265 索引266
㈨ 四大力學和固體物理分別是什麼,怎麼學好
四大力學指《理論力學》、《電動力學》、《量子力學》和《熱力學、統計物理》。固體物理是研究固體的物理性質、微觀結構、固體中各種粒子運動形態和規律及它們相互關系的學科。物理學的重要分支,涉及力學、熱學、聲學、電學、磁學和光學等各方面的內容。
多看書,多做題就能學好。
㈩ 固體物理是人學的嗎
是。
固體物理是電子科學與技術專業和材料物理專業的專業方向課程之一,是材料搏首科學和器件物理的重要基礎,是人類學的。
固體物理是凝聚態物理學中最大的分支。它研究的對象是固體,特別是原子排列具有周期性結構的晶體。固體物理學的基本任務是從微觀上解釋固體檔銀手材料的行嫌宏觀物理性質,主要理論基礎是非相對論性的量子力學,還會使用到電動力學、統計物理中的理論。