導航:首頁 > 物理學科 > 物理凸面鏡直徑15厘米多少錢

物理凸面鏡直徑15厘米多少錢

發布時間:2023-05-30 18:53:38

A. 初中物理凸透鏡成像規律

凸透鏡的成像規律以及應用:
物 距(u) 像的性質 像 距( v ) 應用舉例
u > 2f倒立、縮小、實像f<v<2f 照相機
u = 2f倒立、和殲等大、實像v = 2f ---
f< u<2f倒立、放大、實像v >扮陪 2f 幻燈機
u = f不成像/ ---
u < f正立、放大、虛像v > u 放大鏡、老花鏡

希望幫助到你,若有疑問,可廳棚蠢以追問~~~
祝你學習進步,更上一層樓!(*^__^*)

B. 初中物理知識點總結之凸面鏡和凹面鏡

凸面鏡和凹面鏡

1、以球的外表面為反射面叫凸面鏡,以球的內表面為反射面的叫凹面鏡;

2、凸面鏡對光有發散作用,可增大視野(汽車上的觀後鏡);凹面鏡對光有會聚作用(太陽灶,利用光路可逆製作電筒)

知識拓展:凹面的拋物面鏡,平行光照於其上時,通過其反射而聚在鏡面前的焦點上,反射面為凹面,焦點在鏡前,當光源在焦點上,所發出的光反射後形成平行光束,也叫凹鏡,會聚鏡。

中考物理知識點:透鏡

關於物理中透鏡的知識,希望同學們很好的掌握下面的內容知識哦。

透鏡

透鏡:透明物質製成(一般是玻璃),至少有一個表面是球面的一部分,對光起折射作用的光學元件。

分類:

1、凸透鏡:邊緣薄,中央厚。

2、凹透鏡:邊緣厚,中央薄。

主光軸:通過兩個球心的直線。

光心:主光軸上有個特殊的點,通過它的光線傳播方向不變。(透鏡中心可認為是光心)

焦點:凸透鏡能使跟主軸平行的光線會聚在主光軸上的一點,這點叫透鏡的焦點,用"F"表示

虛焦點:跟主光軸平行的光線經凹透鏡後變得發散,發散光線的反向延長線相交在主光早模襲軸上一點,這一點不是實際光線的會聚點,所以叫虛焦點。

焦距:焦點到光心的距離叫焦距,用" f "表示。

每個透鏡都有兩個焦點、焦距和一個光心。

透鏡對光的作用:

凸透鏡:對光起會聚作用。

凹透鏡:對光起發散作用。

通過上面對物理中透鏡知識點的內容講解學習,相信同學們已經能很好的掌握了吧,希望同學們認真的`學習物理知識。

中考物理知識點:凸透鏡成像規律

下面是對物理中凸透鏡成像規律的內容講解,需要同學們很好的掌握下面的內容知識哦。

探究凸透鏡成像規律

實驗:從左向右依次放置蠟燭、凸透鏡、光屏。1、調整它們的位置,使三者在同一直線(光具座不用);2、調整它們,使燭焰的中心、凸透鏡的中心、光屏的中心在同一高度。

凸透鏡成像規律:

物距(u) 像距( υ ) 像的性質 應用

u > 2f f<υ<2f 倒立縮小實像 照相機

u = 2f υ= 2f 倒立等大實像 (實像大小轉折)

f< u<2f>2f 倒立放大實像 幻燈機

u = f 不成像 (像的虛實轉折點)

u < f υ> u 正立放大虛像 放大鏡

凸透鏡成像規律口決記憶法

口決一:"一焦(點)分虛實,二焦(距)分大小;虛像同側正;實像異側倒,物遠像變小"。

口決二:

物遠實像小而近,物近實像大而遠,

如果物放焦點內,正立放大虛像現;

幻燈放像像好大,物處一焦二焦間,

相機縮你小不點,物處二倍焦距遠。

口決三:

凸透鏡,本領大,照相、幻燈和放大;

二倍焦外倒實小,二倍焦內倒實大;

若是物放焦點內,像物同側虛像大;

一條規律碼談記在心,物近像遠像變大。

注1:為了使幕上的像"正立"(朝上),幻燈片要倒著插。

注2:照相機的鏡頭相當於一個凸透鏡,暗箱中的膠片相當於光屏,我們調節調焦環,並非調焦距,而是調鏡頭到膠片的距離,物離鏡頭越遠,膠片就應靠近鏡頭。

上面對凸透鏡成像規律知識點的內容講解學習,相信同學們已經能很好的掌握了吧,希望同學們考試成功哦。

中考物理知識點:眼睛和眼鏡

同學們認真看看,下面是對眼睛和眼鏡內容的知識學習哦,供大家參考。

眼睛和眼鏡

眼睛:眼睛中晶狀體和角膜的共同作用相當於凸陸兄透鏡,它把來自物體的光會聚在視網膜上,形成物體的像。視網膜上的視神經細胞受到光的刺激,把信號傳輸給大腦。看遠處物體時,睫狀肌放鬆,晶狀體比較薄(焦距長,偏折弱)。看近處物體時,睫狀肌收縮,晶狀體比較厚(焦距短,偏折強)。

近視的表現:能看清近處的物體,看不清遠處的物體。

近視的原因:晶狀體太厚,折光能力太強,或眼球前後方向太長,致使遠處物體的像成在視網膜前。

近視的矯治:佩戴凹透鏡。

遠視的表現:能看清遠處的物體,看不清近處的物體。

遠視的原因:晶狀體太薄,折光能力太弱,或眼球前後方向太短,致使遠處物體的像成在視網膜後。

遠視的矯治:佩戴凸透鏡。

眼鏡的度數:100×焦距的倒數( )。

上面對眼睛和眼鏡知識的內容講解學習,同學們都能很好的掌握了吧,希望同學們認真學習物理知識,爭取做的更好。

中考物理知識點:照相機和投影儀

下面是對物理中照相機和投影儀的內容知識講解,希望給同學們的學習很好的幫助。

照相機和投影儀

照相機:

1、鏡頭是凸透鏡;

2、物體到透鏡的距離(物距)大於二倍焦距,成的是倒立、縮小的實像;

投影儀:

1、投影儀的鏡頭是凸透鏡;

2、投影儀的平面鏡的作用是改變光的傳播方向;

注意:照相機、投影儀要使像變大,應該讓透鏡靠近物體,遠離膠卷、屏幕。

3、物體到透鏡的距離(物距)小於二倍焦距,大於一倍焦距,成的是倒立、放大的實像;

以上對物理中照相機和投影儀知識的內容講解學習,同學們都能很好的掌握了吧,相信同學們會在考試中取得很好的成效的吧。

中考物理知識點:顯微鏡和望遠鏡

同學們對顯微鏡和望遠鏡很熟悉吧,下面我們來看看它們在物理中的應用。

顯微鏡和望遠鏡

顯微鏡由目鏡和物鏡組成,物鏡、目鏡都是凸透鏡,它們使物體兩次放大;

望遠鏡由目鏡和物鏡組成,物鏡使物體成縮小、倒立的實像,目鏡相當於放大鏡,成放大的像;

希望上面對顯微鏡和望遠鏡知識點的講解學習,同學們都能很好的掌握,相信同學們會考出很好的成績的哦,好好學習吧。

C. 我想買一個天文望遠鏡可是對這方面又不懂希望各路英雄指點指點.謝謝!!

天文望遠鏡是觀測天體的重要手段,可以毫不誇大地說,沒有望遠鏡的誕生和發展,就沒有現代天文學。隨著望遠鏡在各方面性能的改進和提高,天文學也正經歷著巨大的飛躍,迅速推進著人類對宇宙的認識。
從第一架光學望遠鏡到射電望遠鏡誕生的三百多年中,光學望遠鏡一直是天文觀測最重要的工具,下面就對光學望遠鏡的發展作一個簡單的介紹。
折射式望遠鏡

1608年,荷蘭眼鏡商人李波爾賽偶然發現用兩塊鏡片可以看清遠處的景物,受此啟發,他製造了人類歷史第一架望遠鏡。
1609年,伽利略製作了一架口徑4.2厘米,長約1.2米的望遠鏡。他是用平凸透鏡作為物鏡,凹透鏡作為目鏡,這種光學系統稱為伽利略式望遠鏡。伽利略用這架望遠鏡指向天空,得到了一系列的重要發現,天文學從此進入瞭望遠鏡攜岩時代。
1611年,德國天文學家開普勒用兩片雙凸透鏡分別作為物鏡和目鏡,使放大倍數有了明顯的提高,以後人們將這種光學系統稱為開普勒式望遠鏡。現在人們用的折射式望遠鏡還是這兩種形式,天文望遠鏡是採用開普勒式。
需要指出的是,由於當時的望遠鏡採用單個透鏡作為物鏡,存在嚴重的色差,為了獲得好的觀測效果,需要辯游御用曲率非常小的透鏡,這勢必會造成鏡身的加長。所以在很長的一段時間內,天文學家一直在夢想製作更長的望遠鏡,許多嘗試均以失敗告終。
1757年,杜隆通過研究玻璃和水的折射和色散,建立了消色差透鏡的理論基礎,並用冕牌玻璃和火石玻璃製造了消色差透鏡。從此,消色差折射望遠鏡完全取代了長鏡身望遠鏡。但是,由於技術方面的限制,很難鑄造較大的火石玻璃,在消色差望遠鏡的初期,最多隻能磨製出10厘米的透鏡。
十九世紀末,隨著製造技術的提高,製造較大口徑的折射望遠鏡成為可能,隨之就出現了一個製造大口徑折射望遠鏡的高潮。世界上現有的8架70厘米以上的折射望遠鏡有7架是在1885年到1897年期間建成的,其中最有代表性的是1897年建成的口徑102厘米的葉凱士望遠鏡和1886年建成的口徑91厘米的里克望遠鏡。
折射望遠鏡的優點是焦距長,底片比例尺大,對鏡筒彎曲不敏感,最適合於做天體測量方面的工作。但是它總是有殘余的色差,同時對紫外、紅外波段的輻射吸收很厲害。而巨大的光學玻璃澆制也十分困難,到1897年葉凱士望遠鏡建成,折射望遠鏡的發展達到了頂點,此後的這一百年中再也沒有更大的折射望遠鏡出現。這主要是因為從技術上無法鑄造出大塊完美無缺的玻璃做透鏡,並且,由於重力使大尺寸透鏡的變形會非常明顯,因而喪失明銳的焦點。

反射式望遠鏡

第一架反射式望遠鏡誕生於1668年。牛頓經過多次磨製非球面的透鏡均告失敗磨橡後,決定採用球面反射鏡作為主鏡。他用2.5厘米直徑的金屬,磨製成一塊凹面反射鏡,並在主鏡的焦點前面放置了一個與主鏡成45o角的反射鏡,使經主鏡反射後的會聚光經反射鏡以90o角反射出鏡筒後到達目鏡。這種系統稱為牛頓式反射望遠鏡。它的球面鏡雖然會產生一定的象差,但用反射鏡代替折射鏡卻是一個巨大的成功。
詹姆斯·格雷戈里在1663年提出一種方案:利用一面主鏡,一面副鏡,它們均為凹面鏡,副鏡置於主鏡的焦點之外,並在主鏡的中央留有小孔,使光線經主鏡和副鏡兩次反射後從小孔中射出,到達目鏡。這種設計的目的是要同時消除球差和色差,這就需要一個拋物面的主鏡和一個橢球面的副鏡,這在理論上是正確的,但當時的製造水平卻無法達到這種要求,所以格雷戈里無法得到對他有用的鏡子。
1672年,法國人卡塞格林提出了反射式望遠鏡的第三種設計方案,結構與格雷戈里望遠鏡相似,不同的是副鏡提前到主鏡焦點之前,並為凸面鏡,這就是現在最常用的卡賽格林式反射望遠鏡。這樣使經副鏡鏡反射的光稍有些發散,降低了放大率,但是它消除了球差,這樣製作望遠鏡還可以使焦距很短。
卡塞格林式望遠鏡的主鏡和副鏡可以有多種不同的形式,光學性能也有所差異。由於卡塞格林式望遠鏡焦距長而鏡身短,放大倍率也大,所得圖象清晰;既有卡塞格林焦點,可用來研究小視場內的天體,又可配置牛頓焦點,用以拍攝大面積的天體。因此,卡塞格林式望遠鏡得到了非常廣泛的應用。
赫歇爾是製作反射式望遠鏡的大師,他早年為音樂師,因為愛好天文,從1773年開始磨製望遠鏡,一生中製作的望遠鏡達數百架。赫歇爾製作的望遠鏡是把物鏡斜放在鏡筒中,它使平行光經反射後匯聚於鏡筒的一側。
在反射式望遠鏡發明後的近200年中,反射材料一直是其發展的障礙:鑄鏡用的青銅易於腐蝕,不得不定期拋光,需要耗費大量財力和時間,而耐腐蝕性好的金屬,比青銅密度高且十分昂貴。1856年德國化學家尤斯圖斯·馮·利比希研究出一種方法,能在玻璃上塗一薄層銀,經輕輕的拋光後,可以高效率地反射光。這樣,就使得製造更好、更大的反射式望遠鏡成為可能。
1918年末,口徑為254厘米的胡克望遠鏡投入使用,這是由海爾主持建造的。天文學家用這架望遠鏡第一次揭示了銀河系的真實大小和我們在其中所處的位置,更為重要的是,哈勃的宇宙膨脹理論就是用胡克望遠鏡觀測的結果。
二十世紀二、三十年代,胡克望遠鏡的成功激發了天文學家建造更大反射式望遠鏡的熱情。1948年,美國建造了口徑為508厘米望遠鏡,為了紀念卓越的望遠鏡製造大師海爾,將它命名為海爾望遠鏡。從設計到製造完成海爾望遠鏡經歷了二十多年,盡管它比胡克望遠鏡看得更遠,分辨能力更強,但它並沒有使人類對宇宙的有更新的認識。正如阿西摩夫所說:"海爾望遠鏡(1948年)就象半個世紀以前的葉凱士望遠鏡(1897年)一樣,似乎預兆著一種特定類型的望遠鏡已經快發展到它的盡頭了"。在1976 年前蘇聯建造了一架600厘米的望遠鏡,但它發揮的作用還不如海爾望遠鏡,這也印證了阿西摩夫所說的話。
反射式望遠鏡有許多優點,比如:沒有色差,能在廣泛的可見光范圍內記錄天體發出的信息,且相對於折射望遠鏡比較容易製作。但由於它也存在固有的不足:如口徑越大,視場越小,物鏡需要定期鍍膜等。

折反射式望遠鏡

折反射式望遠鏡最早出現於1814年。1931年,德國光學家施密特用一塊別具一格的接近於平行板的非球面薄透鏡作為改正鏡,與球面反射鏡配合,製成了可以消除球差和軸外象差的施密特式折反射望遠鏡,這種望遠鏡光力強、視場大、象差小,適合於拍攝大面積的天區照片,尤其是對暗弱星雲的拍照效果非常突出。施密特望遠鏡已經成了天文觀測的重要工具。
1940年馬克蘇托夫用一個彎月形狀透鏡作為改正透鏡,製造出另一種類型的折反射望遠鏡,它的兩個表面是兩個曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均為球面,比施密特式望遠鏡的改正板容易磨製,鏡筒也比較短,但視場比施密特式望遠鏡小,對玻璃的要求也高一些。
由於折反射式望遠鏡能兼顧折射和反射兩種望遠鏡的優點,非常適合業余的天文觀測和天文攝影,並且得到了廣大天文愛好者的喜愛。
望遠鏡的集光能力隨著口徑的增大而增強,望遠鏡的集光能力越強,就能夠看到更暗更遠的天體,這其實就是能夠看到了更早期的宇宙。天體物理的發展需要更大口徑的望遠鏡。
但是,隨著望遠鏡口徑的增大,一系列的技術問題接踵而來。海爾望遠鏡的鏡頭自重達14.5噸,可動部分的重量為530噸,而6米鏡更是重達800噸。望遠鏡的自重引起的鏡頭變形相當可觀,溫度的不均勻使鏡面產生畸變也影響了成象質量。從製造方面看,傳統方法製造望遠鏡的費用幾乎與口徑的平方或立方成正比,所以製造更大口徑的望遠鏡必須另闢新徑。
自七十年代以來,在望遠鏡的製造方面發展了許多新技術,涉及光學、力學、計算機、自動控制和精密機械等領域。這些技術使望遠鏡的製造突破了鏡面口徑的局限,並且降低造價和簡化望遠鏡結構。特別是主動光學技術的出現和應用,使望遠鏡的設計思想有了一個飛躍。
從八十年代開始,國際上掀起了製造新一代大型望遠鏡的熱潮。其中,歐洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主鏡採用了薄鏡面;美國的Keck I、Keck II和HET望遠鏡的主鏡採用了拼接技術。
優秀的傳統望遠鏡卡塞格林焦點在最好的工作狀態下,可以將80%的幾何光能集中在0〃.6范圍內,而採用新技術製造的新一代大型望遠鏡可保持80%的光能集0〃.2~0〃.4,甚至更好。

下面對幾個有代表性的大型望遠鏡分別作一些介紹:

凱克望遠鏡(Keck I,Keck II)
Keck I 和Keck II分別在1991年和1996年建成,這是當前世界上已投入工作的最大口徑的光學望遠鏡,因其經費主要由企業家凱克(Keck W M)捐贈(Keck I 為9400萬美元,Keck II為7460萬美元)而命名。這兩台完全相同的望遠鏡都放置在夏威夷的莫納克亞,將它們放在一起是為了做干涉觀測。
它們的口徑都是10米,由36塊六角鏡面拼接組成,每塊鏡面口徑均為1.8米,而厚度僅為10厘米,通過主動光學支撐系統,使鏡面保持極高的精度。焦面設備有三個:近紅外照相機、高解析度CCD探測器和高色散光譜儀。
"象Keck這樣的大望遠鏡,可以讓我們沿著時間的長河,探尋宇宙的起源,Keck更是可以讓我們看到宇宙最初誕生的時刻"。

歐洲南方天文台甚大望遠鏡(VLT)

歐洲南方天文台自1986年開始研製由4台8米口徑望遠鏡組成一台等效口徑為16米的光學望遠鏡。這4台8米望遠鏡排列在一條直線上,它們均為RC光學系統,焦比是F/2,採用地平裝置,主鏡採用主動光學系統支撐,指向精度為1〃,跟蹤精度為0.05〃,鏡筒重量為100噸,叉臂重量不到120噸。這4台望遠鏡可以組成一個干涉陣,做兩兩干涉觀測,也可以單獨使用每一台望遠鏡。
現在已完成了其中的兩台,預計於2000年可全部完成。

雙子望遠鏡(GEMINI)

雙子望遠鏡是以美國為主的一項國際設備(其中,美國佔50%,英國佔25%,加拿大佔15%,智利佔5%,阿根廷佔2.5%,巴西佔2.5%),由美國大學天文聯盟(AURA)負責實施。它由兩個8米望遠鏡組成,一個放在北半球,一個放在南半球,以進行全天系統觀測。其主鏡採用主動光學控制,副鏡作傾斜鏡快速改正,還將通過自適應光學系統使紅外區接近衍射極限。
該工程於1993年9月開始啟動,第一台在1998年7月在夏威夷開光,第二台於2000年9月在智利賽拉帕瓊台址開光,整個系統預計在2001年驗收後正式投入使用。

昴星團(日本)8米望遠鏡(SUBARU)
這是一台8米口徑的光學/紅外望遠鏡。它有三個特點:一是鏡面薄,通過主動光學和自適應光學獲得較高的成象質量;二是可實現0.1〃的高精度跟蹤;三是採用圓柱形觀測室,自動控制通風和空氣過濾器,使熱湍流的排除達到最佳條件。此望遠鏡採用Serrurier桁架,可使主鏡框與副鏡框在移動中保持平行。
此望遠鏡將安裝在夏威夷的莫納克亞,從1991年開始,預計9年完成。
大天區多目標光纖光譜望遠鏡(LAMOST)
這是我國正在興建中的一架有效通光口徑為4米、焦距為20米、視場達20平方度的中星儀式的反射施密特望遠鏡。它的技術特色是:
1. 把主動光學技術應用在反射施密特系統,在跟蹤天體運動中作實時球差改正,實現大口徑和大視場兼備的功能。
2. 球面主鏡和反射鏡均採用拼接技術。
3. 多目標光纖(可達4000根,一般望遠鏡只有600根)的光譜技術將是一個重要突破。
LAMOST把普測的星系極限星等推到20.5m,比SDSS計劃高2等左右,實現107個星系的光譜普測,把觀測目標的數量提高1個量級。
1932年央斯基(Jansky. K. G)用無線電天線探測到來自銀河系中心(人馬座方向)的射電輻射,這標志著人類打開了在傳統光學波段之外進行觀測的第一個窗口。
第二次世界大戰結束後,射電天文學脫穎而出,射電望遠鏡為射電天文學的發展起了關鍵的作用,比如:六十年代天文學的四大發現,類星體,脈沖星,星際分子和宇宙微波背景輻射,都是用射電望遠鏡觀測得到的。射電望遠鏡的每一次長足的進步都會毫無例外地為射電天文學的發展樹立一個里程碑。
英國曼徹斯特大學於1946年建造了直徑為66.5米的固定式拋物面射電望遠鏡,1955年又建成了當時世界上最大的可轉動拋物面射電望遠鏡;
六十年代,美國在波多黎各阿雷西博鎮建造了直徑達305米的拋物面射電望遠鏡,它是順著山坡固定在地表面上的,不能轉動,這是世界上最大的單孔徑射電望遠鏡。
1962年,Ryle發明了綜合孔徑射電望遠鏡,他也因此獲得了1974年諾貝爾物理學獎。綜合孔徑射電望遠鏡實現了由多個較小天線結構獲得相當於大口徑單天線所能取得的效果。
1967年Broten等人第一次記錄到了VLBI干涉條紋。
七十年代,聯邦德國在波恩附近建造了100米直徑的全向轉動拋物面射電望遠鏡,這是世界上最大的可轉動單天線射電望遠鏡。
八十年代以來,歐洲的VLBI網(EVN),美國的VLBA陣,日本的空間VLBI(VSOP)相繼投入使用,這是新一代射電望遠鏡的代表,它們在靈敏度、解析度和觀測波段上都大大超過了以往的望遠鏡。
中國科學院上海天文台和烏魯木齊天文站的兩架25米射電望遠鏡作為正式成員參加了美國的地球自轉連續觀測計劃(CORE)和歐洲的甚長基線干涉網(EVN),這兩個計劃分別用於地球自轉和高精度天體測量研究(CORE)和天體物理研究(EVN)。這種由各國射電望遠鏡聯合進行長基線干涉觀測的方式,起到了任何一個國家單獨使用大望遠鏡都不能達到的效果。
另外,美國國立四大天文台(NARO)研製的100米單天線望遠鏡(GBT),採用無遮擋(偏饋),主動光學等設計,該天線目前正在安裝中,2000年有可能投入使用。
國際上將聯合發展接收面積為1平方公里的低頻射電望遠鏡陣(SKA),該計劃將使低頻射電觀測的靈敏度約有兩個量級的提高,有關各國正在進行各種預研究。

在增加射電觀測波段覆蓋方面,美國史密松天體物理天文台和中國台灣天文與天體物理研究院正在夏威夷建造國際上第一個亞毫米波干涉陣(SMA),它由8個6米的天線組成,工作頻率從190GHz到85z,部分設備已經安裝。美國的毫米波陣(MMA)和歐洲的大南天陣(LAS)將合並成為一個新的毫米波陣計劃――ALMA。這個計劃將有64個12米天線組成,最長基線達到10公里以上,工作頻率從70到950GHz,放在智利的Atacama附近,如果合並順利,將在2001年開始建造,日本方面也在考慮參加該計劃的可能性。
在提高射電觀測的角解析度方面,新一代的大型設備大多數考慮干涉陣的方案;為了進一步提高空間VLBI觀測的角解析度和靈敏度,第二代空間VLBI計劃――ARISE(25米口徑)已經提出。
相信這些設備的建成並投入使用將會使射電天文成為天文學的重要研究手段,並會為天文學發展帶來難以預料的機會。
我們知道,在地球表面有一層濃厚的大氣,由於地球大氣中各種粒子與天體輻射的相互作用(主要是吸收和反射),使得大部分波段范圍內的天體輻射無法到達地面。人們把能到達地面的波段形象地稱為"大氣窗口",這種"窗口"有三個。
光學窗口:這是最重要的一個窗口,波長在300~700納米之間,包括了可見光波段(400~700納米),光學望遠鏡一直是地面天文觀測的主要工具。
紅外窗口:紅外波段的范圍在0.7~1000微米之間,由於地球大氣中不同分子吸收紅外線波長不一致,造成紅外波段的情況比較復雜。對於天文研究常用的有七個紅外窗口。
射電窗口:射電波段是指波長大於1毫米的電磁波。大氣對射電波段也有少量的吸收,但在40毫米~30米的范圍內大氣幾乎是完全透明的,我們一般把1毫米~30米的范圍稱為射電窗口。
大氣對於其它波段,比如紫外線、X射線、γ射線等均為不透明的,在人造衛星上天後才實現這些波段的天文觀測。

紅外望遠鏡

最早的紅外觀測可以追溯到十八世紀末。但是,由於地球大氣的吸收和散射造成在地面進行的紅外觀測只局限於幾個近紅外窗口,要獲得更多紅外波段的信息,就必須進行空間紅外觀測。現代的紅外天文觀測興盛於十九世紀六、七十年代,當時是採用高空氣球和飛機運載的紅外望遠鏡或探測器進行觀測。
1983年1月23日由美英荷聯合發射了第一顆紅外天文衛星IRAS。其主體是一個口徑為57厘米的望遠鏡,主要從事巡天工作。IRAS的成功極大地推動了紅外天文在各個層次的發展。直到現在,IRAS的觀測源仍然是天文學家研究的熱點目標。
1995年11月17日由歐洲、美國和日本合作的紅外空間天文台(ISO)發射升空並進入預定軌道。ISO的主體是一個口徑為60厘米的R-C式望遠鏡,它的功能和性能均比IRAS有許多提高,它攜帶了四台觀測儀器,分別實現成象、偏振、分光、光柵分光、F-P干涉分光、測光等功能。與IRAS相比,ISO從近紅外到遠紅外,更寬的波段范圍;有更高的空間解析度;更高的靈敏度(約為IRAS的100倍);以及更多的功能。
ISO的實際工作壽命為30個月,對目標進行定點觀測(IRAS的觀測是巡天觀測),這能有的放矢地解決天文學家提出的問題。預計在今後的幾年中,以ISO數據為基礎的研究將會成為天文學的熱點之一。
從太陽繫到宇宙大尺度紅外望遠鏡與光學望遠鏡有許多相同或相似之處,因此可以對地面的光學望遠鏡進行一些改裝,使它能同時也可從事紅外觀測。這樣就可以用這些望遠鏡在月夜或白天進行紅外觀測,更大地發揮觀測設備的效率。

紫外望遠鏡

紫外波段是介於X射線和可見光之間的頻率范圍,觀測波段為3100~100埃。紫外觀測要放在150公里的高度才能進行,以避開臭氧層和大氣的吸收。第一次紫外觀測是用氣球將望遠鏡載上高空,以後用了火箭,太空梭和衛星等空間技術才使紫外觀測有了真正的發展。
紫外波段的觀測在天體物理上有重要的意義。紫外波段是介於X射線和可見光之間的頻率范圍,在歷史上紫外和可見光的劃分界限在3900埃,當時的劃分標準是肉眼能否看到。現代紫外天文學的觀測波段為3100~100埃,和X射線相接,這是因為臭氧層對電磁波的吸收界限在這里。
1968年美國發射了OAO-2,之後歐洲也發射了TD-1A,它們的任務是對天空的紫外輻射作一般性的普查觀測。被命名為哥白尼號的OAO-3於1972年發射升空,它攜帶了一架0.8米的紫外望遠鏡,正常運行了9年,觀測了天體的950~3500埃的紫外譜。
1978年發射了國際紫外探測者(IUE),雖然其望遠鏡的口徑比哥白尼號小,但檢測靈敏度有了極大的提高。IUE的觀測數據成為重要的天體物理研究資源。
1990年12月2~11日,哥倫比亞號太空梭搭載Astro-1天文台作了空間實驗室第一次紫外光譜上的天文觀測;1995年3月2日開始,Astro-2天文台完成了為期16天的紫外天文觀測。
1992年美國宇航局發射了一顆觀測衛星――極遠紫外探索衛星(EUVE),是在極遠紫外波段作巡天觀測。
1999年6月24日FUSE衛星發射升空,這是NASA的"起源計劃"項目之一,其任務是要回答天文學有關宇宙演化的基本問題。
紫外天文學是全波段天文學的重要組成部分,自哥白尼號升空至今的30年中,已經發展了紫外波段的EUV(極端紫外)、FUV(遠紫外)、UV(紫外)等多種探測衛星,覆蓋了全部紫外波段。

X射線望遠鏡:

X射線輻射的波段范圍是0.01-10納米,其中波長較短(能量較高)的稱為硬X射線,波長較長的稱為軟X射線。天體的X射線是根本無法到達地面的,因此只有在六十年代人造地球衛星上天後,天文學家才獲得了重要的觀測成果,X射線天文學才發展起來。早期主要是對太陽的X射線進行觀測。
1962年6月,美國麻省理工學院的研究小組第一次發現來自天蠍座方向的強大X射線源,這使非太陽X射線天文學進入了較快的發展階段。七十年代,高能天文台1號、2號兩顆衛星發射成功,首次進行了X射線波段的巡天觀測,使X射線的觀測研究向前邁進了一大步,形成對X射線觀測的熱潮。進入八十年代以來,各國相繼發射衛星,對X射線波段進行研究:
1987年4月,由前蘇聯的火箭將德國、英國、前蘇聯、及荷蘭等國家研製的X射線探測器送入太空;
1987年日本的X射線探測衛星GINGA發射升空;
1989年前蘇聯發射了一顆高能天體物理實驗衛星――GRANAT,它載有前蘇聯、法國、保加利亞和丹麥等國研製的7台探測儀器,主要工作為成象、光譜和對爆發現象的觀測與監測;
1990年6月,倫琴X射線天文衛星(簡稱ROSAT)進入地球軌道,為研究工作取得大批重要的觀測資料,到現在它已基本完成預定的觀測任務;
1990年12月"哥倫比亞"號太空梭將美國的"寬頻X射線望遠鏡"帶入太空進行了為期9天的觀測;
1993年2月,日本的"飛鳥"X射線探測衛星由火箭送入軌道;
1996年美國發射了"X射線光度探測衛星"(XTE),
1999年7月23日美國成功發射了高等X射線天體物理設備(CHANDRA)中的一顆衛星,另一顆將在2000年發射;
1999年12月13日歐洲共同體宇航局發射了一顆名為XMM的衛星。
2000年日本也將發射一顆X射線的觀測設備。
以上這些項目和計劃表明,未來幾年將會是一個X射線觀測和研究的高潮。

γ射線望遠鏡:

γ射線比硬X射線的波長更短,能量更高,由於地球大氣的吸收,γ射線天文觀測只能通過高空氣球和人造衛星搭載的儀器進行。
1991年,美國的康普頓(γ射線)空間天文台(Compton GRO或CGRO)由太空梭送入地球軌道。它的主要任務是進行γ波段的首次巡天觀測,同時也對較強的宇宙γ射線源進行高靈敏度、高解析度的成象、能譜測量和光變測量,取得了許多有重大科學價值的結果。
CGRO配備了4台儀器,它們在規模和性能上都比以往的探測設備有量級上的提高,這些設備的研製成功為高能天體物理學的研究帶來了深刻的變化,也標志著γ射線天文學開始逐漸進入成熟階段。CGRO攜帶的四台儀器分別是:爆發和暫時源實驗(BATSE),可變向閃爍光譜儀實驗(OSSE),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL)。
受到康普頓空間天文台成功的鼓舞,歐洲和美國的科研機構合作制訂了一個新的γ射線望遠鏡計劃-INTEGRAL,准備在2001年送入太空,它的上天將為康普頓空間天文台之後的γ射線天文學的進一步發展奠定基礎。
我們知道,地球大氣對電磁波有嚴重的吸收,我們在地面上只能進行射電、可見光和部分紅外波段的觀測。隨著空間技術的發展,在大氣外進行觀測已成為可能,所以就有了可以在大氣層外觀測的空間望遠鏡(Space telescope)。空間觀測設備與地面觀測設備相比,有極大的優勢:以光學望遠鏡為例,望遠鏡可以接收到寬得多的波段,短波甚至可以延伸到100納米。沒有大氣抖動後,分辨本領可以得到很大的提高,空間沒有重力,儀器就不會因自重而變形。前面介紹的紫外望遠鏡、X射線望遠鏡、γ射線望遠鏡以及部分紅外望遠鏡的觀測都都是在地球大氣層外進行的,也屬於空間望遠鏡。

哈勃空間望遠鏡(HST):

這是由美國宇航局主持建造的四座巨型空間天文台中的第一座,也是所有天文觀測項目中規模最大、投資最多、最受到公眾注目的一項。它籌建於1978年,設計歷時7年,1989年完成,並於1990年4月25日由太空梭運載升空,耗資30億美元。但是由於人為原因造成的主鏡光學系統的球差,不得不在1993年12月2日進行了規模浩大的修復工作。成功的修復使HST性能達到甚至超過了原先設計的目標,觀測結果表明,它的解析度比地面的大型望遠鏡高出幾十倍。
HST最初升空時攜帶了5台科學儀器:廣角/行星照相機,暗弱天體照相機,暗弱天體光譜儀,高解析度光譜儀和高速光度計。
1997年的維修中,為HST安裝了第二代儀器:有空間望遠鏡成象光譜儀、近紅外照相機和多目標攝譜儀,把HST的觀測范圍擴展到了近紅外並提高了紫外光譜上的效率。
1999年12月的維修為HST更換了陀螺儀和新的計算機,並安裝了第三代儀器――高級普查攝像儀,這將提高HST在紫外-光學-近紅外的靈敏度和成圖的性能。
HST對國際天文學界的發展有非常重要的影響。

二十一世紀初的空間天文望遠鏡:
"下一代大型空間望遠鏡"(NGST)和"空間干涉測量飛行任務"(SIM)是NASA"起源計劃"的關鍵項目,用於探索在宇宙最早期形成的第一批星系和星團。其中,NGST是大孔徑被動製冷望遠鏡,口徑在4~8米之間,是HST和SIRTF(紅外空間望遠鏡)的後續項目。它強大的觀測能力特別體現在光學、近紅外和中紅外的大視場、衍射限成圖方面。將運行於近地軌道的SIM採用邁克爾干涉方案,提供毫角秒級精度的恆星的精密絕對定位測量,同時由於具有綜合成圖能力,能產生高解析度的圖象,所以可以用於實現搜索其它行星等科學目的。
"天體物理的全天球天體測量干涉儀"(GAIA)將會在對銀河系的總體幾何結構及其運動學做全面和徹底的普查,在此基礎上開辟廣闊的天體物理研究領域。GAIA採用Fizeau干涉方案,視場為1°。GAIA和SIM的任務在很大程度上是互補的。

D. 初中物理凸面鏡和凸透鏡區別有哪些

很多同學都學過凸面鏡和凸透鏡,那麼二者有什麼區別?我整理了一些相關信息,大家一起來看看吧。

凸面鏡和凸透鏡的不同

凸透鏡可以形成一個縮小,倒立,放大等的實像或者正立放大的虛像,另外還可以把平行光進行匯聚,把焦點發出去的光線,然後折射成平行光,例如放大鏡;

凸面鏡可以形成一種正立縮小的虛像,主要可以擴大視野,例如路面的安全鏡。

生活中的凸面鏡

(1)汽車上的觀後鏡;

(2)馬路拐彎處的鏡子;

(3)香港匯豐銀行大樓上的月光鏡等等

以上的例子都是凸面鏡,其目的是擴大視野。

凸透鏡成像原理

物體放在焦點之外,在凸透鏡另一側成倒立的實像,實像有縮小、等大、放大三種。物距越培者小,像距越大,實像越大。物體放在焦點之內,在凸透鏡同一側成正立放大的虛像。物距越大,像距越大,虛像歲手越大。在焦點上時不會成像。在2倍焦距上時會成等大倒立的實配雀薯像。

以上就是一些凸面鏡和凸透鏡的相關信息,供大家參考。

E. 直徑為4cm雙凸透鏡15cm焦距的成像原理

1.一倍焦距是虛像和實像的分界點,二倍焦距是放大像和縮小像的分界點;
(口訣:一倍焦距分虛實,二倍焦距分大小)
2.當物體在一倍焦距以外時,物距變小,像距變大,像變大;
(實像口訣:物近像遠像變大)
當物體在一倍焦距以內時,物距變大,像距變大,像變大;
(虛像口訣:物近像近像變小鏈掘)
3.實像一定是倒立激喚逗的,虛像一定是正立的;
4.當物體移動時候,光屏與物明賣體移動的方向相同,例如:物體遠離透鏡,要再次得到像,光屏要靠近透鏡;物體向左移動,要再次得到像,光屏也要向左移動.(物像同移)

F. 物理小故事

一、望遠鏡的發明

1608年6月的一天,伽利略聽說,一個荷蘭人把一片凸鏡和一片凹鏡放在一起,做了一個玩具,可把看見的東西放大。這一夜,伽利略坐在桌子前,蠟燭點了一支又一支,他反復思考著,琢磨著,為什麼兩個這樣的鏡片放在一起,就能起放大作用呢?天亮了,伽利略決定自己動手做一個。

他找來一段空管子,一頭嵌了一片凸面鏡,另一頭嵌了一片凹面鏡,一個小望遠鏡做成了。拿起來一看,可以把原來的物體放大三倍。伽利略沒有滿足,他進一步改進,又做了一個。

他帶著這個望遠鏡跑到海邊,只見茫茫大海波濤翻滾,沒有一條船。當他拿起瞭望遠鏡再看時,一條船正從遠處向岸邊駛來。實踐證明,它可以放大八倍。

伽利略不斷地改進著,不斷地製造著,最後,他的望遠鏡可以將原物放大三十二倍。

一天晚上,皎潔的月光灑滿大地,伽利略拿起自己的望遠鏡對准了月亮。咦,月亮並不是象幾千年來人們所說的那樣光滑無瑕,那上面象地球一樣,有高山、深谷,還有火山的裂痕呢!

二、自由落體運動

落體問題,人們很早就注意到了。在伽利略之前,古希臘的亞里士多德的學說認為,物體下落的快慢是不一樣的。它的下落速度和它的重量成正比,物體越重,下落的速度越快。比如說,十公斤重的物體,下落的速度要比一公斤重的物體快十倍。

一千七百多年來,在書本里,在學校的講台上,一直把這個違背自然規律的學說當作聖經來講述,沒有任何人敢去懷疑它。這是因為,亞里士多德提出過 「地球中心說」,它符合奴隸主階級和封建統治階級的利益,因此,亞里士多德的其它學說也就得到了保護。

伽利略選擇了比薩斜塔作試驗場。有一天,他帶了兩個大小一樣,但重量不等,一個重一百磅的實心鐵球,一個重一磅的空心鐵球,登上了五十多米高的斜塔。塔下,站滿了前來觀看的人。大家議論紛紛,有人譏笑他:「這個青年一定是瘋了,讓他胡鬧去罷!亞里士多德的理論還會錯嗎!」

只見伽利略出現在塔頂,兩手各拿一個鐵球,大聲喊道:「下面的人看清楚啦,鐵球落下去了。」他把兩手同時張開。人們看到,兩個鐵球平行下落,幾乎同時落到了地面上。那些諷刺譏笑他的人目瞪口呆。

三、萬有引力定律

牛頓一人在家中的果園中,由於邊走路邊思考問題,無意間撞到園中的蘋果樹,這時一個蘋果正好砸在牛頓的頭上。牛頓突然從問題中醒悟過來,撿起了蘋果,這時他又陷入一個問題:為什麼蘋果會落到地上,而不是飄上天空。最終牛頓提出一個最簡單的現象產生的舉世定律:萬有引力。

一天,保姆要出去,臨走前叮囑牛頓:「我有事,先出去下,肚子餓了去煮雞蛋吃,我燒好水了。」保姆回來發現牛頓把一塊懷表拿去煮了。而牛頓卻在研究發明。這個故事告訴我們不要太投入一件事,該收手時就收手。

四、瓦特的故事

18世紀中葉,英國格拉斯葛大學,有位名叫里德斯德的教授,一天晚上,他把瓦特約到自己的辦公室,對瓦特說:「我知道你是個很聰明的機器修理工,我想請你幫我一個忙。」

瓦特說:「我能幫你什麼忙呢?」

里德斯德教授說:「我的一套機器圖紙被人偷去了。但是要按照圖紙把這台機器造出來是非常困難的,偷圖紙的人一定會來找你幫忙加工的。如果那人來找你,請你務必告訴我。」

就在這時,教授的一個青年助手,拎著一把水壺進來,給他倆每人沏了一杯咖啡。那位助手把水壺放在火爐上,關上門就出去了。教授起身走到門邊,把門反鎖了起來。

教授和瓦特邊喝咖啡邊談著教授的圖紙。漸漸地,瓦特覺得頭昏腦脹,他估計是咖啡有問題,只覺得渾身無力,一會兒就昏昏沉沉地睡著了。

當瓦特醒來時,已經是第二天了。他睜眼一看,里斯德教授已經死了,在教授的頸上有一枚五厘米長帶有軟木塞的針。瓦特支撐著爬起來去開門,卻發現門是反鎖著的,鑰匙在教授的身上。瓦特回憶起昨晚的事,懷疑是那個助手乾的。

但那個助手出去了就再沒有進來,教授頸上的針又是誰扎的呢?他盯著教授頸上的毒針和那軟木塞仔細看了好一會,終於弄明白了:水蒸氣在膨脹時,它的壓力比水要大近千倍。

那個助手把水壺放在火爐上時,就把插有毒針的軟木塞堵在壺嘴上了,並且將壺嘴對准了教授的頸部。水燒開的時候,因壺嘴被軟木塞子堵著,蒸汽的壓力就不斷增加,最後蒸汽的壓力達到一定程度,軟木塞帶著毒針噴射出去,射向了教授。

警察來了以後,瓦特談了自己的想法。經過警察的偵破,兇手就是教授的助手。 後來,瓦特從水蒸氣得到啟發發明了蒸汽機。

五、法拉第的故事

法拉第1791年9月22日生於薩里郡紐因頓的一個鐵匠家庭。13歲就在一家書店當送報和裝訂書籍的學徒。他有強烈的求知慾,擠出一切休息時刻貪婪地力圖把他裝訂的一切書籍資料都從頭讀一遍。

讀後還臨摹插圖,工工整整地作讀書筆記;用一些簡單器皿照著書上進行實驗,仔細觀察和分析實驗結果,把自己的閣樓變成了小實驗室。在這家書店呆了八年,他廢寢忘食、如飢似渴地學習。他之後回憶這段生活時說:「我就是在工作之餘,從這些書里開始找到我的哲學。

這些書中有兩種對我個性有幫忙,一是《大英網路全書》,我從它第一次得到電的概念;另一是馬塞夫人的《化學對話》,它給了我這門課的科學基礎。」

法拉第主要從事電學、磁學、磁光學、電化學方面的研究,並在這些領域取得了一系列重大發現。1820年奧斯特發現電流的磁效應之後,法拉第於1821年提出「由磁產生電」的大膽設想,並開始了艱苦的探索。

1821年9月他發現通電的導線能繞磁鐵旋轉以及磁體繞載流導體的戶外,第一次實現了電磁戶外向機械戶外的轉換,從而建立了電動機的實驗室模型。

之後經過無數次實驗的失敗,最後在1831年發現了電磁感應定律。這一劃時代的偉大發現,使人類掌握了電磁戶外相互轉變以及機械能和電能相互轉變的方法,成為現代發電機、電動機、變壓器技術的基礎。

閱讀全文

與物理凸面鏡直徑15厘米多少錢相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:702
乙酸乙酯化學式怎麼算 瀏覽:1370
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1008
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1367
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:669
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1446
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1386
化學理學哪些專業好 瀏覽:1450
數學中的棱的意思是什麼 瀏覽:1015