1. 初中物理課上講的照相機原理
初中物理合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
簡介:初中物理優質資料下載,適合各階段老師教學,學生日常輔導,中考沖刺,技能提升的學習。
2. 照相機的原理是什麼
照相機是利用凸透鏡的成像特性工作的
當你按動快門的一瞬間,進入鏡頭組的光線在經過鏡頭組折射後,通過光圈快門,在相機的電子感應器(CCD或CMOS)或膠片上,形成清淅的圖象,電子感應器將圖象轉化為電子圖片,保存在相機的存儲介質中.傳統的相機是將圖象投射在膠片上感光,而後在暗室中進行化學處理後得到底片.
其實相機最核心的原理就是凸透鏡成象原理,只不過在相機中通常採用了焦距可變的透鏡組,而非一隻凸透鏡,但原理相同.這部分內容在初二的物理書中有詳細介紹,樓主丫頭應該也是個學生,不妨借來看看哦.也可以自己做個實驗哦.在光線比較暗的地方點枝蠟燭,找只凸透鏡對著牆壁來回調整凸透鏡與牆壁間的距離,直到看到清晰的倒立的燭火.(建議找一本物理書,結合原理做實驗哦)
而需要說明的是,光線不能在透過小孔後相交,而是近似於直射,所以我們在小孔後只能看到非常模糊的假像,而不能看到清晰的像.這個實驗只是為了說明光線的直線傳播特性.因而實際的相機也不可能應用這個原理.
相機的原理(How
a
camera
works)
所有相機的基本原理都一樣,不論任何型式,任何大小的相機都具備一個暗箱,其中一端放置一塊感光軟片,另一端則開鑿一個小孔,它的作用就是讓影像的光線能射入暗箱內,而到達塗布化學感光材料的軟片上,使之感光呈像。如圖所示,一部完整的相機包括八個主要系統機構,當然為了說明方便,這些圖示都已將實際情形簡略化。
首先,必須要有一個
觀景系統,能讓操作者透過觀景窗,做適當的取景,選擇他所想要的景物范圍,這個裝置通常是一組鏡片,或是聯接鏡頭的獨立系統。
其次是
感光軟片,它的功能是負責記錄透過鏡頭而到達感光軟片上的影像。
第三是
卷片系統,有的相機使用卷裝軟片,有的則是使用單張軟片,但是不論那一種型式,此裝置的作用就是將已感光過的軟片,重新換上一張尚未曝光的軟片。
第四是
機身,它是一個完全密閉的暗箱,只允許光線在拍照時,透過鏡頭照射進來,相機的大部份機構都裝置在其內。
和眼睛一樣有各種東西
傳統相機成像過程:
1.經過鏡頭把景物影象聚焦在膠片上
2.膠片上的感光劑隨光發生變化
3.膠片上受光後變化了的感光劑經顯影液顯影和定影
形成和景物相反或色彩互補的影象
數碼相機成像過程:
1.經過鏡頭光聚焦在CCD或CMOS上
2.CCD或CMOS將光轉換成電信號
3.經處理器加工,記錄在相機的內存上
4.通過電腦處理和顯示器的電光轉換,或經列印機列印便形成影象。
具體過程:
數碼相機是通過光學系統將影像聚焦在成像元件CCD/
CMOS
上,通過A/D轉換器將每個像素上光電信號轉變成數碼信號,再經DSP處理成數碼圖像,存儲到存儲介質當中。
光線從鏡頭進入相機,CCD進行濾色、感光(光電轉化),按照一定的排列方式將拍攝物體「分解」成了一個一個的像素點,這些像素點以模擬圖像信號的形式轉移到「模數轉換器」上,轉換成數字信號,傳送到圖像處理器上,處理成真正的圖像,之後壓縮存儲到存儲介質中。
一:景物的反射光線經過鏡頭的會聚,在膠片上形成潛應影,這個潛影是光和膠片上的乳劑產生化學反應的結果。再經過顯影和定影處理就形成了影像。攝象頭的數碼影像和膠片成像原理不同,是經過鏡頭成像在CCD上,經過CCD的光電轉換,生成視頻信號,再經過顯示屏電光轉換,才生成圖像。
照相機的主要部件是一組透鏡。他們相當與一個凸透鏡。當物體離凸透鏡的距離大於凸透鏡焦距的二倍時能在底片上成一個倒立縮小的實象。
取一個玻璃杯,在杯中倒滿清水,你看這個水杯中間厚,邊緣薄,就是一個凸透鏡
你從水杯的側面通過水杯看物體,移動水杯或物體時,有時就會看到被放大的正立物體,有時會看到倒立的物體.實際上,這就是物體通過水杯所成的像
3. 初中物理課上講的照相機原理
照相機的原理是的直線傳播性質和光的折射與反射規律。
物體的景象通過光線的直線傳播,將物體的光線經過折射或反射准確地聚焦在像平面上,感光材料接收光子能量,形成潛影,膠片經過顯影、定影就能得到照片。
(3)照相機有哪些物理原理是什麼擴展閱讀:
通常,照相機主要元件包括:成像元件、暗室、成像介質與成像控制結構。
成像元件可以進行成像。通常是由光學玻璃製成的透鏡組,稱之為鏡頭。小孔、電磁線圈等在特定的設備上都起到了「鏡頭」的作用。
成像介質則負責捕捉和記錄影像。包括底片、CCD、CMOS等。
暗室為鏡頭與成像介質之間提供一個連接並保護成像介質不受干擾。
控制結構可以改變成像或記錄影像的方式以影像最終的成像效果。光圈、快門、聚焦控制等。
4. 照相機成像原理,請用物理專業術語回答
照相機成像原理:
照相機的鏡頭是凸透鏡,
照相機是利用了 凸透鏡能成倒立、縮小、實像 的原理製成的。
滿足條件:當物距大於兩倍焦距時,(u>2f)
當相機距離拍攝的物體變遠時,鏡頭向後縮,拍到的像變小;
(兩倍焦距以外,u變大時,v變小,像變小)
當相機距離拍攝的物體變近時,鏡頭向前伸,拍到的像變大。
(兩倍焦距以外,u變小時,v變大,像變大)
5. 照相機的原理
照相機的工作過程,概略地說是應用光學成像原理,通過照相鏡頭將被攝物體成像在感光材料上。下面將粗略地介紹攝影光學成像原理:人類對於光的本性的認識,光線的傳播及透鏡成像原理。
人類對於光的本性的認識經歷了漫長而又曲折的過程。在整個18世紀中,光的微粒流理論在光學中仍占優勢,人們普遍認為光是微小的粒子組成的,從點光源發出並以直線向四面八方輻射。19世紀初,以楊氏(Young)和菲涅耳(Fresnel)的著作為代表逐步發展成今天的波動光學體系。如今對光的本性認識是:光和實物一樣,是物質的一種,它同時具有波的性質和微粒(量子)的性質,但從整體來說,它既不是波,也不是微粒,也不是它們的混合物。
從本質上,講光和一般無線電波並無區別,光和電磁波一樣是橫波,即波的振動方向與傳播方向垂直。一個發光體就是電磁波的發射源,發光體發射的電磁波向周圍空間傳播,和水波波動產生的波浪向四周傳播相似。強度最大或最小的兩點距離稱為波長,用λ表示。傳播一個波長所需的時間稱為周期,用T表示,一個周期就是一個質點完成一次振動所需要的時間。1秒內振動的次數稱為頻率,用ν表示。經過1s振動傳播的距離稱為速度,用「v」表示。波長、頻率、周期和速度之間有如下關系:
v=λ/T ,ν=1/T,v=λν
由此可見,光的波長與頻率成反比。實際上光波只佔整個電磁波波段的很小一部分。波長在400~700nm的電磁波能夠為人眼所感覺,稱為可見光,超過這個范圍人眼就感覺不到了。不同波長的可見光在我們的眼睛中產生不同的顏色感覺,按照波長由長到短,光的顏色依次是紅、橙、黃、綠、青、藍、紫等色。不同波長的電磁波在真空中具有完全相同的傳播速度,數值是c=300,000km/s。
光既然是電磁波,研究光拇�ノ侍猓�Ω檬且桓霾ǘ��ノ侍猓��竊諫杓普障嗷�低芳捌淥�庋б瞧魘保�⒉話壓飪醋魘塹緔挪ǎ��前壓飪醋魘悄艽�ツ芰康募負蝸擼�凶齬庀摺9庠碅發光就是向四周發出無數條幾何線,這無數條具有方向的幾何線就叫做光線。這樣在幾何光學中研究光的傳播問題,就變成了一個幾何問題、數學問題,問題簡化多了。
下面敘述幾何光學的幾個基本定律——光線的傳播規律:
(1)光的直線傳播定律 光在均勻介質中,是沿著直線傳播的,即在均勻介質中光線為一直線。光的直線傳播現象在日常生活中隨時隨地可以見到,如物體被光照射而成影,小孔成像等。光的直線傳播引出了光線這個概念。
(2)光的獨立傳播定律 光的傳播是獨立的,當不同光線從不同方向通過介質某一點時,彼此互不影響。當兩支光線會聚於空間某一點時,它的作用為簡單的疊加。光線的這一性質,使被拍攝物體各點的光互不影響地進入照相鏡頭,在成像面上成像。
(3)光的反射定律 當光傳播到兩種不同介質的分界面時,就會改變傳播方向,發生光的反射。光的反射定律指出:
①入射光線、反射光線和分界面上光投射點的法線在同一平面內,人射光線與反射光線分別位於法線的兩側。
②人射角和反射角相等。入射光線與法線N的夾角記為入射角,用i表示;反射光線與法線N的夾角記為反射角,用α表示。則有i=α。光的反射現象還具有可逆性,假如光線逆著原來反射光線方向入射到界面上,那麼它將逆著原來入射光線的方向反射出去。隨著界面的不同,反射又可分為定向反射和漫反射。從一個方向入射到光亮、平整的鏡子上的光線,入射點都落到同一平面上,其反射都向著同一方向,則稱為定向反射。當光從一個方向投射到粗糙表面上時(如毛玻璃面等),由於粗糙面可以看成由許多角度不同的小平面組成,光線便從各個不同的方向反射出去,稱為漫反射。但需注意在漫反射現象中,就每一條光線而言都還是遵循反射定律的。
光的反射,在照相術中起著相當重要的作用。例如人本身並不發光,但當光線從各個角度照射到人身上後,光線便可從各個角度有所反射。我們常利用反射光進行拍照,就是遵循光的反射定律。