㈠ 經典物理有哪些基本原理
經典物理一般指的是牛頓力學,牛頓三定律就是最基本的原理。
1.牛頓第一定律
內容:任何物體都保持靜止或勻速直線運動的狀態,直到受到其它物體的作用力迫使它改變這種狀態為止。
說明:物體都有維持靜止和作勻速直線運動的趨勢,因此物體的運動狀態是由它的運動速度決定的,沒有外力,它的運動狀態是不會改變的。物體的這種性質稱為慣性。所以牛頓第一定律也稱為慣性定律。第一定律也闡明了力的概念。明確了力是物體間的相互作用,指出了是力改變了物體的運動狀態。因為加速度是描寫物體運動狀態的變化,所以力是和加速度相聯系的,而不是和速度相聯系的。在日常生活中不注意這點,往往容易產生錯覺。
注意:牛頓第一定律並不是在所有的參照系裡都成立,實際上它只在慣性參照系裡才成立。因此常常把牛頓第一定律是否成立,作為一個參照系是否慣性參照系的判據。
2.牛頓第二定律
內容:物體在受到合外力的作用會產生加速度,加速度的方向和合外力的方向相同,加速度的大小正比於合外力的大小與物體的慣性質量成反比。
第二定律定量描述了力作用的效果,定量地量度了物體的慣性大小。它是矢量式,並且是瞬時關系。
要強調的是:物體受到的合外力,會產生加速度,可能使物體的運動狀態或速度發生改變,但是這種改變是和物體本身的運動狀態有關的。
真空中,由於沒有空氣阻力,各種物體因為只受到重力,則無論它們的質量如何,都具有的相同的加速度。因此在作自由落體時,在相同的時間間隔中,它們的速度改變是相同的。
3.牛頓第三定律
內容:兩個物體之間的作用力和反作用力,在同一條直線上,大小相等,方向相反。
說明:要改變一個物體的運動狀態,必須有其它物體和它相互作用。物體之間的相互作用是通過力體現的。並且指出力的作用是相互的,有作用必有反作用力。它們是作用在同一條直線上,大小相等,方向相反。
另需要注意:
(1)作用力和反作用力是沒有主次、先後之分。同時產生、同時消失。
(2)這一對力是作用在不同物體上,不可能抵消。
(3)作用力和反作用力必須是同一性質的力。
(4)與參照系無關。
㈡ 力學原理有哪些,
浮力定律:流體靜力學的一個重要原理,它指出,浸入靜止流體中的物體受到一個浮力,其大小等於該物體所排開的流體重量,方向垂直向上並通過所排開流體的形心。這結論是阿基米德首先提出的,故稱阿基米德原理。結論對部分浸入液體中的物體同樣是正確的。同一結論還可以推廣到氣體。
力矩平衡原理:力矩可以使物體向不同的方向轉動。如果這兩個力矩的大小相等,杠桿將保持平衡。這是我們在初中學過的杠桿平衡條件,是力矩平衡的最簡單的情形。如果把把物體向逆時針方向轉動的力矩規定為正力矩,使物體向順時針方向轉動的力矩規定為負力矩,則有固定轉動軸的物體的平衡條件是力矩的代數和為零。
杠桿原理:杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
胡克定理:
胡克定律:在彈性極限內,彈性物體的應力與應變成正比(中學物理中解釋為受力伸長量與所受外力成正比
胡克定律的內容是:在彈性限度內,彈簧所受的拉力與形變數成正比。F=k△x,其中k為勁度系數,△x為形變數,F為所受的拉力。給出一個彈簧,k是固定不變的。如果一個彈簧在自然狀態下(不受外力)的長度是10厘米,現在用5牛的拉力拉彈簧,彈簧伸長5厘米,求勁度系數k。則用k=F/△x,其中F的單位是牛,△x的單位是米。則k=F/△x=5N/0.05m=100N/m胡克證明了彈簧震動是等時的,還把彈簧應用於鍾表製造。在物理學中主要用於研究與彈簧有關的問題。測力計(有時叫彈簧秤): 利用金屬的彈性體製成標有刻度用以測量力的大小的儀器,謂之「測力計」。測力計有各種不同的構造形式,但它們的主要部分都是彎曲有彈性的鋼片或螺旋形彈簧。當外力使彈性鋼片或彈簧簧發生形變時,通過杠桿等傳動機構帶動指針轉動,指針停在刻度盤上的位置,即為外力的數值。有握力計等種類,而彈簧秤則是測力計的最簡單的一種。
等等很多。
㈢ 物理力學界著名的理論都有什麼
【力學】
物理學的一個分支學科。它是研究物體的機械運動和平衡規律及其應用的。力學可分為靜力學、運動學和動力學三部分。靜力學是以討論物體在外力作用下保持平衡狀態的條件為主。運動學是撇開物體間的相互作用來研究物體機械運動的描述方法,而不涉及引起運動的原因。動力學是討論質點系統所受的力和壓力作用下發生的運動兩者之間的關系。力學也可按所研究物體的性質分為質點力學、剛體力學和連續介質力學。連續介質通常分為固體和流體,固體包括彈性體和塑性體,而流體則包括液體和氣體。
16世紀到17世紀間,力學開始發展為一門獨立的、系統的學科。伽利略通過對拋體和落體的研究,提出慣性定律並用以解釋地面上的物體和天體的運動。17世紀末牛頓提出力學運動的三條基本定律,使經典力學形成系統的理論。根據牛頓三定律和萬有引力定律成功地解釋了地球上的落體運動規律和行星的運動軌道。此後兩個世紀中在很多科學家的研究與推廣下,終於成為一門具有完善理論的經典力學。1905年,愛因斯坦提出狹義相對論,對於高速運動物體,必須用相對力學來代替經典力學,因為經典力學不過是物體速度遠小於光速的近似理論。20世紀20年代量子力學得到發展,它根據實物粒子和光子具有粒子和波動的雙重性解釋了經典力學不能解釋的微觀現象,並且在微觀領域給經典力學限定了適用范圍。
【經典力學】
經典力學的基本定律是牛頓運動定律或與牛頓定律有關且等價的其它力學原理,它是20世紀以前的力學,有兩個基本假定:其一是假定時間和空間是絕對的,長度和時間間隔的測量與觀測者的運動無關,物質間相互作用的傳遞是瞬時到達的;其二是一切可觀測的物理量在原則上可以無限精確地加以測定。20世紀以來,由於物理學的發展,經典力學的局限性暴露出來。如第一個假定,實際上只適用於與光速相比的低速運動情況。在高速運動情況下,時間和長度不能再認為與觀測者的運動無關。第二個假定只適用於宏觀物體。在微觀系統中,所有物理量在原則上不可能同時被精確測定。因此經典力學的定律一般只是宏觀物體低速運動時的近似定律。
【牛頓力學】
它是以牛頓運動定律為基礎,在17世紀以後發展起來的。直接以牛頓運動定律為出發點來研究質點系統的運動,這就是牛頓力學。它以質點為對象,著眼於力的概念,在處理質點系統問題時,須分別考慮各個質點所受的力,然後來推斷整個質點系統的運動。牛頓力學認為質量和能量各自獨立存在,且各自守恆,它只適用於物體運動速度遠小於光速的范圍。牛頓力學較多採用直觀的幾何方法,在解決簡單的力學問題時,比分析力學方便簡單。
【分析力學】
經典力學按歷史發展階段的先後與研究方法的不同而分為牛頓力學及分析力學。1788年拉格朗日發展了歐勒·達朗伯等人的工作,發表了「分析力學」。分析力學處理問題時以整個力學系統作為對象,用廣義坐標來描述整個力學系統的位形,著眼於能量概念。在力學系統受到理想約束時,可在不考慮約束力的情況下來解決系統的運動問題。分析力學較多採用抽象的分析方法,在解決復雜的力學問題時顯出其優越性。
【理論力學】
是力學與數學的結合。理論力學是數學物理的一個組成部分,也是各種應用力學的基礎。它一般應用微積分、微分方程、矢量分析等數學工具對牛頓力學作深入的闡述並對分析力學作系統的介紹。由於數學更深入地應用於力學這個領域,使力學更加理論化。
【運動學】
用純粹的解析和幾何方法描述物體的運動,對物體作這種運動的物理原因可不考慮。亦即從幾何方面來研究物體間的相對位置隨時間的變化,而不涉及運動的原因。
【動力學】
討論質點系統所受的力和在力作用下發生的運動兩者之間的關系。以牛頓定律為基礎,根據不同的需要提出了各種形式的動力學基本原理,如達朗伯原理、拉格朗日方程、哈密頓原理,正則方程等。根據系統現時狀態以及內部各部分間的相互作用和系統與它周圍環境之間的相互作用可預言將要發生的運動。
【彈性力學】
它是研究彈性體內由於受到外力的作用或溫度改變等原因而發生的應力,形變和位移的一門學科,故又稱彈性理論。彈性力學通常所討論的是理想彈性體的線性問題。它的基本假定是:物體是連續、均勻和各向同性的;物體是完全彈性體;在施加負載前,體內沒有初應力;物體的形變十分微小。根據上述假定,對應力和形變關系而作的數學推演常稱為數學彈性力學。此外還有應用彈性力學。如物體形變不是十分微小,可用非線性彈性理論來研究。若物體內部應力超過了彈性極限,物體將進入非完全彈性狀態。此時則必須用塑性理論來研究。
【連續介質力學】
它是研究質量連續分布的可變形物體的運動規律,主要討論一切連續介質普遍遵從的力學規律。例如,質量守恆、動量和角動量定理、能量守恆等。彈性體力學和流體力學有時綜合討論稱為連續介質力學。
【力】
物體之間的相互作用稱為「力」。當物體受其他物體的作用後,能使物體獲得加速度(速度或動量發生變化)或者發生形變的都稱為「力」。它是物理學中重要的基本概念。在力學的范圍內,所謂形變是指物體的形狀和體積的變化。所謂運動狀態的變化指的是物體的速度變化,包括速度大小或方向的變化,即產生加速度。力是物體(或物質)之間的相互作用。一個物體受到力的作用,一定有另一個物體對它施加這種作用,前者是受力物體,後者是施力物體。只要有力的作用,就一定有受力物體和施力物體。平常所說,物體受到了力,而沒指明施力物體,但施力物體一定是存在的。不管是直接接觸物體間的力,還是間接接觸的物體間的力作用;也不管是宏觀物體間的力作用,還是微觀物體間的力作用,都不能離開物體而單獨存在的。力的作用與物質的運動一樣要通過時間和空間來實現。而且,物體的運動狀態的變化量或物體形態的變化量,取決於力對時間和空間的累積效應。根據力的定義,對任何一個物體,力與它產生的加速度方向相同,它的大小與物體所產生的加速度成正比。且兩力作用於同一物體所產生的加速度,是該兩力分別作用於該物體所產生的加速度的矢量和。
力是一個矢量,力的大小、方向和作用點是表示力作用效果的重要特徵,稱它為力的三要素。力的合成與分解遵守平行四邊形法則。在國際單位制(SI)中,規定使質量為一千克的物體,產生加速度為1米/秒2的力為1牛頓,符號是N。(1千克力=9.80665牛頓。1牛頓=105達因)
力的種類很多。根據力的效果來分的有壓力、張力、支持力、浮力、表面張力、斥力、引力、阻力、動力、向心力等等。根據力的性質來分的有重力、彈力、彈力、摩擦力、分子力、電磁力、核力等等。在中學階段,一般分為場力(包括重力、電場力、磁場力等),彈力(壓力、張力、拉力等),摩擦力(靜摩擦力、滑動摩擦力等)。
㈣ 物理原理有哪些
物理原理有:
一、牛頓第一運動定律
牛頓第一運動定律,簡稱牛頓第一定律。又稱慣性定律、惰性定律。常見的完整表述:任何物體都要保持勻速直線運動或靜止狀態,直到外力迫使它改變運動狀態為止。
英國物理學家艾薩克·牛頓於1687年,在巨著《自然哲學的數學原理》里,提出了牛頓運動定律,牛頓第一運動定律就是其中一條定律。牛頓第一定律與牛頓第二、第三定律構成了牛頓力學的完整體系。
二、泡利不相容原理
泡利不相容原理又稱泡利原理、不相容原理,是微觀粒子運動的基本規律之一。它指出:在費米子組成的系統中,不能有兩個或兩個以上的粒子處於完全相同的狀態。在原子中完全確定一個電子的狀態需要四個量子數。
所以泡利不相容原理在原子中就表現為:不能有兩個或兩個以上的電子具有完全相同的四個量子數,或者說在軌道量子數m,l,n確定的一個原子軌道上最多可容納兩個電子,而這兩個電子的自旋方向必須相反。這成為電子在核外排布形成周期性從而解釋元素周期表的准則之一。
三、測不準原理
不確定性原理(Uncertainty principle)是由海森堡於1927年提出,這個理論是說,你不可能同時知道一個粒子的位置和它的速度,粒子位置的不確定性,必然大於或等於普朗克常數,這表明微觀世界的粒子行為與宏觀物質很不一樣。
此外,不確定原理涉及很多深刻的哲學問題,用海森堡自己的話說:「在因果律的陳述中,即『若確切地知道現在,就能預見未來』,所得出的並不是結論,而是前提。我們不能知道現在的所有細節,是一種原則性的事情。」
四、萬有引力定律
萬有引力定律是艾薩克·牛頓在1687年於《自然哲學的數學原理》上發表的。牛頓的普適的萬有引力定律表示如下:任意兩個質點有通過連心線方向上的力相互吸引。該引力大小與它們質量的乘積成正比與它們距離的平方成反比,與兩物體的化學組成和其間介質種類無關。
五、慣性定理
慣性定律即牛頓第一定律(Newton's
First Law, or Law of
Inertia),它的發現者是牛頓。慣性定理:一切物體在沒有受到力的作用的時候,總保持靜止狀態或勻速直線運動狀態。
即:一切物體在沒有受到力的作用的時候,運動狀態不會發生改變,靜止的物體將永遠保持靜止狀態,運動的物體將永遠保持勻速直線運動狀態。物體保持運動狀態不變的性質叫慣性。
參考資料來源:
網路—牛頓第一運動定律
網路—泡利不相容原理
網路—測不準原理
網路—萬有引力定律
網路—慣性定理
㈤ 物理里都有什麼定律 主要是力學的
牛頓第一定律:一切物體在任何情況下,在不受外力的作用時,總保持靜止或勻速直線運動狀態。
牛頓第二定律:物體的加速度跟物體所受的合外力F成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。ΣF=ma
牛頓第三定律:兩個物體之間的作用力和反作用力,在同一條直線上,大小相等,方向相反。
二力平衡定律:當一個物體同時受到兩個力,如果物體靜止不動或做勻速直線運動,那麼這兩個力相等。