導航:首頁 > 物理學科 > 地球物理二維測試的是什麼

地球物理二維測試的是什麼

發布時間:2023-06-27 12:34:53

『壹』 地球物理探測方法

常用的地球物理方法與探測垃圾填埋場所使用的方法基本相同,有直流電阻率法(DC)和甚低頻電磁法(VLF-EM),瞬變電磁法(TEM),激發極化法(IP)。探地雷達(GPR),淺層地震反射,井中CT(跨孔電阻率成像法)等方法的應用也逐漸增加。從國內外大量成功事例來看,直流電阻率法(含高密度電阻率法)仍然是應用最廣泛,效果最顯著的方法之一。電阻率法是測量地下物體電性特徵的方法,它與孔隙度、飽和度、流體的導電性密切相關,電阻率法已被廣泛應用於地下水、土的污染調查。特點是垂向解析度高,探測深度有限。

實例一

土耳其某垃圾場地下水污染電阻率法調查。場地地質情況:露天垃圾堆放場位於土耳其某市東南,這一地區是土耳其重要的水源地之一。第四紀的沖積層厚達100 m,主要以滲透性良好的卵礫石、沙和粘土組成,是當地的主要含水層,地勢西南高,東北低。垃圾未經任何處置,直接露天堆放在上面。垃圾堆下面也沒有任何的滲漏液收集系統。據調查,有2/3的含水層已受到不同程度的污染。水中NO3的含量是世界衛生組織限定的飲用水標準的5倍以上。電法勘察的目的是調查污染的范圍,為布置監測孔提供最佳的位置。採用的方法有電阻率法(DC)和甚低頻電磁法(VLF-EM)。在垃圾場的下游垂直地下水流向的方向布置了11條剖面,每條剖面200~250 m長不等(圖8.3.4)。剖面間隔40 m,斯倫貝格排列,試驗了從0.5~30 m 6種電極距的效果。從圖8.3.5看出,0.5 m極距的視電阻率測量結果以很高的視電阻率為特徵,主要反應的是表層的較大的卵礫石層,含水量少。極距為1 m和5 m的視電阻率結果主要反應了飽氣帶內地下水不飽和情況的電場特徵,與0.5 m也沒有太大差別,只是在橫向上有一點不同。10~25 m電極距反應了地下污染源的電場特徵,在圖的東北角,視電阻率降為10 Ω·m,是污染的發源地,而表層的視電阻率在1000 Ω·m以上,視電阻率差異十分顯著。

圖8.3.4 測線布設位置示意圖

圖8.3.5 不同極距的視電阻率測量平面圖

實例二

中國北方某市的兩處垃圾填埋場滲出液的實測電阻率分別為0.39 Ω·m和0.40 Ω·m,遠遠低於自來水的電阻率23 Ω·m(表8.3.7)。與日本Boso Peninsula垃圾場的測量

表8.3.7 垃圾填埋場滲漏液電阻率測試結果

結果很相近。與清潔的自來水電阻率32.040 Ω·m相比,二者相差80多倍。含水土層的視電阻率在10 Ω·m左右,與上述土耳其的例子相當,這就為電阻率測量提供了充分依據。測量裝置見圖8.3.6,計算公式如下:

環境地球物理學概論

式中:S為水樣的橫截面積;I為電流;V為電壓;L為MN間的距離。

(1)北京阿蘇衛垃圾填埋場滲漏檢測

這是北京興建的第一個大型垃圾衛生填埋場,位於北京市昌平縣沙河鎮北東約6 km,地處燕山山脈以南的傾斜平原地帶,山前沖洪積扇的中上部位,是城區地下水及地表水的上游部位。該區基底為第四紀洪積層,有粘土、粉質粘土、沙土、中細沙層。粘土層滲透系數為1.0×10-8 cm/s~9.42×10-7cm/s,隔水性好,但局部有滲透系數達1.84×10-3cm/s的粉沙土透水層,區域地下水由北西流向南東。日處理垃圾2000 t,全機械化操作,屬現代化衛生填埋場,底部為不透水的粘土層,厚度0.4~1.4 m不等,反復壓實作為隔水層,設有滲瀝液收集系統,周圍設有觀測井。堆場向下深4 m,計劃垃圾堆高40 m。

在北京市政管理委員會的支持下,第一次利用地球物理探測方法進行滲漏檢測,在同一條剖面上選用了高密度電阻率法、瞬變電磁法、探地雷達法、地溫法及化學分析法。

測線布置在地下水下遊方向,填埋場的南側,南圍牆外面,並與南牆平行,相距8 m,測線長660 m(圖8.3.7,彩圖)。

用美國SIR-10A探地雷達儀,100 MHz屏蔽天線,時窗400 ns。地溫法採用日本UV-15精密測溫儀,儀器精度0.1℃。化學分析樣取1.5 m深土樣,實驗室用氣相色譜分析三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯等有機污染物。這三種方法的測量結果,都沒有異常顯示。說明該區地表粘土層比較緻密,滲透性不好。

高密度電阻率法,使用E60B儀器,電極距3 m,斯倫貝格排列,同時沿剖面布置60個電極。數據經預處理後,進行二維反演。勘測深度15 m。視電阻率的水平距離深度剖面見圖8.3.8(彩圖)。

由圖可見,在4~8 m深度有一層高阻(>30 Ω·m)層,但並不連續,反應了本區粘土層的特徵。垃圾滲瀝液由局部透水層滲入深部。在220~240 m處9 m深度以下的低阻(<10 Ω·m)體,經鑽井證實為垃圾滲漏液污染的結果。已於2002年開始施工,做地下水泥防滲牆處理。

圖8.3.6 測定垃圾滲漏液電阻率的裝置

(2)北京某垃圾填埋場的滲漏探測

垃圾填埋場是近年興建的大型衛生填埋場,底部鋪設有塑膠襯底的防漏層,有滲瀝液收集裝置,有效填埋面積19.6×104 m2(300畝強),日填埋垃圾2500 t,設計封頂高度為30m。基底為第四紀鬆散沉積物,厚度在100 m左右,第一含水層頂深10~20 m,厚度5~10 m,粗沙到細沙;第二含水層頂深20~30 m,厚度9~25 m,沙礫石層,滲透系數40~200 m/d。第三含水層頂深38~60 m,厚度8~15 m,以中粗沙和礫石為主。地下水由西北流向東南。現已下降形成漏斗。淺層水質較差,不能飲用。

根據滲瀝液的電阻率值差異,主要使用高密度電阻率、瞬變電磁法以及探地雷達方法。考慮到地下水流方向,三條測線布置在填埋場的東南方向,測線I位於東側,距填埋場平均27.5 m(長400 m);測線Ⅱ和測線Ⅲ在填埋場南側,測線Ⅱ距填埋場平均35.5 m(長741 m);測線Ⅲ距填埋場15 m左右(長700 m)。測線Ⅱ高密度電阻率法距離深度剖面結果示於圖8.3.9(彩圖)。垃圾填埋場地表深5~10 m主要是干砂質粘土層,電阻率比較高,向下測到的電阻率低(<15 Ω·m),應當是垃圾滲漏液。根據阿爾奇法則ρ·a·φ-m,式中:a=1;m=2;ρ=0.39。土壤孔隙度φ取30%,則ρ=4.4與剖面中ρ=5是很接近的。說明低阻區是滲漏液的地下分布。在垃圾場東邊,剖面I10~15 m以下有滲漏區(A1.1;A1.2)。在垃圾場南邊,10 m以下有滲漏區,剖面Ⅱ(圖8.3.9)中可劃分出3個較大的異常段(A2.0,A2.1,A2.2)及幾個小異常體。滲漏液異常分布清晰可見。

電磁法(EM):電磁法一般用來圈定淡水和鹹水的界限,對地下水研究應用較多的是瞬變電磁法(TEM法)和探地雷達法(GPR法)。在我國北方某市垃圾填埋場滲出液檢測證明TEM是有效的,瞬變電磁法沿測線Ⅱ進行的,儀器為長沙白雲儀器開發公司研製的MSD-1脈沖瞬變電磁儀,採用20 m×20 m供電線圈工作,目的在於了解較深部情況。測量結果如圖8.3.10(彩圖)所示。在深40 m以下,有三個異常區段,即A2.0(0~15 m);A2.1(50~60 m);A2.2(80~100 m)。揭示了滲漏液污染范圍在向深部擴展。

實例三

廢棄物填埋場為了防止滲漏,常用塑料作為襯底,形成隔離層,比單純的依靠粘土層作為隔離層要有效。但由於廢棄物中常混有尖硬物質或在堆放廢棄物時層層壓實,遇到局部軟(硬)土而受力不均,使污水由漏洞流出。常規的標准方法是污水示蹤,或監測污水壓力變化,這樣做時間長,而且要大流量時,才是有效的,也很難提供進行修補的確切位置。

應用適當布置電極位置的電阻率法,可以准確測定漏洞位置(Willianl Frongos,1997)。有塑料膜襯底的廢物填埋場,正在使用,兩個供電電極,一個放在填埋場內(A),一個放在塑料膜之外(B),可以放置在足夠遠處,如圖8.3.11所示。驅動電流流過漏洞,漏洞就是電流源。填埋場內廢物的電阻率由於正在填埋,很不穩定,一般為2~10 Ω·m。面積為1 m2,厚度為1 mm埋入地下的聚乙烯膜的電阻率為10000 Ω·m,襯底外土壤是導電的,電阻率為20 Ω·m。對於一個漏孔的平麵塑料膜而言,在均勻半空間的表面上,點源用格林函數可以描述通過漏孔流過電流引起的電位。如果孔徑不大,則電流(U)可寫為

環境地球物理學概論

式中:I為通過漏孔的電流(為總電流的一個分量);ρ為基底土壤電阻率,R是漏孔與源之間的距離;c為常數,代表參照電極的任意電位。

圖8.3.11 漏洞探測觀測系統工作原理圖

圖8.3.12 點源(漏孔)電流歸一化電點陣圖

圖8.3.12是漏孔上的電位函數的圖示,其觀測網為30 m×24 m,觀測點間距1 m。孔位(點源):x=14 m,y=11 m,z=0,電極進深0.5 m。

用這個方法在斯洛伐克一個填埋場,發現6個漏洞,其中5個較小,屬點源異常;一個較大的裂口,6個異常都被開挖證實。進行了修補(修補後異常消失),觀測確定的漏孔位置平均誤差約為30 cm。

如果填埋場襯底塑料膜不是一層,而且漏洞不在同一位置,要測定每層塑料膜漏洞位置,難度要大一些。如圖8.3.11所示,可以分層跨層分別布置電極,如在測第一層塑料膜漏洞時應當將B電極放在第一層與第二層塑料膜之間的導電物質之中。

實例四

澳大利亞北部有一個鈾礦山,1980年開始開采,計劃於2005年關閉。在開采過程中,大量的廢渣和廢液被滯留在尾礦壩中。現在發現尾礦壩中富含Mg2+和的廢水,沿著地下裂隙和斷裂,發生滲漏,在周圍一些地表的植物中已檢測出上述離子濃度有明顯增加。從鑽孔水文調查結果發現,廢液的滲漏是廣泛和無規律的。這已對當地的自然環境構成嚴重危害。礦業公司為調查滲漏情況,採用了多種物探方法:自然電位法(SP)(也稱氧化 還原法)、激發激化(IP)法、直流電阻率法(DC)、瞬變電磁法(TEM)。研究區的地質構造情況和測線布置見圖8.3.13。已有的測量結果表明:在河床地帶的片麻岩的電阻率在1900~8300 Ω·m,地表沉積物的厚度在2~5 m之間,粉砂質粘土和粘土的電阻率在0.1~600 Ω·m范圍。對當地的水文地質情況的調查結果發現,主要有兩個含水層:第一含水層是地表粘土和風化後的岩石,厚度在20 m;第二含水層實際就是基岩中的斷裂帶。兩套含水系統是互相連通的。地下水位的升降隨季節而變化,在乾燥季節,水位的日下降幅度在12~14 mm。在豐水季節,地下水位的日上升幅度在14~40 mm之間。枯水期與豐水期地下水位的相對落差為2~3 m。

圖8.3.13 研究區位置及主要的地質構造分布

在測線1、測線2、測線3分別進行了自然電位、直流電阻率法、激發激化法測量,並重點分析了測線的直流電阻率法、激發激化法測量結果以及二維(2D)自然電位的結果。

激發激化法測量:斯倫貝格排列,31個接收電極,由一根電纜與接收機相連。極距10 m,一個發射電極距測線1.7 km(視為無窮遠),另一個發射電極置於兩接收電極之間,隨測線一同向前移動。電極排列見下圖8.3.14,剖面布置見圖8.3.15(彩圖)。發射電極AB和接收電極MN以n×a的距離同時向兩邊移動,獲得測線上電阻率隨深度的測深剖面。

在圖 8.3.16(彩圖)中,有三個比較大的近地表異常,中心位置分別是 8370 E,8525 E,8650 E。前兩個異常是由粘土和粉砂質粘土層引起的,第三個異常緊鄰南北向的2 a斷裂,認為是滲漏引起的異常。其次,可以看出,從西到東,激電異常有增加的趨勢,從距測線1(距測線3約150 m)的鑽孔地下水的化驗結果發現地下水中Mg2+和的濃度向東逐漸升高,證實了激電的結果。

圖8.3.17(彩圖)是電阻率觀測結果,在8250E、8300E和8350E處呈低電阻率異常。前一個異常與片麻岩和眼球狀片麻岩地質單元的交界處對應,視為地層差異引起的異常。8300E異常正好位於一個灌溉用的水管下面。8350E和8500E的低阻異常都與當地的灌溉有關。8550E處的高阻異常正好對應於片麻岩地層。

從激電法和直流電阻率法的測量結果來看,激電法對地表污染(2~5 m)的反應沒有電阻率法靈敏,這是由於在很小的極距下(10 m)地表污染還不足以產生明顯的激電效應,相對於地下含有高濃度的污染物而言,被污染的粘土層和地下水更容易產生明顯的激電效應。

圖8.3.14 斯倫貝格排列

圖8.3.18(彩圖)是在不同的時間觀測到的自然電場變化,盡管圖形在形狀上略有差異,但基本上保持了很好的一致性。為了避免其他方法的干擾,測量是在激電法和直流電阻率法結束後進行。對自然電法的解釋需結合實際進行,因為自然電場的場源不固定,受地下水水力梯度,水中離子濃度的綜合影響。在靠近斷層的地方,顯示高電位。其次,還進行了電磁法測量:50 m單線圈,25 m點距。視電阻率的反演精度小於1%(圖8.3.19,彩圖),與電阻率法、自然電位法有良好的對應關系。

『貳』 地球物理勘探知識

地球物理勘探是利用地球的物理特性與原理,根據各種岩石及其他礦物之間的密度、磁性、電性、彈性、放射性等物理性質的差異,選用不同的物理方法和物理勘探儀器,探測工程區域內的地球物理場的變化,以研究不同物理場的地質內涵,了解區域內水文地質和工程地質條件和礦藏分布的勘探和測試方法。

地球物理勘探一般分為重力勘探、磁力勘探、電法勘探和人工地震勘探幾類。地球物理勘探,它是運用物理學原理勘查地下礦產、研究地質構造的一種方法和理論,簡稱物探。地球物理勘探是地質調查、地質學研究、礦產勘查當今不可或缺的非常實用的一種最常用手段和方法。

實際探測的區域重力場、航磁場是區域內地質構造在地球物理場中的反映,這些物理場與區域成礦作用、礦產富集與成礦區帶的形成、分布也是相關的,並且也能互為因果。地球物理勘探主要用於了解地下的地質構造、圈閉、斷層發育情況、有無礦床生成的可能、有無礦床保存條件,礦體是否具備開發的條件等。相對於鑽井勘探,它是著眼於較為宏觀的或稱戰略方面的勘探。鑽探則是側重於點上勘探。地震勘探也需藉助於區域內已有鑽探成果如錄井、測井、測試資料進行標准層的確定和標准層地質屬性確定,從而展開對剖面分析與解釋。物探與鑽探的結合,共同推進地質找礦研究工作的進展。因此,在勘探界,有「地質指路,物探先行,鑽探驗證」之說。學習物探的人,也需了解鑽探知識,它們是緊密相依的相關學科。

(一)人工地震勘探知識

人工地震,是地球物理勘探中的主要手段,在石油和天然氣勘探、煤田勘探和工程地質勘探以及地殼和上地幔深部結構探測中發揮著重要作用。它是利用炸葯人工激發產生地震波在彈性不同的地層內傳播規律來探測地下的地質情況。炸葯爆炸產生地震波在地下傳播的過程中,遇到不同岩石或其他物質時其彈性系數發生變化,從而引起地震波聲的變化,產生反射、折射和透射現象,再通過儀器接收變化後的地震波數據,利用地震波速度和岩石礦物的相關性,對地震波進行處理、解釋後,反演出地下情況的知識。

在油氣田勘探中,人工地震用於尋找有利於油氣聚集的構造圈閉。其工作主要程序分為:地震波和與地震波相關數據的野外採集、採回的數據室內處理和對處理數據的數據解釋三個環節,相應產生了野外採集的原始地震資料、室內計算機數據的處理資料和數據的解釋成果資料三個部分。

野外數據採集是人工地震勘探的基礎工作,其產生的數據也是基礎資料也稱原始資料,主要是地震測線和地震波數據;人工地震勘探中的數據處理環節,是將野外採集到的地震數據波去粗取精去偽存真工作過程,通過「去噪」和「校正」技術處理,提高原始數據解析度,這個過程就形成處理數據,再由處理數據形成可視的地震剖面圖和一些其他成果圖件及文字性的處理報告。

(1)二維地震資料處理過程:原始資料的解編和觀測系統的定義→振幅補償、雙向去噪→單炮去噪→野外靜校正→地表一次性預測反褶積→速度分析→剩餘校正→疊前去噪→速度分析→最終疊加→疊後去噪→偏移處理→最終二維處理顯示剖面。

(2)三維地震資料處理過程:原始資料的解編和觀測系統的定義→高通濾波→野外靜校正→三折射靜波校正→三維地表的一致性振幅補償→三維地表一次性反褶積→抽CDP 道集→速度分析①→三維剩餘靜校正→三維 DMO→速度分析②→三維DMO疊加→三維去噪→三維道內插→三維進一步法時間偏移→三維修飾處理→三維數據圖像顯示。

解釋環節是前期數據處理環節產生的成果,運用相關知識,結合鑽井等其他勘探資料,通過用計算機工作站技術進行分析研究,推斷地層沉積、地下構造特徵、岩性和含流體等地質結構情況。這種分析研究和推斷結論產生的資料,稱解釋成果。解釋成果主要有:斷面識別成果、特殊地質現象解釋、構造圖和厚度圖成果、三維可視立體解釋構造圖和文字性的解釋報告。

地震數據解釋階段的工作,一般將其歸納為四項工作:構造解釋;地層解釋;岩性解釋和礦產檢測;綜合解釋。

地質科技人員閱讀解釋資料,最好能要了解解釋程序和解釋結論產生的過程,如二維資料解釋,是在收集工區內已有地質資料基礎上進行的,剖面解釋首先是選擇區域內有代表性的剖面,確定標准層和標准層的地質屬性,然後在進行非標准層的追蹤;進行時間剖面的對比,斷面的識別與解釋;不整合面、超覆、古潛山等特殊地質現象的解釋;構造圖、厚度圖、等厚度圖的編制過程。了解它的解釋工序和過程,就能深度看懂和徹底消化這些解釋資料,而不是一知半解、囫圇吞棗。

近幾年來隨著時代的發展,人工地震勘探技術有了新的進展,儲層預測和油藏描述技術方法已被油田類企業廣泛利用。其中油藏描述中圈閉描述、地層沉積描述、儲集體描述、油氣儲量計算技術在不斷發展和深化,水平解析度和垂直解析度區分地質特徵的識別能力也在不斷提高,地震層析成像技術初步運用,人工神經網路技術也在醞釀發展。三維可視化技術的利用等方面的知識都應了解或掌握。四維地震就是在三維地震的基礎上加上時間推移,用於監測油氣開采動態情況,油田開發的採收率一般在25%~30%之間,三維地震技術用於油田開發後採收率可提高到45%,據報道,將四維地震技術方法用於油田開發後採收率可提高到65%以上。

了解這些人工地震知識後,對於利用這些物探資料作用非凡。如我們在看解釋報告結論有懷疑時,可查看數據處理資料,看看它的「去噪」和「校正」過程中是否有瑕疵,了解一下標准層及其地質屬性的確定是否准確。看看解釋過程和解釋觀念。而不懂處理技術方面的知識是發現不了其中的問題的,而有時候發現了一個瑕疵就發現了一個礦藏構造或是糾正了一個對地層的認識;學習物探類學科的學生或剛剛從事其他學科的技術工作的人員只有了解和系統掌握了這一學科知識,才能看懂這些物探資料,而要利用這些資料,首先是讀懂它,然後才能發現其中蘊含的價值。即使你是工作多年的技術人員,你也得注意積累,因為人工地震在不同環境下的取得的數據,也會有巨大差距。如在沙漠地區因巨厚的地表浮沙形成低速層厚度橫向變化很大,對數據採集中的激發和接收一致性影響較大,與此相應,它對地震波的能量衰減較為嚴重,對地震波的高頻成分吸收強烈,對「靜校正」提出了更高要求。同理,水網地區的人工地震與一般陸地人工地震「靜校正」要求又有區別。處理與閱讀這些資料奧妙無窮。

人工地震產生的物探資料主要有:

二維地震資料統計表

續表

三維地震資料統計表

二維、三維地震資料品種很多,但主要需看懂的資料是:

處理報告、解釋報告及圖件。尤其是圖件中的「時間剖面」。

人工地震工程得到的是地震波數據,技術人員對數據的處理與解釋結果體現在時間剖面上,而解釋報告是對剖面的解讀和總結的結論。一般表現為:推斷地層分布、構造特徵及流體性質,圈閉描述、地層沉積描述、儲集體描述、礦產儲量計算等。這些推斷和描述是否准確,就得看推斷和描述的依據和過程,得出自己獨立的見解或對推斷和描述給予贊成與否的結論。

(二)重力勘探知識

重力勘探是地球物理中的又一種勘探方法。它是利用組成地殼的各種岩石及其介質的密度差異引起的重力場變化原理,在野外通過重力儀器測量,對重力數據進行觀測,研究其重力的變化,推斷地下構造的一種物理勘探的方法。由於重力異常區場與區域內地質構造、深部地殼構造以及地形、地貌均呈相關性,通常能反映出斷裂構造帶斷裂構造的重力異常梯度帶與礦產資源分布具有密切關系。而且,從成礦理論到勘探實踐看來,礦床往往是成群出現的,在一定范圍內會集中出現礦體。研究區域內的重力情況,也是認識地質構造和發現礦產的又一個重要途徑,地質資料館中主要珍藏的是圍繞重力異常產生的資料。

重力勘探產生的主要資料統計表

續表

要求能看懂的最主要的重力資料:

布格重力異常圖。

布格重力剩餘異常圖。

趨勢面分析報告。

重力勘探項目處理成果報告。

(三)電磁感應法勘探

電磁感應勘探法,分為電法勘探和磁法勘探。電法勘探,是利用地殼中多種岩石或其他固態、液態、氣態介質的電學性質的不同,引起的電磁場在空間分布狀態發生相應變化實際差異,來研究地質構造和尋找礦藏的一種物探方法。產生相關電法勘探圖件和勘探文字報告。

磁法勘探是根據區域內各種岩石和其他介質的磁性不同,利用儀器發現和研究地球磁場及異常,進而尋找磁性礦體和研究地質構造的又一種地球物理勘探方法。磁異常是磁性地質體引起的,磁異常的分布與對應的區域地面及地下地層、岩層磁性相關。通常火山岩和變質岩易引起磁性異常,這種異常的變化激烈往往表明磁性體淺,意味著結晶體基底淺,反之,表示結晶體基底深。這樣就能劃分出隆起區和坳陷區,進而發現伴隨火山岩活動的深大斷裂帶。

電法與磁法勘探,實踐中通常不是各自獨立進行的,而是利用電磁感應理論結合進行的勘探,它是在地質目標或礦體與相鄰岩體存在電磁學性質差異時,通過觀測和研究由地質目標或礦體引起電磁場空間和時間分布規律,尋找地質目標或礦體的方法。

電磁法勘探形成的地質資料統計表

續表

需要讀懂的主要資料:

電法、磁法或電磁法勘探報告,測線大地電磁測深Ρyx/Ρxy剖面圖、測線大地電磁測深曲線與斷層關系對比圖、測線地質——物探解釋參考剖面圖、測線大地電磁測深地質解釋剖面圖、大地電磁測深儀野外處理結果曲線、大地電磁測深儀對比曲線冊、大地電磁測深及解釋研究報告、大地電磁測深勘探報告。

(四)遙感技術

遙感技術,是指地質學科里運用的遙感探測技術,又稱遙感地質或稱地質遙感。遙感地質是綜合應用現代遙感技術來研究地質規律、進行地質調查和資源勘察的一種方法。從宏觀的角度,著眼於由空中取得的地質信息,即以各種地質體對電磁輻射的反應作為基本依據,結合其他各種地質資料及遙感資料的綜合應用,以分析、判斷一定地區內的地質構造情況。遙感技術對地質學研究和探礦方面的作用:

(1)能了解各種地質體和地質現象在電磁波譜上的特徵。

(2)能了解地質體和地質現象在遙感圖像上的判別特徵。

(3)可以通過對地質遙感圖像的光學及電子光學處理和圖像及有關數據的數字處理和分析,得出相關認識。

遙感技術在地質制圖、地質礦產資源勘查及環境、工程、災害地質調查研究中廣泛運用。

遙感技術在地質勘探上運用成果,得到遙感圖像。它相當於一定比例尺縮小了的地面立體模型。能全面、真實地反映了各種地物(包括地質體)的特徵及其空間組合關系。遙感圖像的地質解譯包括對經過圖像處理後的圖像的地質解釋,即運用用遙感原理、地學理論和相關學科知識,以目視方法揭示遙感圖像中的地質信息。遙感圖像地質解譯的基本內容包括:

(1)岩性及地層解譯。解譯的標本有色調、地貌、水系、植被與土地利用特點等。

(2)構造的解譯。在遙感圖像上識別、勾繪和研究各種地質構造形跡的形態、產狀、分布規律、組合關系及其成因聯系等。

(3)礦產解譯及成礦遠景分析。這是一項復雜的綜合性解譯工作。通常在大比例尺圖像上,有的可以直接判別原生礦體露頭、鐵帽和采礦遺跡。但大多數情況下是利用多波段遙感圖像(特別是紅外航空遙感圖像)的解譯與成礦相關的岩石、地層、構造以及圍岩蝕變帶等地質體。除目視解譯外,還經常運用圖像處理技術獲取區域礦產信息。

成礦遠景分析工作是以成礦理論為指導,在礦產解譯基礎上,利用計算機將礦產解譯成果與地球物理勘探、地球化學勘查資料進行綜合處理,從而圈定成礦遠景區,提出預測區和勘探靶區。利用遙感圖像解譯礦產已成為一種重要的找礦手段。

主要資料就是遙感圖像——膠片和照片。對圖像解譯是閱讀遙感資料的基本功。實踐中閱讀圖片時,往往對照地面已開展的地質工作認識成果,可對遙感圖像有更深入的解讀。

『叄』 什麼是地球物理測量技術

是指運用先進的儀器測量地球某些物理性質的變化,從而得出海底以下的地質構造和礦產分布的一種測量技術。在海上,使用最廣的物探方法有地震勘探、重力測量、磁力測量和熱量測量等。重力的變化能反映地質或地理位置的變化。
重力測量在海洋礦產資源勘探、天然地震預報和地震災害預測、衛星空間軌道設計及軌道預報方面都有重要意義。其設備如德國產的KSS25和KSS230型海洋重力儀,其中KSS25型屬於杠桿型重力儀,KSS230型屬於彈簧垂直荷載型重力儀。
海洋磁力測量是勘測水域磁場的分布和隨時間的變化或發現異常磁場。目前海洋磁力勘探主要用核子旋進磁力儀,其中美國森尼維爾大地測量公司G801海洋質子核子旋進式磁力儀應用較多。
海底熱力測量不僅可以發現地熱資源,而且可以應用其得到的海底地熱資料詳細考察海底地殼、地幔、板塊構造及熱過程(如岩漿侵入、熱液環流)。海洋有源電磁探測系統測量可以直接測定地殼內熔融物質的存在和溫度及岩石的孔隙度,用於熱液或岩漿活動的海洋擴張中心的地質作用過程的調查和研究。幾十年來,我國先後研製和生產了重力儀、結構核子旋進式磁力儀、質子磁力梯度儀及多種地質取樣設備,在國際海洋地質調查和地球物理勘探中發揮了重要作用,尤其是海洋石油地球物理勘探技術和資源綜合評價方面已基本達到國際先進水平,並在地震勘探作業方面具備了國際市場的競爭能力。
20世紀80年代以來隨著科學的發展,許多新技術包括三維勘探、高解析度勘探、子波處理和波動理論等反演技術,也逐漸被應用在測量技術上,使信號質量、信息的准確性、分辨能力和穿透力等方面都有了明顯的提高,也使得物探技術有了較大的進展。近年來,人們還研究海底聲學特徵和沉積物理特徵之間的直接聯系,並通過聲速、聲吸收、聲反射率與海底沉積物類型、顆粒度和孔隙度的關系,建立起海底地質聲學模型,從而為判斷和分類海底地質結構提供定量分析的依據。其中精密回聲測深儀、深淺地層剖面儀、旁側聲吶先進儀器的應用最為廣泛。我國在水聲技術研製方面也取得重大進展,現已研製成功具有世界先進水平的唯一可在2米淺海作業的高解析度淺地層剖面儀和彩色雙頻率垂直魚探儀,還有走航式聲字多普勒海流剖面儀,這些技術廣泛應用在海洋科學研究、海洋資源勘探和開發以及軍事活動等各個領域。

閱讀全文

與地球物理二維測試的是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:729
乙酸乙酯化學式怎麼算 瀏覽:1393
沈陽初中的數學是什麼版本的 瀏覽:1339
華為手機家人共享如何查看地理位置 瀏覽:1031
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:874
數學c什麼意思是什麼意思是什麼 瀏覽:1396
中考初中地理如何補 瀏覽:1285
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:690
數學奧數卡怎麼辦 瀏覽:1376
如何回答地理是什麼 瀏覽:1010
win7如何刪除電腦文件瀏覽歷史 瀏覽:1042
大學物理實驗干什麼用的到 瀏覽:1473
二年級上冊數學框框怎麼填 瀏覽:1686
西安瑞禧生物科技有限公司怎麼樣 瀏覽:931
武大的分析化學怎麼樣 瀏覽:1237
ige電化學發光偏高怎麼辦 瀏覽:1327
學而思初中英語和語文怎麼樣 瀏覽:1635
下列哪個水飛薊素化學結構 瀏覽:1414
化學理學哪些專業好 瀏覽:1476
數學中的棱的意思是什麼 瀏覽:1044