導航:首頁 > 物理學科 > 大學物理有哪些思想

大學物理有哪些思想

發布時間:2023-07-22 20:24:21

大學物理都包括哪些內容

1.單位,物理量和矢量
2.直線運動
3.在二維/三維上的運動(圓周運動、拋體運動)
4.牛頓運動定律
5.牛頓定律的運用
6.功和動能
7.勢能和能量守恆
8.動量、沖量和碰撞
9.轉動與剛體
10.旋轉的動力學
11.彈性和平衡
12.流體力學
13.引力
14.周期運動

15.機械波
16.聲音和聽力

17.溫度與熱
18.物質的熱性質
19.熱力學第一定律
20.熱力學第二定律

(以上大致為一半)

21.電荷與電場
22.高斯定律
23.電勢
24.電容和電介質
25.電流、電阻和電動勢
26.直流電路
27.磁場和磁力
28.磁場的來源
29.電磁感應
30.電感
31.交流電
32.電磁波

33.光及光的傳播
34.幾何光學
35.干涉
36.衍射

37.相對論
38.光子
39.電子
40.量子力學引論
41.原子結構
42.分子和凝聚態
43.原子核
44.粒子和宇宙

❷ 上大學學物理學些什麼內容

《大學物理》課程教學大綱
一.課程基本情況
名稱:大學物理
授課對象:土木工程、無機非金屬材料工程、給水排水工程、工程力學、環境工程、高分子材料與工程、安全工程、環境科學、地理信息系統、計算機科學與技術、電子信息工程、電子信息科學與技術、電氣工程及其自動化、交通工程、測繪工程、建築環境與設備工程
考核方式: 考試
先修課程: 高等數學
後續課程: 力學
開課教研室:物理教研室
二.課程教學目標
1.任務和地位
大學物理課程是高等工業院校各專業學生的一門重要的必修基礎課,它的基本理論滲透在自然科學的許多領域,應用於生產技術的各部門,它是自然科學的許多領域和工程技術的基礎;它所包含的經典物理、近代物理和物理學在科學技術上應用的初步知識等都是一個高級工程技術人員所必備的。
2.知識要求
通過課堂講解及討論,課後布置適當的作業任務,再加上大學物理實驗課的輔助作用,使學生能夠對課程中的基本概念、基本理論、基本方法有比較全面的、系統的認識和正確的理解,並具有初步的分析、解決物理問題的能力。
3.能力要求
通過大學物理課的學習,一方面可以使學生較系統地掌握必要的物理基礎;另一方面使學生初步學習科學的思想方法和研究問題的方法。這些都起著開闊思路、激發探索和創新精神,增強適應能力,為其在今後學習相關的專業基礎課程打下良好的基礎。學好大學物理課,不僅對學生在校的學習十分重要,而且對學生畢業以後的工作和進一步學習新理論、新知識、新技術,不斷更新知識,都將發生深遠的影響。
三.教學內容的基本要求和學時分配
1.教學內容及要求
⑴力學部分的基本要求:
①理解質點、剛體、慣性系等概念;了解引入這些概念和模型在科學研究方法上的重要意義。
②掌握位置矢量、位移、速度、加速度等概念及其計算方法;根據給定的用直角坐標表示的質點在平面內運動的運動方程、能靈活熟練地求出在任意時間內質點的位移和任意時刻質點的速度和加速度;對一些涉及簡單積分的力學問題,也能根據給定的加速度和初始條件求速度和運動方程等。根據給定的用直角坐標表示的質點作圓周運動的運動方程,能靈活、熟練地求出運動質點的角速度、角加速度、切向加速度、法向加速度和加速度;了解任意平面曲線運動的切向加速度和法向加速度的概念和求法。
③掌握牛頓三個定律及其適用條件,理解用矢量(包括投影形式)和微分方程形式寫出的牛頓第二定律。了解量綱及引入量綱的物理意義。
④掌握功的概念、能熟練地計算作用在質點上的變力的功;掌握保守力作功的特點及勢能、勢能差的概念,會計算萬有引力勢能。
⑤掌握質點的動能定理、動量定理、並能用它們分析和解決質點在一個平面內運動的力學問題。掌握機械能守恆定律、動量守恆定律及它們的適用條件,能用機械能守恆定律、動量守恆定律分析少數質點組成的系統在一個平面內運動的力學問題。了解普適的能量轉換和守恆定律。
⑥了解轉動慣量的概念;掌握剛體繞定軸轉動定律(簡稱轉動定律);在已知轉動慣量的條件下,能熟練地應用轉動定律分析,計算有關問題。
⑦理解動量矩(角動量)概念;通過質點在平面內運動和剛體繞定軸轉動的情況學習和理解動量矩守恆定律及其適用條件。
⑧理解牛頓力學的相對性原理;掌握伽利略坐標、速度變換,能用伽利略變換計算在不同慣性系中質點一維運動的坐標、速度變換問題。
⑵熱學部分的基本要求:
①宏觀意義上理解平衡狀態、平衡過程,可逆過程、不可逆過程等概念;掌握內能、功、熱量、熱容等概念。
②掌握熱力學第一定律,能熟練地應用該定律和理想氣體狀態方程分析、計算理想氣體各等值過程及絕熱過程中的功、熱量、內能改變數、以及循環過程的效率。了解致冷系數。
③理解熱力學第二定律的兩種敘述,了解兩種敘述的等價性。
④理解幾率和統計平均值的概念。從微觀統計意義上理解平衡狀態、內能、可逆過程和不可逆過程等概念。了解熱力學第二定律的統計意義。掌握熵的概念,理解熵增加原理。
⑤掌握理想氣體的壓強公式和溫度公式,理解氣體壓強、溫度的微觀統計意義;理解系統宏觀性質是微觀運動的統計表現;了解從建立模型、進行統計平均處理到闡明宏觀量微觀質的研究方法。
⑥理解麥克斯韋速率分布定律;理解速率分布函數和速率分布曲線的物理意義;理解氣體分子熱運動的算術平均速率,方均根速率和最概然速率。
⑦理解氣體分子平均能量按自由度均分定理及理想氣體的內能公式。會計算理想氣體的熱容量。
⑧理解氣體分子平均碰撞頻率及平均自由程。了解真實氣體的實驗等溫線及范德瓦爾斯方程。
⑨了解阿伏伽德羅常數、波耳茲曼常數等數值和單位;了解常溫、常壓下氣體分子數密度、算術平均速率、平均自由程及分子有效直徑等的數量級。
⑶電磁學部分的基本要求
①掌握電場強度、電勢、磁感應強度的概念。在一些簡單的對稱情形下,對於連續、均勻分布靜電荷或穩恆電流,能計算其周圍或對稱軸上任何一點的電場強度,電勢或磁感應強度;在已知幾個簡單、典型的場源分布時,能利用迭加原理計算它們的組合體的電場或磁場分布。
②掌握電勢與場強積分的關系,理解場強與電勢梯度的關系。
③理解靜電場的環流定理和高斯定理,了解它們在電磁學中的重要地位;掌握用高斯定理計算場強的條件和方法;能熟練地應用高斯定理計算簡單幾何形狀均勻帶電體電場中任意一點的電場強度。會分析、判斷和計算簡單、規則形狀導體或少數導體組成的導體系處於靜電平衡時的場強、電勢和電荷分布。
④理解穩恆磁場的高斯定理和安培環路定律,了解它們在電磁學中的重要地位;掌握用安培環路定律計算磁感應強度的條件和方法;能熟練地應用安培環路定律計算簡單幾何形狀載流導體磁場中任意一點的磁感應強度。
⑤掌握安培定律和洛侖茲力公式。理解電偶極矩、磁矩的概念。能計算電偶極子,載流平面線圈在電、磁場中所受的力矩。能分析和計算電荷在正交的均勻電磁場(包括純電場、純磁場)中的運動。了解霍耳效應及其應用。
⑥了解介質的極化,磁化現象及其微觀機理,了解鐵磁質的特性。理解介質中的高斯定理和安培環路定律;會用介質中的高斯定理和安培環路定律計算介質中的電位移和磁場強度,並能由已知的電位移和磁場強度求相應的電場強度和磁感應強度。
⑦了解電動勢的概念,掌握法拉第電磁感應定律,了解定律中「-」號的物理意義,理解動生電動勢和感生電動勢。
⑧理解電容、自感系數和互感系數的定義及其物理意義。
⑨理解電磁場的物質性以及電能密度、磁能密度的概念;在一些簡單的對稱情況下,能計算空間里儲存的場能。
⑩理解渦旋電場、位移電流、電流密度的概念;了解麥克斯韋方程組(積分形式)的物理意義。
⑷波動和光學部分的基本要求
①了解普通光源的發光機理,理解獲得相干光的方法。
②掌握光程的概念,以及光程差和位相差的關系,能分析楊氏雙縫干涉實驗、牛頓環實驗中干涉條件和分布規律。了解洛埃鏡中的半波損失問題。
③了解麥克耳遜干涉儀的工作原理及干涉現象的應用。
④理解惠更斯一菲涅耳原理,掌握用半波帶法分析單縫夫琅和費衍射條紋分布的規律,會分析縫寬及波長對衍射條紋分布的影響。了解單縫衍射條紋亮度分布規律。
⑤掌握光柵衍射公式,會分析光柵衍射條紋分布規律和光柵常數及波長對光柵衍射條紋分布的影響,了解光柵衍射條紋和光柵光譜的特點及其在科學技術上和生產中的應用。
⑥了解衍射現象對光學儀器分辨本領的影響。
⑦了解自然光和線偏振光的獲得方法和檢驗方法。
⑸近代部分的基本要求
①理解絕對黑體輻射譜線,了解斯特藩—波爾茲曼和維恩位移定律及它們的應用。
②理解普朗克量子假設,了解普朗克量子假設在近代物理學發展中的重大歷史意義。
③掌握康普頓效應問題中光的經典波動理論遇到的困難。
④理解愛因斯坦的光子假設,了解康普頓散射頻移公式的基本依據和思想,了解愛因斯坦光子理論在光電效應,康普頓效應研究中取得的成就及其在物理學發展中地位。
⑤理解光的波粒二象性,掌握光波波長與光子動量間的關系。
⑥理解實物粒子具有波粒二象性,掌握描述物質波動性的物理量(波長、頻率)和粒子性的物理量(動量、能量)之間的關系。
⑦了解波函數及其統計解釋。了解測不準關系,並能用測不準關系對微觀世界的某些物理量作估算。
⑧理解一維定態薛諤方程,理解一維無限深陷阱情況下薛定諤方程的解,理解能量量子化。
2.時間分配和進度
⑴質點運動學與動力學 14學時
⑵剛體的定軸轉動 8學時
⑶狹義相對論 4學時
⑷溫度與氣體動理論 6學時
⑸熱力學基礎 12學時
⑹靜電場 16學時
⑺磁場、電磁感應 16學時
⑻振動和波動 10學時
⑼光的干涉、衍射及偏振 14學時
⑽量子物理的基本概念 8學時
3.教學內容的重點、難點。
⑴力學部分
重點:
利用微積分列出運動方程;位移 速度 加速度的矢量表示法;曲線運動。
牛頓三定律的內容;牛頓三定律的應用。
動量定理、動能定理、動量守恆定律和能量守恆定律。
轉動慣量、角動量、轉動動能等概念的理解;轉動定律、角動量定理、轉動的動能定理。
難點:
利用微積分列出運動方程。
牛頓三定律的應用;對慣性系的理解,力學相對性原理。
保守力的理解;動量定理、動能定理、動量守恆定律和能量守恆定律的應用條件。
轉動定律、角動量定理、動能定理的推導;角動量定理的應用。
⑵氣體動理論和熱力學部分
重點:
熱力學第一定律、熱力學第二定律 ;各種變化過程中理想氣體的物態方程。
能量均分定理、三種統計速度、平均自由程。
難點:
應用理想氣體的物態方程解題;各種變化過程中理想氣體物態方程的推導和理解。
能量均分定理、麥克斯韋氣體分子速率分布律。
⑶電磁學部分
重點:
高斯定理的理解和應用;靜電場的環路定理。
高斯定理有介質時電場中的應用;電場的能量。
畢奧薩伐爾定律的應用;安培環路定理的應用;磁場中的高斯定理。
電磁感應定律;動生電動勢 感生電動勢 自感電動勢和互感電動勢;全電流環路定理;麥克斯韋方程組。
難點:
對電場的理解;高斯定理的應用。
有介質的高斯定理。
畢奧薩伐爾定律的應用;安培環路定理的應用。
動生電動勢,感生電動勢,自感電動勢和互感電動勢的區別。
麥克斯韋方程組。
⑷波動和光學部分
重點:
簡諧運動的運動方程;簡諧運動的合成。
平面簡諧波的波函數應用;波的干涉。
楊氏雙縫干涉試驗;薄膜干涉;單縫衍射;光柵衍射;光的偏振。
難點:
簡諧運動的合成。
平面簡諧波的波函數應用;波的疊加原理。
幾種干涉儀的區別;單縫衍射和光柵衍射的區別;光的偏振原理。
⑸量子物理基礎
重點:
光的粒子性的理解、光電效應。
粒子的波動性、德布羅意假設。
薛定鄂方程。
難點:
光的波、粒二象性理解。
運用薛定鄂方程求解波函數。
4.本課程與其它課程的聯系與分工
大學物理課程是高等工業院校各專業學生的一門重要的必修基礎課,高等數學作為其先修課程,通過大學物理課程的學習,使學生能夠初步的掌握運用數學知識解決物理問題,並為其在今後的學習和工作中運用數學方法解決實際工程問題打下良好的基礎。通過物理課程的學習,使學生掌握分析、解決物理問題的方法,為其學習相關專業課程(力學等)做好准備。
5.建議使用教材和參考書目
建議使用教材:
《大學基礎物理學》張三慧編,清華大學出版社,2003年8月。
教學參考書目:
《普通物理》(第4版)程守洙、江之永編,人民教育出版社,1982年12月。
《大學物理學》(第1版)吳百詩主編,西安交通大學出版社,1994年12月
《物理學》(第4版)東南大學等七所工科院校編,高等教育出版,1999年11月。
四.大綱說明
1、在整個教學過程中採用教師課堂教學(主要以板書教學為主,穿插利用投影儀教學)和學生課後自學相結合的形式。對需要掌握的重要原理和定律及計算方法要講深講透,對需要理解和了解的內容採取精講和自學的學習方式。
2、習題課隨教學進展情況靈活掌握;作業量由所有任課教師商討後分章節布置給學生,並且作到及時的批改,及時反饋給學生。
3、本課程為考試課,平時成績10%,考試成績90%。考試採取書面筆試(閉卷)的方式,考試試卷內容盡量作到覆蓋面廣、難度適中、試題量恰當。

❸ 大學物理主要學什麼

大學物理,是大學理工科類的一門基礎課程,通過課程的學習,使學生熟悉自然界物質的結構,性質,相互作用及其運動的基本規律,為後繼專業基礎與專業課程的學習及進一步獲取有關知識奠定必要的物理基礎。但工科專業以力學基礎和電磁學為主要授課。

全書共13章,涉及力學、熱學、電磁學、振動和波、波動光學、狹義相對論和量子物理基礎等. 每章包括基本內容之外,還包括閱讀材料、復習與小結、練習題. 內容深淺適當,講解正確清晰,敘述引人入勝,例題指導詳盡,全書聯系實際,特別是注意介紹物理知識和物理思想在實際中的應用. 本書有電子教材和學習輔導書等配套資料。

(3)大學物理有哪些思想擴展閱讀

物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。

該專業學生主要學習物質運動的基本規律,接受運用物理知識和方法進行科學研究和技術開發訓練,獲得基礎研究或應用基礎研究的初步訓練,具備良好的科學素養和一定的科學研究與應用開發能力。

❹ 物理思想方法有哪些

物理思想方法
§1.圖形/圖象圖解法
圖形/圖象圖解法就是將物理現象或過程用圖形/圖象表徵出後,再據圖形表徵的特點或圖象斜率、截距、面積所表述的物理意義來求解的方法。尤其是圖象法對於一些定性問題的求解獨到好處。
§2 極限思維方法
極限思維方法是將問題推向極端狀態的過程中,著眼一些物理量在連續變化過程中的變化趨勢及一般規律在極限值下的表現或者說極限值下一般規律的表現,從而對問題進行分析和推理的一種思維辦法。
§3 平均思想方法
物理學中,有些物理量是某個物理量對另一物理量的積累,若某個物理量是變化的,則在求解積累量時,可把變化的這個物理量在整個積累過程看作是恆定的一個值---------平均值,從而通過求積的方法來求積累量。這種方法叫平均思想方法。
物理學中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均電流等。對於線性變化情況,平均值=(初值+終值)/2。由於平均值只與初值和終值有關,不涉及中間過程,所以在求解問題時有很大的妙用.
§4 等效轉換(化)法
等效法,就是在保證效果相同的前提下,將一個復雜的物理問題轉換成較簡單問題的思維方法。其基本特徵為等效替代。
物理學中等效法的應用較多。合力與分力;合運動與分運動;總電阻與分電阻;交流電的有效值等。除這些等效等效概念之外,還有等效電路、等效電源、等效模型、等效過程等。
§5 猜想與假設法
猜想與假設法,是在研究對象的物理過程不明了或物理狀態不清楚的情況下,根據猜想,假設出一種過程或一種狀態,再據題設所給條件通過分析計算結果與實際情況比較作出判斷的一種方法,或是人為地改變原題所給條件,產生出與原題相悖的結論,從而使原題得以更清晰方便地求解的一種方法。
§6 整體法和隔離法
整體法是在確定研究對象或研究過程時,把多個物體看作為一個整體或多個過程看作整個過程的方法;隔離法是把單個物體作為研究對象或只研究一個孤立過程的方法.
整體法與隔離法,二者認識問題的觸角截然不同.整體法,是大的方面或者是從整的方面來認識問題,宏觀上來揭示事物的本質和規律.而隔離法則是從小的方面來認識問題,然後再通過各個問題的關系來聯系,從而揭示出事物的本質和規律。因而在解題方面,整體法不需事無巨細地去分析研究,顯的簡捷巧妙,但在初涉者來說在理解上有一定難度;隔離法逐個過程、逐個物體來研究,雖在求解上繁點,但對初涉者來說,在理解上較容易。熟知隔離法者應提升到整體法上。最佳狀態是能對二者應用自如。
§7 臨界問題分析法
臨界問題,是指一種物理過程轉變為另一種物理過程,或一種物理狀態轉變為另一種物理狀態時,處於兩種過程或兩種狀態的分界處的問題,叫臨界問題。處於臨界狀的物理量的值叫臨界值。
物理量處於臨界值時:
①物理現象的變化面臨突變性。
②對於連續變化問題,物理量的變化出現拐點,呈現出兩性,即能同時反映出兩種過程和兩種現象的特點。
解決臨界問題,關鍵是找出臨界條件。一般有兩種基本方法:①以定理、定律為依據,首先求出所研究問題的一般規律和一般解,然後分析、討論其特殊規律和特殊解②直接分析、討論臨界狀態和相應的臨界值,求解出研究問題的規律和解。
§8 對稱法
物理問題中有一些物理過程或是物理圖形是具有對稱性的。利用物理問題的這一特點求解,可使問題簡單化。要認識到一個物理過程,一旦對稱,則相當一部分物理量(如時間、速度、位移、加速度等)是對稱的。
§9 尋找守恆量法
守恆,說穿意思是研究數量時總量不變的一種現象。物理學中的守恆,是指在物理變化過程或物質的轉化遷移過程中一些物理量的總量不變的現象或事實。
守恆,已是物理學中最基本的規律(有動量守恆、能量守恆、電荷守恆、質量守恆),也是一種解決物理問題的基本思想方法。並且應用起來簡練、快捷。
從運算角度來說,守恆是加減法運算,總和不變。
從物理角度來講,那就與所述量表徵的意義有關,重在理解了。理解所述量及所述量守恆事實的內在實質和外在表現。
如動量,描述的是物體的運動量,大小為mV,方向為速度的方向。動量守恆,就是物體作用前總的運動量是動的時,且方向是向某一方向的,那作用後,總的運動量還是動的,方向還是向著這一方向。
§10 構建物理模型法
物理學很大程度上,可以說是一門模型課.無論是所研究的實際物體,還是物理過程或是物理情境,大都是理想化模型.
如 實體模型有:質點、點電荷、點光源、輕繩輕桿、彈簧振子、平行玻璃磚、……
物理過程有:勻速運動、勻變速、簡諧運動、共振、彈性碰撞、圓周運動……
物理情境有:人船模型、子彈打木塊、平拋、臨界問題……
求解物理問題,很重要的一點就是迅速把所研究的問題歸宿到學過的物理模型上來,即所謂的建模。尤其是對新情境問題,這一點就顯得更突出。

❺ 大學裡面的物理專業主要學什麼

大學裡面的物理專業主要學習:物理學的基本理論與方法。

物理學專業培養掌握物理學的基本理論與方法,具有良好的數學基礎和實驗技能,能在物理學或相關的科學技術領域中從事科研、教學、技術和相關的管理工作的高級專門人才。

該專業學生主要學習物質運動的基本規律,接受運用物理知識和方法進行科學研究和技術開發訓練,獲得基礎研究或應用基礎研究的初步訓練,具備良好的科學素養和一定的科學研究與應用開發能力。

注重於研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關系。物理學是關於大自然規律的知識;更廣義地說,物理學探索分析大自然所發生的現象,以了解其規則。

(5)大學物理有哪些思想擴展閱讀:

物理專業重要分支有:

一、熱力學

熱力學(thermodynamics)是從宏觀角度研究物質的熱運動性質及其規律的學科。屬於物理學的分支,它與統計物理學分別構成了熱學理論的宏觀和微觀兩個方面。熱力學還與統計學一起研究,即熱力學與統計學科。

二、量子力學

量子力學是物理學理論,是研究物質世界微觀粒子運動規律的物理學分支,主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論。它與相對論一起構成現代物理學的理論基礎。量子力學不僅是現代物理學的基礎理論之一,而且在化學等學科和許多近代技術中得到廣泛應用。

三、固體物理學

固體物理學,是研究固體的物理性質、微觀結構、固體中各種粒子運動形態和規律及它們相互關系的學科。屬物理學的重要分支,其涉及到力學、熱學、聲學、電學、磁學和光學等各方面的內容。固體的應用極為廣泛,各個時代都有自己特色的固體材料、器件和有關製品。

參考資料來源:網路—物理學專業

❻ 大學物理學什麼

大學物理是大學理工科的一門基礎課。通過本課程的學習,學生可以熟悉自然物質運動的結構、性質、相互作用和基本規律,從而為後續的專業基礎和專業課程的研究奠定必要的物質基礎,並進一步獲得相關知識。然而,工科專業主要教授基礎力學和電磁學。

通過本課程的學習,學生將逐步掌握物理研究的思路和方法。在獲取知識的同時,學生將具備建立物理模型的能力、定性分析、估計和定量計算的能力、獨立獲取知識的能力以及理論與實踐相結合的能力。拓寬思路,激發探索創新精神,增強適應能力,提高整體科技素質。通過本課程的學習,使學生掌握科學的學習方法,形成良好的學習習慣,形成辯證唯物主義的世界觀和方法論。

第一章剛體的定軸轉動

[目的要求]

了解轉動慣量,掌握剛體繞定軸轉動定理;了解力矩的功和轉動動能,動量和動量守恆定律。能熟練地用它分析計算與剛體定軸轉動有關的力學問題。

[教學內容]

1.剛體的轉動慣量和剛體繞固定軸的轉動定理;

2.剛體的力矩功和轉動動能

3.剛體的動量矩和動量矩守恆定律

第二章氣體分子運動理論

[目的要求]

1.掌握理想氣體狀態方程。了解氣體的狀態參數、平衡態和理想氣體的內能概念。2.了解理想氣體壓力和溫度的統計解釋。

理解能量自由度的均分原理;了解麥克斯韋速率分布規律;了解玻爾茲曼分布定律、平均碰撞頻率和自由程概念。

[教學內容]

理想氣體狀態路徑和理想氣體壓力;能量平均分配原則自由度;麥克斯韋速度分布律;玻爾茲曼分布律;平均碰撞頻率和自由路徑

第三章熱力學

[目的要求]

1.掌握熱力學第一定律及其相關概念(內能、功、能)。能熟練運用熱力學第一定律計算理想氣體等效過程和絕熱過程的內能、功和能。

2.理解氣體摩爾熱容的概念。

3.可以計算理想氣體的准靜態循環過程,如卡諾循環的效率。

4.理解熱力學第二定律的兩個表達式。了解可逆和不可逆過程、熵和熱力學第二定律的統計意義。

[教學內容]

1.熱力學平衡態和氣體狀態方程;

2.氣體分子的統計分布規律;

3.輸氣工藝;

4.熱力學第一定律在理想氣體等效過程和絕熱過程中的應用;

5.熱力學第二定律,可逆和不可逆過程和熵;

6.固體和液體的性質;

7.相變

❼ 物理思想有哪些內容

答:一、物理的內涵

1、物理注重於研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關系。

2、物理學是關於大自然規律的知識;更廣義地說,物理學探索分析大自然所發生的現象,以了解其規則。

二、物理的六大性質

1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。

2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下尺裂塌,顯出多麼的和諧有序。

3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。

4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。

5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。

6.精巧性:物理實驗具有精陵圓巧源辯性,設計方法的巧妙,使得物理現象更加明顯。


❽ 大學物理求電場強度的幾種方法,並闡述所包含的物理思想。

2.庫侖定律:F=kQ1*Q2/r^2
(在真空中)
{F:點電荷間的作用力(N),k:靜電力常量k=9.0×10^9N·m^2/C^2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式,場強是本身的性質與電場力和電量無關)
{E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2
{r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d
{UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=q*E
{F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=q*UAB=Eq*d
{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:
EA=q*φA
{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA
{帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-q*UAB
(電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式)
{C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd
(S:兩極板正對面積,d:兩極板間的垂直距離,ε:介電常數)
常見電容器
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK

qU=mVt2/2,
Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平拋
垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
運動
平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記;
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=10^6μF=10^12pF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽
/
示波管、示波器及其應用
/
等勢面/尖端放電等。
(9)電場強度E=U/d=4πkQ/εS,並且做功W=U*q

閱讀全文

與大學物理有哪些思想相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:723
乙酸乙酯化學式怎麼算 瀏覽:1388
沈陽初中的數學是什麼版本的 瀏覽:1334
華為手機家人共享如何查看地理位置 瀏覽:1026
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:866
數學c什麼意思是什麼意思是什麼 瀏覽:1389
中考初中地理如何補 瀏覽:1278
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:684
數學奧數卡怎麼辦 瀏覽:1368
如何回答地理是什麼 瀏覽:1004
win7如何刪除電腦文件瀏覽歷史 瀏覽:1037
大學物理實驗干什麼用的到 瀏覽:1465
二年級上冊數學框框怎麼填 瀏覽:1681
西安瑞禧生物科技有限公司怎麼樣 瀏覽:909
武大的分析化學怎麼樣 瀏覽:1230
ige電化學發光偏高怎麼辦 瀏覽:1319
學而思初中英語和語文怎麼樣 瀏覽:1627
下列哪個水飛薊素化學結構 瀏覽:1408
化學理學哪些專業好 瀏覽:1471
數學中的棱的意思是什麼 瀏覽:1036