『壹』 目前物理學前沿的問題有哪些
雖然理論推算出暗物質占整個宇宙總物質的85%,但是到現在都沒有找到明確的證據證明它們存在。所以,尋找暗物質,未來仍是科學家們努力的主要方向之一。
『貳』 近代物理學,現代物理學都包括哪些內容
現代物理學以相對論和量子力學為基礎,它的研究范圍已經擴展為從基本粒子到宇宙天體的各個領域,形成了許多分支學科和邊緣學科。
1.相對論
愛因斯坦(Albert Einstein,1879—1955)創建的相對論主要是時空的理論,它放棄了牛頓的絕對時間和絕對空間,建立了相對論時空觀,使物理觀念發生了一場根本的變革。在相對論中,局限於慣性參考系的理論稱為狹義相對論,推廣到一般參考系和包括引力場在內的理論稱為廣義相對論。
(1)狹義相對論。
1905年,愛因斯坦建立了狹義相對論。狹義相對論有兩個基本假設:
① 相對性原理:所有慣性參考系都是等價的,物理規律對於所有慣性參考系都可以表述為相同形式;
② 光速不變原理:真空中的光速相對於任何慣性系沿任一方向恆為c,並與光源運動無關。
愛因斯坦從這兩個假設出發,推導出兩個慣性坐標系的時空變換關系即洛侖茲變換。從而徹底否定了「以太」的存在,並導出了運動剛體的「長度收縮」、運動時鍾的「時間延緩」、同時的相對性及新的速度合成法則等。狹義相對論的時空觀表明:第一,時間、空間和物質的運動是有密切聯系的,時間和空間的特性是相對的,時間間隔和空間間隔的量度並不具有不變性,而是隨物質運動狀態的變化而變化的;第二,時間和空間存在著不可分割的聯系,它們不能分割開來而獨立存在,一切物理現象和過程都是在X、Y、Z和t的統一的四維連續區中存在著。
愛因斯坦把狹義相對論用於電動力學,證明了麥克斯韋方程組符合相對性原理,建立了相對論電動力學。在這里,電場和磁場已不再各自是一個矢量,而是一個反對稱的四維張量,這個張量在不同的慣性系裡按一定的規律變換。電場和磁場是這個統一的張量的不同分量,它們對於不同的慣性系表現出來的效應是不同的。在某一個慣性系中表現出的是一個純粹的電場或磁場;在另一個慣性系中將同時表現出電場和磁場。這就是說,電磁場劃分為電場部分和磁場部分,只具有相對意義,它與觀察者所在的慣性系有關。
愛因斯坦還把相對論用於力學,建立了相對論力學。相對論力學能夠正確地描述高速運動的規律,並且,當速度v<<c時,相對論力學能夠過渡到經典力學。在相對論力學中,動量守恆和能量守恆這兩條定律被統一成一條定律,給出了物體質量隨速度增長的關系式以及質能關系式E=mc2,後者反映了質量與能量的等效關系。
(2)廣義相對論。
從1907到1915年,愛因斯坦提出並建立了廣義相對論。這個理論的出發點是引力質量和慣性質量相等這一事實,由此可以提出等效原理的假設:引力場同參照系的相當的加速度在物理上完全等價。根據廣義相對論,萬有引力效應是空間、時間彎曲的一種表現。空間、時間的彎曲結構,決定於物質的能量密度與動量密度在空間、時間中的分布;而空間、時間的彎曲結構,又反過來決定物體的運行軌道。愛因斯坦由廣義相對論作出的譜線紅移、光線彎曲、行星軌道近日點運動的預言,已經被一些實驗證實。
2.量子力學
量子力學是研究微觀粒子基本運動規律的理論。1923年,德布羅意(Louis de Broglie,1892—)提出物質波理論,開創了量子力學的時代。德布羅意認為,不僅光有波粒二象性,實物粒子也有波粒二象性。他還把描寫物質粒子性的物理量與描寫物質波動性的物理量聯系起來,寫出了以他的名字命名的關系式。1926年,薛定諤(1887--1961)根據德布羅意物質波思想,引入波函數,得出了量子力學的基本方程--薛定諤方程(波動方程),還進而建立了微擾理論,詳細計算了散射等問題,完成了波動力學的創建工作。
差不多同時,海森伯(Werner Karl Heisenberg,1901—1976)等人從量子化條件出發建立了矩陣力學,並成功地解決了氫原子能級、斯塔克效應、氫原子在電場和磁場中能級的移動等問題。波動力學和矩陣力學是從兩個不同的方面研究一個共同的問題,它們的效果是相同的,可以通過數學變換從一個理論轉換為另一理論。人們把波動力學和矩陣力學合在一起,統稱為量子力學。1925—1930年,狄拉克(Paul Adrien Maurice Dirac,1902—1984)對量子力學理論作了全面總結,還建立了相對論量子力學。
3.現代物理學的各個領域
(1)量子光學和現代光學。
1900年,普朗克(Max Planck,1858—1947)在解釋黑體輻射時提出了能量子假說,認為各種頻率的電磁波只能以一定的能量子方式從振子發射,能量子是不連續的,其大小隻能是電磁波(或光)的頻率與普朗克常數乘積的整數倍。1905年愛因斯坦發展了普朗克的能量子假設,把量子論貫穿到整個輻射和吸收過程中,提出了光量子(光子)理論,圓滿解釋了光電效應。其後的康普頓效應進一步證明了光量子理論。
量子力學的理論表明,光既具有波的性質,也具有粒子的性質,即波粒二象性。但光子不同於17世紀微粒說中的粒子,光子是和光的頻率聯系著的。
20世紀60年代前後,激光器的問世、全息攝影技術的應用、光纖通訊的發展、紅外技術和遙感技術的出現,使光學進入現代光學的新時代,形成一些新的分支學科或邊緣學科,如傅里葉光學、非線性光學、激光光譜學、集成光學等。
(2)原子物理。
1911年,盧瑟福(Ernst Rutherford,1871—1937)通過實驗提出原子的有核模型,但在經典物理下,該模型同原子的穩定性發生了矛盾。1913年,玻爾(Niels Bohr,1885—1962)將量子觀念引入原子系統,通過定態假設和頻率假設兩個假說建立了他的原子結構理論,並成功地解釋了氫原子光譜規律。後來,人們又提出空間量子化的概念,研究了原子的殼層結構,發現了電子的自旋,不斷修正了原子結構理論。
這種在量子力學之前形成的原子理論,是有很大局限性的,其關鍵在於未能用波粒二象性去考慮原子問題。在這個理論中,研究范圍每擴大一步,一般都要附帶進若干新的假設或某些經驗公式,因此它不是一種完整的理論。只有以量子力學為基礎對原子結構進行研究,才能得到原子結構的精確描述。
(3)原子核物理。
原子核物理研究原子核的特性、結構和變化。1920年以前,盧瑟福等人發現了質子,1932年查德威克(James Chadwick,1891—1974)發現中子,從此人們認識到原子核是由質子和中子構成的。此後,人們曾提出各種核模型假設來解釋原子核的某些運動規律和現象。這些模型比較重要的有液滴模型、α粒子模型、費米氣體模型、殼層模型、單粒子殼模型、多粒子殼模型、集體運動模型、統一模型等等。但直到目前還沒有一個模型能夠解釋所有的實驗事實,原子核結構仍然是人們正在進行探索的一個重大課題。
早在1896年,人們就發現了天然放射性現象,使傳統的元素不變的觀念受到巨大沖擊。從1919年起,人們又實現了原子核的人工蛻變,這是實現人工核反應的重大突破。1938年,用中子轟擊鈾導致了核裂變的發現,根據相對論的質能關系,核裂變的質量虧損會產生巨大的能量。1942年,第一座原子反應堆在美國芝加哥大學建成並開始運轉,開始了人類利用原子能的新紀元。1952年以後,人們又實現了輕核聚變,產生了比裂變大得多的能量。
(4)粒子物理。
目前實驗上所能探測到的物質結構最深層次的研究,稱為粒子物理學,也稱為高能物理學。1932年安德森(Carl Darid Ander-son,1905—)在宇宙射線中發現了正電子,標志著粒子物理學的誕生。隨後逐步發現了一系列新的粒子。早期發現的粒子,都是來自宇宙射線,50年代以後,由於各種加速器相繼問世,大批粒子不斷地被發現。到目前為止,已經發現的粒子有幾百種之多,而且看來還會不斷有新的發現。
①粒子之間的四種相互作用。
粒子之間存在著復雜的相互作用,能夠產生和消滅。粒子之間有四種相互作用:引力相互作用、弱相互作用、電磁相互作用和強相互作用。四種相互作用都是隨著粒子之間距離的增加而減弱。引力作用和電磁作用是隨著距離的改變按照平方反比的規律變化,屬於長程力。弱作用和強作用隨著距離的增加,比平方反比的減弱還要快得多,屬於短程力。按照所參與相互作用的不同,可以把已發現的粒子分為三大類:規范粒子、輕子和強子。
② 對稱性及其對應的守恆定律。
對稱性的研究為建立粒子物理理論提供了線索。物理規律的某種對稱性對應著相應的守恆定律。在宏觀物理中成立的質能守恆、角動量守恆、動量守恆和電荷守恆,在粒子物理中仍舊有效。此外,粒子運動還遵守重子數守恆、電輕子數守恆和μ輕子數守恆等守恆定律。粒子物理中還有一些在某種相互作用中受到破壞的守恆定律,如宇稱守恆定律在弱相互作用下就不成立。
③ 強子的內部結構。
從本世紀50年代開始,人們意識到強子具有內部結構並得到了實驗證實。1964年,蓋爾曼(Murry Gell-Mann,1929—)提出強子結構的誇克模型。1974年,丁肇中(1936—)和里希特(Burton Richter,1931—)同時發現了J/ψ粒子,為誇克模型的真實性提供了有力的證據。理論上預言有六種誇克,現在已經發現了五種,第六種誇克的實驗發現還有待於進一步的證實。雖然誇克在強子內部可以相當自由的運動,但即使用目前最大的加速器也沒能將誇克打出來。很多人認為這是「誇克禁閉」造成的。因為誇克之間的相互作用是通過交換膠子實現的,膠子在強子內部起「粘膠」作用,有八種不同色荷的膠子以不同形式把誇克粘合在一起,在誇克之間傳遞相互作用。1979年,丁肇中等人在實驗中證實了膠子的存在,給研究強相互作用的量子色動力學以有力的支持。
④量子場論。
波粒二象性,以及粒子的產生和消滅,是微觀、高速物理中的普遍現象。在高能情況下,不可能像在非相對論情況中那樣來區分粒子和場。把粒子和場統一處理並能反映粒子轉化的基本理論叫做量子場論。從1927年起經過二十多年時間由狄拉克等人建立的量子電動力學是最早的量子場論。在量子電動力學中,各種粒子均用相應的量子場來描述。空間、時間中的每一點的量子場均以算符來表示,稱為場算符。場算符滿足正則對易關系與形式上的哈密頓方程。在薛定諤方程的基礎上,加進產生與湮滅算符,叫做二次量子化。重整化方法的引入,使量子電動力學成為一個完整的描繪微觀電磁相互作用的精確理論,理論和實驗之間的符合達到驚人的程度。但是,量子電動力學本身在邏輯上不夠自洽,其研究方法在向弱相互作用和強相互作用擴展時也遇到了難以克服的困難。
⑤規范場論。
最有可能把四種相互作用統一起來的量子場論是近年來崛起的規范場論。該理論企圖在進行超對稱的局部變換時,讓方程中所涉及的每一種對稱性都引入一種規范場,從而將包括引力在內的四種相互作用都包含在一個共同的理論框架之中,實現全面的大統一。1961年格拉肖(Sheldon Lee Glashow,1932—)提出弱相互作用和電磁相互作用統一的理論模型。1967年和1968年,溫伯格(Steven Weinberg,1933—)和薩拉姆(Abs Salam,1926—)在規范場論基礎上實現了弱相互作用和電磁相互作用的統一,並為一系列實驗所證明。
(5)量子統計物理。
1900年普朗克提出能量子假設,也標志著初期量子統計的開端。在經典統計方法中加進能量量子化的假設,可以成功地推導出與黑體輻射實驗相符的普朗克公式,還可以推導出與實驗符合得很好的固體比熱公式和多原子氣體比熱公式。量子力學的建立改變了經典統計力學的統計方法,形成了量子統計物理。
量子統計與經典統計的區別,主要反映在以下四點:
① 由於能量的變化是不連續的,能量在相空間中的代表點不是充滿各處,而僅僅存在於某一些區域中,因此經典統計中的相空間積分應當改為直接求各能級的分配數的總和;
② 由於全同粒子的不可辨別性,相同粒子的互換不能算作一個新的微觀態;
③ 由於測不準關系的限制,相空間的小體積不能取得任意小;
④ 費米子由於受泡利不相容原理的限制,每一相格只容許至多一個粒子,而對於玻色子,每一相格所容許的粒子數目沒有限制,因此對費米子和玻色子要用不同的方法進行統計。
用量子統計,能夠精確地解釋黑體輻射、金屬中自由電子的比熱等問題,並可導出熱力學第三定律。
(6)凝聚態物理。
凝聚態物理研究凝聚態(固態與液態)物質的微觀結構、物理性質及其內部運動規律。它是由固體物理學發展起來的,是現代物理學中最龐大的一個分支。它包括了固體物理學、晶體學、金屬物理學、半導體物理學、超導體物理學,還包括近年來興起的表面物理學、非晶態物理學等等。下面簡單介紹一下其中的固體物理學、半導體物理學和超導體物理學。
①固體物理。
固體物理學主要的研究對象是晶態固體。19世紀,人們就已經積累了關於晶體幾何結構的大量知識。20世紀初,實驗和理論都為固體物理學的建立提供了堅實的基礎。1912年,勞厄(Maxvon Lane,1879—1960)首先指出晶體可以作為X射線的衍射光柵,使人們通過實驗觀測對晶體結構有了較深入的了解。量子理論的發現,使人們能夠更加深入和比較正確地描述晶體內部微觀粒子的運動過程。在這個基礎上,1928年布洛赫(F.BLoch,1905—)提出,晶體中原子的周期排列形成了對自由電子運動有影響的周期性勢場,在這種勢場中,電子占據的、彼此相隔很近的可能能級形成能帶,能帶間有一定的間隙,稱為禁帶。這個能帶理論為固體提供了一個普遍適用的微觀模型。固體能帶論和晶格動力學使固體物理學成為一門系統的基礎學科,在處理晶體性能方面獲得了重大成功。例如,這些理論得出了區分導體、半導體和絕緣體的微觀判據,形成了位錯、晶體缺陷等方面系統的理論。
②半導體物理。
能帶理論為半導體物理的發展奠定了基礎。半導體是依靠導帶中的電子或價帶中的空穴導電的,其導電性能可通過摻入雜質原子取代原來的原子而進行控制。近年來,半導體物理的研究已經深入和擴展到半導體能帶超精細結構的研究、半導體發光機制及半導體光導性質的研究等領域,表面物理也成為半導體物理學的一個重要研究內容。半導體物理的研究導致了1947年晶體管的發明和1959年集成電路的發明。當代集成電路技術與計算機技術的結合,已從根本上改變了整個工業、甚至整個社會的面貌,促進了新的世界技術革命的到來。
③超導物理。
超導體物理學研究超導現象和超導體材料的特性。當溫度下降到臨界溫度時金屬突然失去電阻的現象稱為超導現象。它是1911年由昂內斯(H.K.Onnes,1853—1926)首先發現的。1933年發現了超導體的完全抗磁性,即邁斯納效應。1958年巴丁(Jhon Bardeen,1908—)等人提出了一個超導現象的微觀理論,大體上說明了超導現象的起源。1962年,人們發現了超導隧道效應,還提出了電子——聲子相互作用的強耦合超導理論。目前世界各國都在加緊對高溫超導材料的研究,已經研製出超導溫度為攝氏零下幾十度的高溫超導材料。
(7)天體物理。
天體物理研究天體的物質結構以及天體的形成和演化。從20世紀30年代到60年代,逐漸形成了關於恆星的比較統一的理論。恆星的前身(星胚)是由彌漫稀薄的星際物質通過引力塌縮而凝聚成密度較大的氣體和塵埃雲。在塌縮過程中星胚中心密度增大、溫度增高,逐漸發熱發光,形成星前天體。引力收縮是星前天體的能源。當星胚核心溫度升高到一千萬度時,氫核聚變開始成為主要能源,這時進入主星序階段,一個真正的恆星便形成了。據計算,恆星只用幾百萬年甚至幾十萬年就走完了星前階段,而主星序則長達10億年到100億年。恆星演化的末期,將出現三類天體:白矮星、中子星和黑洞。目前,白矮星和中子星已被大量發現,黑洞的發現尚有待於進一步證實。在宇宙整體的研究方面,人們提出了宇宙膨脹理論和大爆炸理論,並且找到了一些實驗證據。
(8)非平衡統計物理。
非平衡統計物理研究處於非平衡態的物質系統。經典統計力學認為,物質系統的演化是一種從有序到無序的不可逆過程。但生物界的有些現象卻與此相反,如生物的進化就是從低級到高級、從無序到有序乃至高度有序發展的。這樣,物理學和生物學這兩種演化觀就表現出尖銳的對立。這告訴我們,物理系統也應存在著從無序到有序的演化過程。1969年,普里高津(N.G.Pri- gogine,1917—)提出耗散結構理論,為尋找從無序到有序提供了新的思想。普里高津認為,處在遠離平衡態的不穩定狀態的開放系統,如果內部各要素間存在著非線性的相互作用,在穩定性被破壞後,可能向新的穩定狀態進行,在這個過程中,可以出現有序結構(耗散結構)。1973年,哈肯(Hermann Haken,1927—)從另一角度提出了一種研究從無序到有序的理論——協同學,它是一種產生自組織有序結構和功能行為的理論。
(9)生物物理。
生物物理學用物理學的理論和實驗技術研究生命現象。從20世紀30年代到50年代,一批物理學家在晶體分析技術的基礎上,逐步弄清了蛋白質的基本結構。1944年,薛定諤用量子力學的觀點討論了遺傳問題,他設想,基因是一種同分異構的連續體構成的非周期性晶體,在它的巨大數量的原子或原子群的排列組合中,蘊含著一種微型密碼,這種密碼形成遺傳信息。50年代初,一些物理學家開始對遺傳的物質基礎DNA(脫氧核糖核酸)進行結構細節的晶體研究。1953年,物理學家克里克(F.H.C.Crick,1916—)和病毒遺傳學家沃森(J.D.Watson,1928—)一起,提出了DNA雙螺旋結構的分子模型,並提出DNA分子結構的遺傳含義。他們認為,DNA雙螺旋結構就是攜帶著遺傳密碼的基因,一個DNA分子能夠復制出兩個完全相同的DNA分子。在DNA如何控制蛋白質合成的進一步探究中,物理學家伽莫夫(G.Gamov,1904—1968)根據排列組合提出「三聯體密碼子」假說,提出共有64種遺傳密碼。到1969年,這64種遺傳密碼已全部測出並被列成密碼表。遺傳信息之謎的破譯,是20世紀自然科學最偉大的成就之一。
『叄』 物理學前沿研究十大方向
研究方向:粒子物理與核物理、天體物理、原子分子光物理、凝聚態物理等大方向,
物理學,是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子爛肆等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。
物理學的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一飢知轎門自然科學學科。
物理學研究領域
1、凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。
2、原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。
3、高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本猛余粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。
4、天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。
物理學的性質
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。
『肆』 現代物理學前沿是什麼
力,熱,光,電,原子物理。量子力學,都有很前沿的東西,請說明研究方向
『伍』 二十世紀物理學的三大前沿領域是什麼
物理學四大領域分別是:
1.粒子物理
2.凝聚態物理
3.原子分子和光物理
4.天體物理學和宇宙學
從諾貝爾物理學獎中可以看出,21世紀以來四大領域的物理學家可謂是輪流坐莊,
2001,原子分子與光物理:原子的玻色-愛因斯坦凝聚(BEC)
2002,天體物理與宇宙學:探測宇宙中微子和X射線源
2003,凝聚態物理:超導和超流理論
2004,粒子物理:量子色動力學(QCD)
2005,原子分子與光物理:量子光學和飛秒光梳
2006,天體物理與宇宙學:微波背景輻射的各向異性
2007,凝聚態物理:巨磁阻效應
2008,粒子物理:對稱性破缺
2009,原子分子與光物理:光纖技術和CCD鏡頭
2010,凝聚態物理:石墨烯
2011,天體物理與宇宙學:超新星和宇宙加速膨脹
2012,原子分子和光物理:量子光學和量子信息學
『陸』 現代物理學的發展前沿
高能物理學又稱粒子物理學或基本粒子物理學,它是物理學的一個分支學科,研究比原子核更深層次的微觀世界中物質的結構性質,和在很高的能量下,這些物質相互轉化的現象,以及產生這些現象的原因和規律。它是一門基礎學科,是當代物理學發展的前沿之一。粒子物理學是以實驗為基礎,而又基於實驗和理論密切結合發展的。
高能物理學的發展歷史
兩千多年來人們關於物質是由原子構成的思想,由哲學的推理,變成了科學的現實,而且在這個階段終了時,形成了現代的基本粒子的思想。
原子的概念,是由2400年前的希臘哲學家德謨克利特,和中國戰國時代的哲學家惠施提出來的。惠施說「至小無內,謂之小一」,意思是最小的物質是不可分的。這個最小的單元,也就是德謨克利特稱為原子的東西。但是他們都沒能說明原子或「最小的單元」具體是什麼。之後的兩千多年間,原子這個概念,只停留在哲學思想的范疇。
1897年,湯姆遜在實驗中發現了電子,1911年盧瑟福由α粒子大角度彈性散射實驗,又證實了帶正電的原子核的存在。這樣,就從實驗上證明了原子的存在,以及原子是由電子和原子核構成的理論。
1932年,查德威克在用α粒子轟擊核的實驗中發現了中子。隨即人們認識到原子核是由質子和中子構成的,從而得到了一個所有的物質都是由基本的結構單元——質子、中子和電子構成的統一的世界圖像。
就在這個時候開始形成了現代的基本粒子概念。1905年,愛因斯坦提出電磁場的基本結構單元是光子,1922年被康普頓等人的實驗所證實,因而光子被認為是一種「基本粒子」。1931年,泡利又從理論上假設存在一種沒有靜止質量的粒子——中微子(嚴格地講是反中微子,中微子的存在是1956年由萊因斯和科恩在實驗上證實的)。
相對論量子力學預言,電子、質子、中子、中微子都有質量和它們相同的反粒子。第一個反粒子——正電子是1932年,安德森利用放在強磁場中的雲室記錄宇宙線粒子時發現的,50年代中期以後陸續發現了其他粒子的反粒子。
隨著原子核物理學的發展,發現除了已知的引力相互作用和電磁相互作用之外,還存在兩種新的相互作用——強相互作用和弱相互作用。
1934年,湯川秀樹為解釋核子之間的強作用短程力,基於同電磁作用的對比,提出這種力是由質子和(或)中子之間交換一種具有質量的基本粒子——介子引起的。1936年,安德森和尼德邁耶在實驗上確認了一種新粒子,其質量是電子質量的207倍,這就是後來被稱為μ子的粒子。μ子是不穩定的粒子,它衰變成電子、一個中微子和一個反中微子,平均壽命為百萬分之二秒。
湯川最初提出的介子的電荷是正的或負的。1938年,凱默基於實驗上發現的核力的電荷無關性的事實,發展了稍早些時候出現的同位旋的概念,建立了核力的對稱性理論。
1947年,孔韋爾西等人用計數器統計方法發現μ子並沒有強作用。1947年鮑威爾等人在宇宙線中利用核乳膠的方法發現了真正具有強相互作用的介子,其後,在加速器上也證實了這種介子的存在。
從此以後人類認識到的基本粒子的數目越來越多。就在1947年,羅徹斯特和巴特勒在宇宙線實驗中發現v粒子(即K介子),這就是後來被稱為奇異粒子的一系列新粒子發現的開始。由於它們獨特的性質,一種新的量子數——奇異數的概念被引進到粒子物理中。在這些奇異粒子中,有質量比質子輕的奇異介子,有質量比質子重的各種超子。在地球上的通常條件下,它們並不存在,在當時的情況下,只有藉助從太空飛來的高能量宇宙線才能產生。
這些發現了的基本粒子,加上理論上預言其存在,但尚未得到實驗證實的引力場量子——引力子,按相互作用的性質,可分成引力子、光子、輕子和強子四類。為了克服宇宙線流太弱這個限制,從50年代初開始建造能量越來越高、流強越來越大的粒子加速器。實驗上也相繼出現了新的強有力的探測手段,如大型氣泡室、火花室、多絲正比室等,開始了新粒子的大發現時期。
到了60年代頭幾年,實驗上觀察到的基本粒子的數目已經增加到比當年元素周期表出現時發現的化學元素的數目還要多,而且發現的勢頭也越來越強。1961年,由蓋耳-曼及奈曼類比化學元素周期表提出了,用強相互作用的對稱性來對強子進行分類的「八重法」。
八重法分類不但給出了當時已經發現的強子在其中的位置,還准確地預言了一些新的粒子,如1964年用氣泡室實驗發現的Ω粒子。八重法很好地說明粒子的自旋、宇稱、電荷、奇異數以及質量等靜態性質的規律性。
在此階段中,證實了不單電子,所有的粒子,都有它的反粒子(有的粒子的反粒子就是它自身)。其中第一個帶電的反超子是由中國的王淦昌等在1959年發現的。此外,還發現了為數眾多的壽命極短經強作用衰變的粒子——共振態。
基本粒子大量發現,使人們懷疑這些基本粒子的基本性。基本粒子的概念,面臨一個突變。
20世紀40年代到60年代,對微觀世界理性認識的最大進展是量子力學的建立。經過一代物理學家的努力,量子力學能很好地解釋原子結構、原子光譜的規律性、化學元素的性質、光的吸收及輻射等等現象,特別是當它同狹義相對論結合而建立相對論性量子力學以後,它已經成為微觀世界在原子、分子層次上的一個基本理論。
但是,量子力學還有幾個方面的不足:它不能反映場的粒子性;不能描述粒子的產生和湮沒的過程;它有負能量的解,這導致物理概念上的困難。量子場論是由狄喇克、約旦、維格納、海森伯和泡利等人在相對論量子力學的基礎上,通過場的量子化的途徑發展出來的,它很好地解決了這三個問題。
庫什和福里1947年發現的電子反常磁矩,和由蘭姆等發現的氫原子能級的分裂,只有通過量子電動力學的重正化理論才能得到正確的解釋。今天,量子電動力學已經經受了許多實驗上的驗證,成為電磁相互作用的基本理論。
並非所有的基本粒子都是「基本」的想法,最早是在1949年由費密和楊振寧提出的。他們認為,介子不是基本的,基本的是核子,而介子只是由核子和反核子構成的結合態。1955年,坂田昌一擴充了費密和楊振寧的模型提出了強子是由核子、超子和它們的反粒子構成的模型。
1961年,在實驗上發現了不少共振態。1964年,已發現的基本粒子(包括共振態)的種類增加到上百種,因而使得蓋耳-曼和茲韋克提出,產生對稱性的基礎就是構成所有強子的構造單元,它們一共有三種,並命名為誇克。
20世紀60年代以來,在宇宙線中、加速器上以及在岩石中,都進行了對誇克的實驗找尋,但迄今還沒有被確證為成功的報道。在60年代和70年代,有更多的能量更高、性能更好的加速器建成。雖然在這些加速器上沒有找到誇克。但卻得到了間接的,但是更有力地說明誇克存在的證據。
與強子的數目急劇增加的情況相反,自從1962年利用大型火花室,在實驗上證實了兩類中微子之後,長時間內已知的輕子就只有四種,但是到了1975年情況有了改變,這一年佩爾等在正負電子對撞實驗中發現了一個新的輕子,它帶正電或帶負電,達質子的兩倍,所以又叫重輕子。與它相應,普遍相信應有另一種中微子存在,但是尚未得到實驗上的證實。
誇克理論提出不久,就有人認識到強子的強相互作用和弱相互作用的研究應建立在誇克的基礎上,同時還要充分考慮強子的結構特性和各種過程中的運動學特點,才能正確地解釋強子的壽命、寬度、形狀因子、截面等動態性質。1965年,中國發展的強子結構的層子模型,就是這個方向的首批研究之一。層子的命名,是為了強調物質結構的無限層次而作出的。在比強子更深一層次上的層子,就是誇克。近20年來,粒子物理實驗和理論發展的主流,一直沿著這個方向,在弱作用方面,已有了突破性的進展,在強作用方面,也有重大的進展。
最早的弱相互作用理論,是費密為了解釋中子衰變現象在1934年提出來的。弱作用宇稱不守恆的發現,給弱作用理論的研究帶來很大的動力。隨後不久便確立了描述弱作用的流在洛倫茲變換下應當具有的形式,而且適用於所有的弱作用過程,被稱為普適費密型弱相互作用理論。
1961年,格拉肖提出電磁相互作用和弱相互作用的統一理論。這個理論的基礎,是楊振寧和密耳斯在1954年提出的非阿貝耳規范場論。但是在這個理論里,這些粒子是否具有靜止質量、理論上如何重正化等問題,沒有得到解答。
1967~1968年,溫伯格、薩拉姆闡明了作為規范場粒子是可以有靜止質量的,還算出這些靜止質量同弱作用耦合常數以及電磁作用耦合常數的關系。這個理論中很重要的一點是預言弱中性流的存在,而當時實驗上並沒有觀察到弱中性流的現象。由於沒有實驗的支持,所以當時這個模型並末引起人們的重視。
1973年,美國費密實驗室和歐洲核子中心在實驗上相繼發現了弱中性流,之後,人們才開始對此模型重視起來。在1983年,魯比亞實驗組等在高能質子—反質子對撞的實驗中發現的特性同理論上期待的完全相符規范粒子,這給予電弱統一理論以極大的支持,從而使它有可能成為弱相互作用的基本理論。
目前,粒子物理已經深入到比強子更深一層次的物質的性質的研究。更高能量加速器的建造,無疑將為粒子物理實驗研究提供更有力的手段,有利於產生更多的新粒子,以弄清誇克的種類和輕子的種類,它們的性質,以及它們的可能的內部結構。
弱電相互作用統一理論日前取得的成功,特別是弱規范粒子的發現,加強了人們對定域規范場理論作為相互作用的基本理論的信念,也為今後以高能輕子作為探針探討強子的內部結構、誇克及膠子的性質以及強作用的性質提供了可靠的分析手段。在今後一個時期,強相互作用將是粒子物理研究的一個重點。
把電磁作用、弱作用和強作用統一起來的大統一理論,近年來引起相當大的注意。但即使在最簡單的模型中,也包含近20個無量綱的參數。這表明這種理論還包含著大量的現象性的成分,只是一個十分初步的嘗試。它還要走相當長的一段路,才能成為一個有效的理論。
另外從發展趨勢來看,粒子物理學的進展肯定會在宇宙演化的研究中起推進作用,這個方面的研究也將會是一個十分話躍的領域。
很重要的是,物理學是一門以實驗為基礎的科學,粒子物理學也不例外。因此,新的粒子加速原理和新的探測手段的出觀,將是意義深遠的。