A. 如何理解網路協議,包括物理層,網路層,應用層,越通俗越好,謝謝各位牛人
物理層:這個最好理解了,打個比方我有1台PC,我現在網口沒有插網線,這個就是「物理層」沒有連通,物理層就是代表我們能看得見摸得著的一些東西,比如計算機網口壞掉了,網線斷了什麼的都是屬於物理層的故障。
網路層:簡單點說就是IP地址的問題,比如1台PC它需要連接網路,之前它已經手工指定了一個192.168.1.10的地址,但是這次上層路由器給它分的是192.168.1.11的IP地址,所以這台計算機又上不了網了,這個就是網路層故障,當然網路層的東西還是有很多的,總而言之你可以理解為就是IP地址方面出了點問題。
應用層:這個也是比較好理解的,繼續剛剛的例子,現在這台PC物理層也好了,網路層也好了,比如說你現在通過IE瀏覽器來上網問題,你通過QQ,MSN上網和別人聊天,通過炒股軟體觀察股市行情,這些實際應用我們能夠體驗的到的就叫做應用層。可能有時候計算機的IE瀏覽器奔潰了,你不能通過它來上網了,這個就是IE瀏覽器的應用層出了問題。
PS:樓主可能剛剛接觸網路所以有些東西我寫的比較直白,也難免不夠嚴謹,如果你想再更深入全面的了解網路的東西建議看一些專業的書籍,我說您的這些也只能是對於剛剛開始對於概念不清的同學一點小點解。
B. 網路層的網路層協議
TCP/IP網路層的核心是IP協議,它是TCP/IP協議族中最主要的協議之一。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。 TCP/IP網路使用32位長度的地址以標識一台計算機和同它相連的網路,它的格式為:IP地址=網
絡地址+主機地址。IP地址是通過它的格式分類的,它有四種格式:A類、B類、C類、D類。如下所示
格式位數主機地址:A類0網路(7位)主機地址(24位)、
B類10網路(14位)主機地址(16位)、C類110網路(21位)主機地址(8位)、D類1110多路通信地址(28位)、未來的格式11110將來使用。這樣,A類地址空間為0-127,最大網路數為126,最大主機數為16,777,124;B類地址空間為128-191,最大網路數為16384,最大主機數為65,534;C類地址空間為192-223,最大網路數為2,097,152,最大主機數為254;D類地址空間為224-254。 C類地址空間分配概況。分配區域地址空間:多區域192.0.0.0~193.255.255.255、歐洲:194.0.0.0~195.255.255.255、其他:196.0.0.0~197.255.255.255、北美:197.0.0.0~199.255.255.255、中南美:200.0.0.0~201.255.255.255、太平洋地區:202.0.0.0~203.255.255.255、其他:204.0.0.0~205.255.255.255、其他:206.0.0.0~207.255.255.255。註:其中「多區域」表示執行該計劃前已經分配的地址空間;「其他」表示已指定名稱的地區之外的地理區劃。
特殊格式的IP地址:廣播地址:當網路或主機標志符欄位的每位均設置為1時,這個地址編碼標識著該數據報是一個廣播式的通信,該數據報可以被發送到網路中所有的子網和主機。例如,地址128.2.255.255意味著網路128.2上所有的主機。本網路地址:IP地址的主機標識符欄位也可全部設置為0,表示該地址作為「本主機」地址。網路標識符欄位也可全部設置為0,表示「本網路」。如,128.2.0.0表示網路地址為128.2的網路。使用網路標識符欄位全部設置為0的IP地址在一台主機不知道網路的IP地址時時是很有用的。私有的IP地址:在有些情況下,一個機構並不需要連接到Internet或另一個專有的網路上,因此,無須遵守對IP地址進行申請和登記的規定。該機構可以使用任何的地址。在RFC1597中,有些IP地址是用作私用地址的:A類地址:10.0.0.0到10.255.255.255。B類地址:172.16.0.0到172.31.255.255.255。C類地址:192.168.0.0到192.168.255.255。 ARP協議是「AddressResolutionProtocol」(地址解析協議)的縮寫。在區域網中,網路中實際傳輸的是「幀」,幀裡面是有目標主機的MAC地址的。在乙太網中,一個主機要和另一個主機進行直接通信,必須要知道目標主機的MAC地址。但這個目標MAC地址是如何獲得的呢?它就是通過地址解析協議獲得的。所謂「地址解析」就是主機在發送幀前將目標IP地址轉換成目標MAC地址的過程。ARP協議的基本功能就是通過目標設備的IP地址,查詢目標設備的MAC地址,以保證通信的順利進行。協議屬於鏈路層的協議在乙太網中的數據幀從一個主機到達網內的另一台主機是根據48位的乙太網地址(硬體地址)來確定介面的,而不是根據32位的IP地址。內核(如驅動)必須知道目的端的硬體地址才能發送數據。當然,點對點的連接是不需要ARP協議的。 ARP協議的數據結構:
以下是引用片段:
typedefstructarphdr
{
unsignedshortarp_hrd;/*硬體類型*/
unsignedshortarp_pro;/*協議類型*/
unsignedchararp_hln;/*硬體地址長度*/
unsignedchararp_pln;/*協議地址長度*/
unsignedshortarp_op;/*ARP操作類型*/
unsignedchararp_sha[6];/*發送者的硬體地址*/
unsignedlongarp_spa;/*發送者的協議地址*/
unsignedchararp_tha[6];/*目標的硬體地址*/
unsignedlongarp_tpa;/*目標的協議地址*/
}ARPHDR,*PARPHDR; 為了解釋ARP協議的作用,就必須理解數據在網路上的傳輸過程。這里舉一個簡單的PING例子。
假設我們的計算機IP地址是192.168.1.1,要執行這個命令:ping192.168.1.2.該命令會通過ICMP協議發送ICMP數據包。該過程需要經過下面的步驟:1、應用程序構造數據包,該示例是產生ICMP包,被提交給內核(網路驅動程序);2、內核檢查是否能夠轉化該IP地址為MAC地址,也就是在本地的ARP緩存中查看IP-MAC對應表;3、如果存在該IP-MAC對應關系,那麼跳到步驟9;如果不存在該IP-MAC對應關系,那麼接續下面的步驟;4、內核進行ARP廣播,目的地的MAC地址是FF-FF-FF-FF-FF-FF,ARP命令類型為REQUEST(1),其中包含有自己的MAC地址;5、當192.168.1.2主機接收到該ARP請求後,就發送一個ARP的REPLY(2)命令,其中包含自己的MAC地址;6、本地獲得192.168.1.2主機的IP-MAC地址對應關系,並保存到ARP緩存中;7、內核將把IP轉化為MAC地址,然後封裝在乙太網頭結構中,再把數據發送出去;使用arp-a命令就可以查看本地的ARP緩存內容,所以,執行一個本地的PING命令後,ARP緩存就會存在一個目的IP的記錄了。當然,如果你的數據包是發送到不同網段的目的地,那麼就一定存在一條網關的IP-MAC地址對應的記錄。知道了ARP協議的作用,就能夠很清楚地知道,數據包的向外傳輸很依靠ARP協議,當然,也就是依賴ARP緩存。要知道,ARP協議的所有操作都是內核自動完成的,同其他的應用程序沒有任何關系。同時需要注意的是,ARP協議只使用於本網路。 具有本地磁碟的系統引導時,一般是從磁碟上的配置文件中讀取IP地址。但是無盤機,如X終端或無盤工作站,則需要採用其他方法來獲得IP地址。網路上的每個系統都具有唯一的硬體地址,它是由網路介面生產廠家配置的。無盤系統的RARP實現過程是從介面卡上讀取唯一的硬體地址,然後發送一份RARP請求(一幀在網路上廣播的數據),請求某個主機響應該無盤系統的IP地址(在RARP應答中)。在概念上這個過程是很簡單的,但是實現起來常常比ARP要困難。RARP的正式規范是RFC903[Finlaysonetal.1984]。 RARP的分組格:RARP分組的格式與ARP分組基本一致。它們之間主要的差別是RARP請求或應答的幀類型代碼為0x8035,而且RARP請求的操作代碼為3,應答操作代碼為4。對應於ARP,RARP請求以廣播方式傳送,而RARP應答一般是單播(unicast)傳送的。RARP伺服器的設計:雖然RARP在概念上很簡單,但是一個RARP伺服器的設計與系統相關而且比較復雜。相反,提供一個ARP伺服器很簡單,通常是TCP/IP在內核中實現的一部分。由於內核知道IP地址和硬體地址,因此當它收到一個詢問IP地址的ARP請求時,只需用相應的硬體地址來提供應答就可以了。
作為用戶進程的RARP伺服器:RARP伺服器的復雜性在於,伺服器一般要為多個主機(網路上所有的無盤系統)提供硬體地址到IP地址的映射。該映射包含在一個磁碟文件中。由於內核一般不讀取和分析磁碟文件,因此RARP伺服器的功能就由用戶進程來提供,而不是作為內核的實現的一部分。更為復雜的是,RARP請求是作為一個特殊類型的乙太網數據幀來傳送的。這說明RARP伺服器必須能夠發送和接收這種類型的乙太網數據幀。在附錄A中,我們描述了SBD分組過濾器、SUN的網路介面栓以及SVR4數據鏈路提供者介面都可用來接收這些數據幀。由於發送和接收這些數據幀與系統有關,因此RARP伺服器的實現是與系統捆綁在一起的。
每個網路有多個RARP伺服器:RARP伺服器實現的一個復雜因素是RARP請求是在硬體層上進行廣播的,這意味著它們不經過路由器進行轉發。為了讓無盤系統在RARP伺服器關機的狀態下也能引導,通常在一個網路上(例如一根電纜)要提供多個RARP伺服器。當伺服器的數目增加時(以提供冗餘備份),網路流量也隨之增加,因為每個伺服器對每個RARP請求都要發送RARP應答。發送RARP請求的無盤系統一般採用最先收到的RARP應答(對於ARP,我們從來沒有遇到這種情況,因為只有一台主機發送ARP應答)。另外,還有一種可能發生的情況是每個RARP伺服器同時應答,這樣會增加乙太網發生沖突的概率。 ICMP的作用:由於IP協議的兩個缺陷:沒有差錯控制和查詢機制,因此產生了ICMP。ICMP主要是為了提高IP數據報成功交付的機會,在IP數據報傳輸的過程中進行差錯報告和查詢,比如目的主機或網路不可到達,報文被丟棄,路由阻塞,查詢目的網路是否可以到達等等。
ICMP有兩種報文類型:差錯報告報文和詢問報文。差錯報告報文:終點不可到達(由於路由表,硬體故障,協議不可到達,埠不可達到等原因導致,這時路由器或目的主機向源站發送終點不可到達報文);源站抑制(發生擁塞,平衡IP協議沒有流量控制的缺陷);超時(環路或生存時間為0);參數問題(IP數據報首部參數有二義性);改變路由(路由錯誤或不是最佳)。詢問報文:回送請求或回答(用來測試連通性,如:PING命令);時間戳請求或回答(用來計算往返時間或同步兩者時間);地址掩碼請求或回答(得到掩碼信息);路由詢問或通告(得知網路上的路由器信息)。ICMP是網際(IP)層的協議,它作為IP層數據報的數據,加上數據報的首部,組成數據報發送出去。 應用層的PING(PacketInterNetGroper)命令用來測試兩個主機之間的連通性,PING使用了ICMP回送請求與回送回答報文,屬於ICMP詢問報文,它是應用層直接使用網路層ICMP的一個特例,它沒有通過運輸層的TCP或UDP。IP數據報首部的協議欄位:IP報文首部的協議欄位指出了此數據報是使用的何種協議,以便使目的主機的網路層能夠知道如何管理協議
網際網路組管理協議(IGMP)被IP主機用於向所有的直接相鄰的多播路由器報告它們的多播組成員關系。本文檔只描述在主機和路由器之間的確定組成員關系的IGMP應用。作為多播組成員的路由器應當還能表現為一台主機,甚至能對自己的查詢作出響應。IGMP還可以應用在路由器之間,但這種應用不在這里描述。就像ICMP一樣,IGMP作為整合在IP裡面的一部分。所有希望接收IP組播的主機都應當實現IGMP。IGMP消息被封裝在IP數據報中,IP協議號為2。本文檔所描述的所有IGMP消息在發送時TTL都為1,並在它們的IP首部中含有一個路由器警告選項。主機所關心的所有IGMP消息都具有以下格式:8位類型+8位最大響應時間+16位校驗和+32位組地址。 組播協議包括組成員管理協議和組播路由協議。組成員管理協議用於管理組播組成員的加入和離開,組播路由協議負責在路由器之間交互信息來建立組播樹。IGMP屬於前者,是組播路由器用來維護組播組成員信息的協議,運行於主機和和組播路由器之間。IGMP 信息封裝在IP報文中,其IP的協議號為2。
若一個主機想要接收發送到一個特定組的組播數據包,它需要監聽發往那個特定組的所有數據包。為解決Internet上組播數據包的路徑選擇,主機需通過通知其子網上的組播路由器來加入或離開一個組,組播中採用IGMP來完成這一任務。這樣,組播路由器就可以知道網路上組播組的成員,並由此決定是否向它們的網路轉發組播數據包。當一個組播路由器收到一個組播分組時,它檢查數據包的組播目的地址,僅當介面上有那個組的成員時才向其轉發。
IGMP提供了在轉發組播數據包到目的地的最後階段所需的信息,實現如下雙向的功能: 主機通過IGMP通知路由器希望接收或離開某個特定組播組的信息。 路由器通過IGMP周期性地查詢區域網內的組播組成員是否處於活動狀態,實現所連網段組成員關系的收集與維護。 IGMP共有三個版本,即IGMP v1、v2 和 v3。
C. OSI參考模型中物理層協議包括哪四個方面的內容
物理層規定了激活、維持、關閉通信端點之間的機械特性、電氣特性、功能特性以及過程特性。該層為上
層協議提供了一個傳輸數據的物理媒體。
在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
D. 物理層有哪些協議
RS-232-C
RS-232-C是OSI基本參考模型物理層部分的規格,它決定了連接器形狀等物理特性、以0和1表示的電氣特性及表示信號意義的邏輯特性。
RS-232-C是EIA發表的,是RS-232-B的修改版。本來是為連接模擬通信線路中的數據機等DCE及電傳列印機等DTE拉介面而標准化的。現在很多個人計算機也用RS-232-C作為輸入輸出介面,用RS-232-C作為介面的個人計算機也很普及。
RS-232-C的如下特點:採用直通方式,雙向通信,基本頻帶,電流環方式,串列傳輸方式,DCE-DTE間使用的信號形態,交接方式,全雙工通信。RS-232-C在ITU建議的V.24和V.28規定的25引腳連接器在功能上具有互換性。
RS-232-C所使用的連接器為25引腳插入式連接器,一般稱為25引腳D-SUB。DTE端的電纜頂端接公插頭,DCE端接母插座。
RS-232-C所用電纜的形狀並不固定,但大多使用帶屏蔽的24芯電纜。電纜的最大長度為15m。使用RS-232-C在200K位/秒以下的任何速率都能進行數據傳輸。
RS-449
RS-449是1977年由EIA發表的標准,它規定了DTE和DCE之間的機械特性和電氣特性。RS-449是想取代RS-232-C而開發的標准,但是幾乎所有的數據通信設備廠家仍然採用原來的標准,所以RS-232-C仍然是最受歡迎的介面而被廣泛採用。
RS-449的連接器使用ISO規格的37引腳及9引腳的連接器,2次通道(返回字通道)電路以外的所有相互連接的電路都使用37引腳的連接器,而2次通道電路則採用9引腳連接器。
RS-449的電特性,對平衡電路來說由RS-422-A規定,大體與V.11具有相同規格,而RS-423-A大體與V.10具有相同規格。
V.35
V.35是通用終端介面的規定,其實V.35是對60-108kHz群帶寬線路進行48Kbps同步數據傳輸的數據機的規定,其中一部分內容記述了終端介面的規定。
V.35對機械特性即對連接器的形狀並未規定。但由於48Dbps-64Kbps的美國Bell規格數據機的普及,34引腳的ISO2593被廣泛採用。模擬傳輸用的音頻數據機的電氣條件使用V.28(不平衡電流環互連電路),而寬頻帶數據機則使用平衡電流環電路。
X.21
X.21是對公用數據網中的同步式終端(DTE)與線路終端(DCE)間介面的規定。主要是對兩個功能進行了規定:其一是與其他介面一樣,對電氣特性、連接器形狀、相互連接電路的功能特性等的物理層進行了規定;其二是為控制網路交換功能的網控制步驟,定義了網路層的功能。在專用線連接時只使用物理層功能,而在線路交換數據網中,則使用物理層和網路層的兩個功能。X.21介面用的連接器引腳也只用15引腳電氣特性分別參照V系列介面電氣條件的V.10和V.11。數字網的同步都是從屬於網路主時鍾的從屬同步。
E. 物理層協議有哪四大特性
機械特性 指明介面所用接線器的形狀和尺寸、引線數目和排列、固定和鎖定裝置等等。
電氣特性 指明在介面電纜的各條線上出現的電壓的范圍。
功能特性 指明某條線上出現的某一電平的電壓表示何種意義。
過程特性 指明對於不同功能的各種可能事件的出現順序。
F. OSI七層模型的每一層都有哪些協議謝謝!
第一層:物理層
物理層規定了激活、維持、關閉通信端點之間的機械特性、電氣特性、功能特性以及過程特性。該層為上層協議提供了一個傳輸數據的物理媒體。只是說明標准。在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45、fddi令牌環網等。
第二層:數據鏈路層
數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:ARP、RARP、SDLC、HDLC、PPP、STP、幀中繼等
第三層:網路層
網路層負責對子網間的數據包進行路由選擇。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據的單位稱為數據包(packet)。網路層協議的代表包括:IP、IPX、RIP、OSPF等。
第四層:傳輸層
傳輸層是第一個端到端,即主機到主機的層次。傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸。此外,傳輸層還要處理端到端的差錯控制和流量控制問題。在這一層,數據的單位稱為數據段(segment)。傳輸層協議的代表包括:TCP、UDP、SPX等
第五層:會話層
會話層管理主機之間的會話進程,即負責建立、管理、終止進程之間的會話。會話層還利用在數據中插入校驗點來實現數據的同步。會話層協議的代表包括:RPC、SQL、NFS 、X WINDOWS、ASP
第六層:表示層
表示層對上層數據或信息進行變換以保證一個主機應用層信息可以被另一個主機的應用程序理解。表示層的數據轉換包括數據的加密、壓縮、格式轉換等。表示層協議的代表包括:ASCII、PICT、TIFF、JPEG、 MIDI、MPEG
第七層:應用層
應用層為操作系統或網路應用程序提供訪問網路服務的介面。應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。
(6)如何獲得物理層協議擴展閱讀:
談到網路不能不談OSI參考模型,OSI參考模型(OSI/RM)的全稱是開放系統互連參考模型(Open SystemInterconnection Reference Model,OSI/RM),它是由國際標准化組織ISO提出的一個網路系統互連模型。雖然OSI參考模型的實際應用意義不是很大,但其的確對於理解網路協議內部的運作很有幫助,也為我們學習網路協議提供了一個很好的參考
七層理解:
物理層:物理介面規范,傳輸比特流,網卡是工作在物理層的。
數據層:成幀,保證幀的無誤傳輸,MAC地址,形成EHTHERNET幀
網路層:路由選擇,流量控制,IP地址,形成IP包
傳輸層:埠地址,如HTTP對應80埠。TCP和UDP工作於該層,還有就是差錯校驗和流量控制。
會話層:組織兩個會話進程之間的通信,並管理數據的交換使用NETBIOS和WINSOCK協議。QQ等軟體進行通訊因該是工作在會話層的。
表示層:使得不同操作系統之間通信成為可能。
應用層:對應於各個應用軟
G. 物理層的介面協議
電話網路modems-V。92 IRDA物理層 USB物理層 EIARS-232,EIA-422,EIA-423,RS-449,RS-485 Ethernet physical layerIncluding10BASE-T,10BASE2,10BASE5,100BASE-TX,100BASE-FX。100BASE-T,1000BASE-T,1000BASE-SX還有其他類型 Varieties of802。11Wi-Fi物理層 DSL ISDN T1 and otherT-carrierlinks, and E1 and otherE-carrierlinks SONET/SDH Optical Transport Network(OTN) GSMUm air interface物理層 Bluetooth物理層 ITURecommendations: seeITU-T IEEE 1394 interface TransferJet物理層 Etherloop ARINC 818航空電子數字視頻匯流排 G。hn/G。9960物理層 CAN bus(controller area network)物理層
H. OSI物理層的物理層協議
物理層上的協議有時也稱為介面。物理層協議規定了與建立、維持與斷開物理信道有關的特性。這些特性包括機械的、電氣的、功能性的和規程性的四個方面。這些特性確保物理層能夠通過物理信道在相鄰網路節點之間正確地收、發比特信息,即確保比特流能送上物理信道,並且能在另一端取下它。物理層僅單純關心比特流信息的傳輸,而不涉及比特流中各比特之間的關系(包括信息格式及其含義),對傳輸差錯也不作任何控制。