導航:首頁 > 物理學科 > 半導體是什麼物理

半導體是什麼物理

發布時間:2022-04-21 12:42:42

『壹』 半導體的物理特性的概念

半導體,指常溫下導電性能介於導體與絕緣體之間的材料。
半導體五大特性∶摻雜性,熱敏性,光敏性,負電阻率溫度特性,整流特性。
在形成晶體結構的半導體中,人為地摻入特定的雜質元素,導電性能具有可控性。
在光照和熱輻射條件下,其導電性有明顯的變化。

『貳』 半導體是什麼,做什麼用的

自然界的物質按導電能力可分為導體、絕緣體和半導體三類。半導體材料是指室溫下導電性介於導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。1906年製成了碳化硅檢波器。

1947年發明晶體管以後,半導體材料作為一個獨立的材料領域得到了很大的發展,並成為電子工業和高技術領域中不可缺少的材料。特性和參數半導體材料的導電性對某些微量雜質極敏感。純度很高的半導體材料稱為本徵半導體,常溫下其電阻率很高,是電的不良導體。在高純半導體材料中摻入適當雜質後,由於雜質原子提供導電載流子,使材料的電阻率大為降低。這種摻雜半導體常稱為雜質半導體。雜質半導體靠導帶電子導電的稱N型半導體,靠價帶空穴導電的稱P型半導體。

不同類型半導體間接觸(構成PN結)或半導體與金屬接觸時,因電子(或空穴)濃度差而產生擴散,在接觸處形成位壘,因而這類接觸具有單向導電性。利用PN結的單向導電性,可以製成具有不同功能的半導體器件,如二極體、三極體、晶閘管等。

此外,半導體材料的導電性對外界條件(如熱、光、電、磁等因素)的變化非常敏感,據此可以製造各種敏感元件,用於信息轉換。半導體材料的特性參數有禁帶寬度、電阻率、載流子遷移率、非平衡載流子壽命和位錯密度。禁帶寬度由半導體的電子態、原子組態決定,反映組成這種材料的原子中價電子從束縛狀態激發到自由狀態所需的能量。電阻率、載流子遷移率反映材料的導電能力。非平衡載流子壽命反映半導體材料在外界作用(如光或電場)下內部載流子由非平衡狀態向平衡狀態過渡的弛豫特性。位錯是晶體中最常見的一類缺陷。位錯密度用來衡量半導體單晶材料晶格完整性的程度,對於非晶態半導體材料,則沒有這一參數。半導體材料的特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下,其特性的量值差別。

半導體材料的種類

常用的半導體材料分為元素半導體和化合物半導體。元素半導體是由單一元素製成的半導體材料。主要有硅、鍺、硒等,以硅、鍺應用最廣。化合物半導體分為二元系、三元系、多元系和有機化合物半導體。二元系化合物半導體有Ⅲ-Ⅴ族(如砷化鎵、磷化鎵、磷化銦等)、Ⅱ-Ⅵ族(如硫化鎘、硒化鎘、碲化鋅、硫化鋅等)、Ⅳ-Ⅵ族(如硫化鉛、硒化鉛等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半導體主要為三元和多元固溶體,如鎵鋁砷固溶體、鎵鍺砷磷固溶體等。有機化合物半導體有萘、蒽、聚丙烯腈等,還處於研究階段。

此外,還有非晶態和液態半導體材料,這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。

所有的半導體材料都需要對原料進行提純,要求的純度在6個「9」以上,最高達11個「9」以上。提純的方法分兩大類,一類是不改變材料的化學組成進行提純,稱為物理提純;另一類是把元素先變成化合物進行提純,再將提純後的化合物還原成元素,稱為化學提純。物理提純的方法有真空蒸發、區域精製、拉晶提純等,使用最多的是區域精製。化學提純的主要方法有電解、絡合、萃娶精餾等,使用最多的是精餾。

由於每一種方法都有一定的局限性,因此常使用幾種提純方法相結合的工藝流程以獲得合格的材料。絕大多數半導體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的半導體單晶都是用熔體生長法製成的。直拉法應用最廣,80%的硅單晶、大部分鍺單晶和銻化銦單晶是用此法生產的,其中硅單晶的最大直徑已達300毫米。在熔體中通入磁場的直拉法稱為磁控拉晶法,用此法已生產出高均勻性硅單晶。在坩堝熔體表面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大的單晶。懸浮區熔法的熔體不與容器接觸,用此法生長高純硅單晶。

水平區熔法用以生產鍺單晶。水平定向結晶法主要用於制備砷化鎵單晶,而垂直定向結晶法用於制備碲化鎘、砷化鎵。用各種方法生產的體單晶再經過晶體定向、滾磨、作參考面、切片、磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應的晶片。在單晶襯底上生長單晶薄膜稱為外延。外延的方法有氣相、液相、固相、分子束外延等。

工業生產使用的主要是化學氣相外延,其次是液相外延。金屬有機化合物氣相外延和分子束外延則用於制備量子阱及超晶格等微結構。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金屬等襯底上用不同類型的化學氣相沉積、磁控濺射等方法製成。

半導體和絕緣體之間的差異主要來自兩者的能帶(band)寬度不同。絕緣體的能帶比半導體寬,意即絕緣體價帶中的載子必須獲得比在半導體中更高的能量才能跳過能帶,進入傳導帶中。室溫下的半導體導電性有如絕緣體,只有極少數的載子具有足夠的能量進入傳導帶。因此,對於一個在相同電場下的純質半導體(intrinsicsemiconctor)和絕緣體會有類似的電特性,不過半導體的能帶寬度小於絕緣體也意味著半導體的導電性更容易受到控制而改變。

純質半導體的電氣特性可以藉由植入雜質的過程而永久改變,這個過程通常稱為「摻雜」(doping)。依照摻雜所使用的雜質不同,摻雜後的半導體原子周圍可能會多出一個電子或一個電洞,而讓半導體材料的導電特性變得與原本不同。如果摻雜進入半導體的雜質濃度夠高,半導體也可能會表現出如同金屬導體般的電性。在摻雜了不同極性雜質的半導體接面處會有一個內建電場(built-inelectricfield),內建電場和許多半導體元件的操作原理息息相關。

除了藉由摻雜的過程永久改變電性外,半導體亦可因為施加於其上的電場改變而動態地變化。半導體材料也因為這樣的特性,很適合用來作為電路元件,例如晶體管。晶體管屬於主動式的(有源)半導體元件(activesemiconctordevices),當主動元件和被動式的(無源)半導體元件(passivesemiconctordevices)如電阻器(resistor)或是電容器(capacitor)組合起來時,可以用來設計各式各樣的集成電路產品,例如微處理器。

當電子從傳導帶掉回價帶時,減少的能量可能會以光的形式釋放出來。這種過程是製造發光二極體(light-emittingdiode,LED)以及半導體激光(semiconctorlaser)的基礎,在商業應用上都有舉足輕重的地位。而相反地,半導體也可以吸收光子,透過光電效應而激發出在價帶的電子,產生電訊號。這即是光探測器(photodetector)的來源,在光纖通訊(fiber-opticcommunications)或是太陽能電池(solarcell)的領域是最重要的元件。

半導體有可能是單一元素組成,例如硅。也可以是兩種或是多種元素的化合物(compound),常見的化合物半導體有砷化鎵(galliumarsenide,GaAs)或是磷化鋁銦鎵(,AlGaInP)等。合金(alloy)也是半導體材料的來源之一,如鍺硅(silicongermanium,SiGe)或是砷化鎵鋁(aluminiumgalliumarsenide,AlGaAs)等。

『叄』 初中物理學中什麼是半導體什麼是超導體

導電的啊。
一、半導體 
1.概念:導電性能介乎導體和絕緣體之間,它們的電阻比導體大得多,但又比絕緣體小得多.這類材料我們把它叫做半導體. 
2.半導體材料:鍺、硅、砷化鎵等,都是半導體. 
3. 半導體的電學性能: 
例如:光敏電阻、熱敏電阻、壓敏電阻. 

二、超導體 
1.概念: 
一些物質當溫度下降到某一溫度時,電阻會變為零,這種現象叫做超導現象. 
能夠發生超導現象的物質,叫做超導體. 
2.超導體的優缺點: 
如果超導體能應用於實際會降低輸電損耗,提高效率及在其他方面給人類帶來許多好處. 
目前超導體還只應用在科學實驗和高新技術中,這是因為一般的金屬或合金的超導臨界溫度都較低. 
3. 我國的超導體研究: 
我國的超導體研究工作走在世界的前列,目前已找到超導臨界溫度達132K的超導材料.

『肆』 半導體和超導體有什麼區別和相同處他們分別有什麼作用

超導體與半導體的相似之處如下:

當某些條件滿足時,可以充當導體。

超導體與半導體的區別如下:

一丶物理性質

1.半導體的電阻比超導體的電阻大。

2.超導體是在一定條件下電阻為0的材料。半導體是一種導體和絕緣體在室溫下導電的材料。

二、關於使用

3.半導體需要在室溫下使用,超導體一般需要在超低溫下使用。

4.不同的功能在實際應用中。

半導體已經使用了很長時間,但是超導體仍然處於發展階段。

超導體和半導體的作用是:

半導體:電子元件,晶元,晶體管

超導體:遠距離傳輸高壓、全超導托卡馬克聚變發電機

(4)半導體是什麼物理擴展閱讀:

超導體的三個基本特性:

1.完全導電性:完全導電性又稱零電阻效應,是指溫度下降到一定溫度以下,電阻突然消失。

2.完全反磁性:完全反磁性也被稱為梅斯納效應。「抗磁性」是指當磁場強度低於臨界值時,磁力線不能通過超導體的現象。

完全反磁性的原因是超導體的表面產生一種無損的抗磁超導電流,這種電流產生的磁場抵消了超導體內部的磁場。

3.通量化:量化通量,也稱為約瑟夫遜效應,指的是現象,當兩層超導體之間的絕緣層薄原子大小,電子對產生隧道電流通過隔熱層,也就是說,超導電流可以superconctor-insulator-superconctor結構生成。

『伍』 半導體是物理學還是化學

半導體屬於物理學范疇

『陸』 初中物理。半導體、超導體是什麼 用幾句話簡單了結地解釋就行,初中水平,能順便舉幾個例子最好!(別

半導體,指常溫下導電性能介於導體與絕緣體之間的材料。(就是用來做電阻的。。)例子:二氧化硅(光纖)←初中的話只要記住這個就差不多了

超導體是指能進行超導傳輸的導電材。它的兩個重要特性:零電阻和抗磁性。(就是電阻幾乎為0)例子:= =、這個我不知道了應該不考這個不必糾結的。。。

選我

『柒』 什麼是半導體

半導體( semiconctor),指常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。

如二極體就是採用半導體製作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。

今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。

分類:

半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。

鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。

除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。

半導體的分類,按照其製造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。

此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。

(7)半導體是什麼物理擴展閱讀:

發展歷史:

半導體的發現實際上可以追溯到很久以前。

1833年,英國科學家電子學之父法拉第最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。

不久,1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。

1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。

半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。

在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。

很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。

參考資料:

網路-半導體

『捌』 半導體是什麼做什麼用的

通俗點講:半導體是介於絕緣和非絕緣之間的一種,主要是從沙子中提煉的原材料,一般是硅和鍺兩者常用的,其主要是做一些個半導體的器件中使用到,譬如可控硅的晶元、還有很多的晶元都是要用到的,像什麼太陽光伏、IC等等

『玖』 求教半導體物理學幾個基本概念

半導體中有兩種載流子:自由電子和空穴。在熱力學溫度零度和沒有外界能量激發時,價電子受共價鍵的束縛,晶體中不存在自由運動的電子,半導體是不能導電的。但是,當半導體的溫度升高(例如室溫300oK)或受到光照等外界因素的影響,某些共價鍵中的價電子獲得了足夠的能量,足以掙脫共價鍵的束縛,躍遷到導帶,成為自由電子,同時在共價鍵中留下相同數量的空穴。空穴是半導體中特有的一種粒子。它帶正電,與電子的電荷量相同。把熱激發產生的這種躍遷過程稱為本徵激發。顯然,本徵激發所產生的自由電子和空穴數目是相同的。 由於空穴的存在,臨近共價鍵中的價電子很容易跳過去填補這個空穴,從而使空穴轉移到臨近的共價鍵中去,而後,新的空穴又被其相鄰的價電子填補,這一過程持續下去,就相當於空穴在運動。帶負電荷的價電子依次填補空穴的運動與帶正電荷的粒子作反方向運動的效果相同,因此我們把空穴視為帶正電荷的粒子。可見,半導體中存在兩種載流子,即帶電荷+q的空穴和帶電荷–q的自由電子。 在沒有外加電場作用時,載流子的運動是無規則的,沒有定向運動,所以形不成電流。在外加電場作用下,自由電子將產生逆電場方向的運動,形成電子電流,同時價電子也將逆電場方向依次填補空穴,其導電作用就像空穴沿電場運動一樣,形成空穴電流。雖然在同樣的電場作用下,電子和空穴的運動方向相反,但由於電子和空穴所帶電荷相反,因而形成的電流是相加的,即順著電場方向形成電子和空穴兩種漂移電流。 在本徵半導體硅(或鍺)中摻入少量的五價元素,如磷、砷或銻等,就可以構成N型半導體。若在鍺晶體中摻入少量的砷原子如圖1所示,摻入的砷原子取代了某些鍺原子的位置。砷原子有五個價電子,其中有四個與相鄰的鍺原子結合成共價鍵,餘下的一個不在共價鍵內,砷原子對它的束縛力較弱,因此只需得到極小的外界能量,這個電子就可以掙脫砷原子的束縛而成為自由電子。這種使雜質的價電子游離成為自由電子的能量稱為電離能。這種電離能遠小於禁帶寬度EGO,所以在室溫下,幾乎所有的雜質都已電離而釋放出自由電子。雜質電離產生的自由電子不是共價鍵中的價電子,因此,與本徵激發不同,它不會產生空穴。失去一個價電子的雜質原子成為一個正離子,這個正離子固定在晶格結構中,不能移動,所以它不參與導電。 由於砷原子很容易貢獻出一個自由電子故稱為「施主雜質」。失去一個價電子而電離的雜質原子,稱為「施主離子」。施主雜質的濃度用ND表示。 砷原子對第5個價電子的束縛力較弱,反應在能帶圖上,就是該電子的能級非常接近導帶底,稱施主能級ED,其能帶圖如圖2所示。在砷原子數量很少時,各施主能級間幾乎沒有什麼影響,施主能級處於同一能量水平。 施主能級ED和導帶底能級EC之差稱為施主電離能級EiD。對鍺中摻有砷的雜質半導體,約為0.0127eV,比鍺的禁帶寬度0.72eV小的多。在常溫下,幾乎所有砷施主能級上的電子都跳到了導帶,成為自由電子,留下的則是不能移動的砷施主離子。因此,N型半導體的自由電子由兩部分構成,一部分由本徵激發產生,另一部分由施主雜質電離產生,只要在鍺中摻入少量的施主雜質,就可以使後者遠遠超過前者。例如每104個鍺原子中摻入一個砷原子,鍺的原子密度是4.4´1022/cm3,在單位體積中就摻入了4.4´1018個砷原子,即施主雜質濃度ND=4.4´1018/cm3。在室溫下,施主雜質電離產生的自由電子濃度n=ND=4.4´1018/cm3。而鍺本徵激發產生的自由電子濃度ni=2.5´1013/cm3,可見由雜質提供的自由電子濃度比本徵激發產生的自由電子濃度大10萬倍。由於自由電子的大量增加,使得電子與空穴復合機率增加,因而空穴濃度急劇減小,在熱平衡狀態下,空穴濃度Pn比本徵激發產生的空穴濃度pi要小的多。因此,N型半導體中,自由電子濃度遠大於空穴濃度,即nn>>pn。因為自由電子佔多數,故稱它為多數載流子,簡稱「多子」;而空穴佔少數,故稱它為少數載流子,簡稱「少子」。 在本徵半導體硅(或鍺)中摻入少量的三價元素,如硼、鋁或銦等,就可以構成P型半導體。若在鍺晶體中摻入少量的硼原子如圖3所示,摻入的硼原子取代了某些鍺原子的位置。硼原子有三個價電子,當它與相鄰的鍺原子組成共價鍵時,缺少一個電子,產生一個空位,相鄰共價鍵內的電子,只需得到極小的外界能量,就可以掙脫共價鍵的束縛而填補到這個空位上去,從而產生一個可導電的空穴。由於三價雜質的原子很容易接受價電子,所以稱它為「受主雜質」。 硼的受主能級EA非常接近價帶頂EV,即受主電離能級EiA=EA-EV之值很小,受主能級幾乎全部被原價帶中的電子占據,受主雜質硼全部電離。受主雜質接受了一個電子後,成為一個帶負電荷的負離子。這個負離子固定在鍺晶格結構中不能移動,所以不參與導電。在常溫下,空穴數大大超過自由電子數,所以這類半導體主要由空穴導電,故稱為P型或空穴型半導體。P型半導體中,空穴為多數載流子,自由電子為少數載流子。 雜質半導體中,施主雜質和受主雜質要麼處於未離化的中性態,要麼電離成為離化態。以施主雜質為例,電子占據施主能級時是中性態,離化後成為正電中心。因為費米分布函數中一個能級可以容納自旋方向相反的兩個電子,而施主雜質能級上要麼被一個任意自旋方向的電子占據(中性態),要麼沒有被電子占據(離化態),這種情況下電子占據施主能級的幾率為 如果ED-EF>>k0T,則未電離施主濃度nD≈0,而電離施主濃度nD+≈ND,雜質幾乎全部電離。 如果費米能級EF與施主能級ED重合時,施主雜質有1/3電離,還有2/3沒有電離。 雜質半導體載流子濃度(n型) n型半導體中存在著帶負電的導帶電子(濃度為n0)、帶正電的價帶空穴(濃度為p0)和離化的施主雜質(濃度為nD+),因此電中性條件為 一般求解此式是有困難的。 實驗表明,當滿足Si中摻雜濃度不太高並且所處的溫度高於100K左右的條件時,那麼雜質一般是全部離化的,這樣電中性條件可以寫成 一般Si平面三極體中摻雜濃度不低於5×1014cm-3,而室溫下Si的本徵載流子濃度ni為1.5×1010cm-3,也就是說在一個相當寬的溫度范圍內,本徵激發產生的ni與全部電離的施主濃度ND相比是可以忽略的。這一溫度范圍約為100~450K,稱為強電離區或飽和區,對應的電子濃度為 一般n型半導體的EF位於Ei之上Ec之下的禁帶中。 EF既與溫度有關,也與雜質濃度ND有關: 一定溫度下摻雜濃度越高,費米能級EF距導帶底Ec越近;如果摻雜一定,溫度越高EF距Ec越遠,也就是越趨向Ei。圖5是不同雜質濃度條件下Si中的EF與溫度關系曲線。 n型半導體中電離施主濃度和總施主雜質濃度兩者之比為 越小,雜質電離越多。所以摻雜濃度ND低、溫度高、雜質電離能ΔED低,雜質離化程度就高,也容易達到強電離,通常以I+=nD+/ND=90%作為強電離標准。經常所說的室溫下雜質全部電離其實忽略了摻雜濃度的限制。 雜質強電離後,如果溫度繼續升高,本徵激發也進一步增強,當ni可以與ND比擬時,本徵載流子濃度就不能忽略了,這樣的溫度區間稱為過渡區。 處在過渡區的半導體如果溫度再升高,本徵激發產生的ni就會遠大於雜質電離所提供的載流子濃度,此時,n0>>ND,p0>>ND,電中性條件是n0=p0,稱雜質半導體進入了高溫本徵激發區。在高溫本徵激發區,因為n0=p0,此時的EF接近Ei。 可見n型半導體的n0和EF是由溫度和摻雜情況決定的。 雜質濃度一定時,如果雜質強電離後繼續升高溫度,施主雜質對載流子的貢獻就基本不變了,但本徵激發產生的ni隨溫度的升高逐漸變得不可忽視,甚至起主導作用,而EF則隨溫度升高逐漸趨近Ei。 半導體器件和集成電路就正常工作在雜質全部離化而本徵激發產生的ni遠小於離化雜質濃度的強電離溫度區間。 在一定溫度條件下,EF位置由雜質濃度ND決定,隨著ND的增加,EF由本徵時的Ei逐漸向導帶底Ec移動。 n型半導體的EF位於Ei之上,EF位置不僅反映了半導體的導電類型,也反映了半導體的摻雜水平。 圖6是施主濃度為5×1014cm-3的n型Si中隨溫度的關系曲線。低溫段(100K以下)由於雜質不完全電離,n0隨著溫度的上升而增加;然後就達到了強電離區間,該區間n0=ND基本維持不變;溫度再升高,進入過渡區,ni不可忽視;如果溫度過高,本徵載流子濃度開始占據主導地位,雜質半導體呈現出本徵半導體的特性。 如果用nn0表示n型半導體中的多數載流子電子濃度,而pn0表示n型半導體中少數載流子空穴濃度,那麼n型半導體中 也就是說在器件正常工作的較寬溫度范圍內,隨溫度變化少子濃度發生顯著變化,因此依靠少子工作的半導體器件的溫度性能就會受到影響。對p型半導體的討論與上述類似。

『拾』 半導體是什麼

在物理學中,按照到點的能力,可以將他們分為導體和絕緣體兩大類。導體中有大量的自由電子,加上電場後,自由電子運動,形成電流,因此,導體的電阻率很小,導電能力很強。絕緣體中自由電子很少,加上電場之後,幾乎沒有電流形成,因此它的電阻率很大。除這兩類外,還有一種導電能力介於兩種之間的物質,這就是半導體,如硅,砷化鎵等等。半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、行動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、鍺、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。材料的導電性是由導帶中含有的電子數量決定。當電子從價帶獲得能量而跳躍至導電帶時,電子就可以在帶間任意移動而導電。一般常見的金屬材料其導電帶與價電帶之間的能隙非常小,在室溫下電子很容易獲得能量而跳躍至導電帶而導電,而絕緣材料則因為能隙很大(通常大於9電子伏特),電子很難跳躍至導電帶,所以無法導電。一般半導體材料的能隙約為1至3電子伏特,介於導體和絕緣體之間。因此只要給予適當條件的能量激發,或是改變其能隙之間距,此材料就能導電。半導體通過電子傳導或電洞傳導的方式傳輸電流。電子傳導的方式與銅線中電流的流動類似,即在電場作用下高度電離的原子將多餘的電子向著負離子化程度比較低的方向傳遞。電洞導電則是指在正離子化的材料中,原子核外由於電子缺失形成的「空穴」,在電場作用下,空穴被少數的電子補入而造成空穴移動所形成的電流(一般稱為正電流)。
記得採納啊

閱讀全文

與半導體是什麼物理相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059