導航:首頁 > 物理學科 > 什麼是物理感測器

什麼是物理感測器

發布時間:2022-04-21 15:33:28

⑴ 感測器 是什麼意思

感測器是一種物理裝置或生物器官,能夠探測、感受外界的信號、物理條件(如光、熱、濕度)或化學組成(如煙霧),並將探知的信息傳遞給其他裝置或器官。

國家標准GB7665-87對感測器下的定義是:「能感受規定的被測量並按照一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成」。感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。
[編輯本段]感測器的分類
可以用不同的觀點對感測器進行分類:它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。
根據感測器工作原理,可分為物理感測器和化學感測器二大類 :
感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。
化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。
有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。

你可以看看這個網頁
http://ke..com/view/16431.htm

⑵ 我們身邊的感測器有哪些

物理感測器是檢測物理量的感測器。它是利用某些物理效應,把被測量的物理量轉化成為便於處理的能量形式
的信號的裝置。其輸出的信號和輸入的信號有確定的關系。主要的物理感測器有光電式感測器、壓電感測器、壓阻
式感測器、電磁式感測器、熱電式感測器、光導纖維感測器等。作為例子,讓我們看看比較常用的光電式感測器。

這種感測器把光信號轉換成為電信號,它直接檢測來自物體的輻射信息,也可以轉換其他物理量成為光信號。
其主要的原理是光電效應:當光照射到物質上的時候,物質上的電效應發生改變,這里的電效應包括電子發射、電
導率和電位電流等。顯然,能夠容易產生這樣效應的器件成為光電式感測器的主要部件,比如說光敏電阻。這樣,
我們知道了光電感測器的主要工作流程就是接受相應的光的照射,通過類似光敏電阻這樣的器件把光能轉化成為電
能,然後通過放大和去雜訊的處理,就得到了所需要的輸出的電信號。這里的輸出電信號和原始的光信號有一定的
關系,通常是接近線性的關系,這樣計算原始的光信號就不是很復雜了。其它的物理感測器的原理都可以類比於光
電式感測器。

物理感測器的應用范圍是非常廣泛的,我們僅僅就生物醫學的角度來看看物理感測器的應用情況,之後不難推
測物理感測器在其他的方面也有重要的應用。

比如血壓測量是醫學測量中的最為常規的一種。我們通常的血壓測量都是間接測量,通過體表檢測出來的血流
和壓力之間的關系,從而測出脈管里的血壓值。測量血壓所需要的感測器通常都包括一個彈性膜片,它將壓力信號
轉變成為膜片的變形,然後再根據膜片的應變或位移轉換成為相應的電信號。在電信號的峰值處我們可以檢測出來
收縮壓,在通過反相器和峰值檢測器後,我們可以得到舒張壓,通過積分器就可以得到平均壓。

讓我們再看看呼吸測量技術。呼吸測量是臨床診斷肺功能的重要依據,在外科手術和病人監護中都是必不可少
的。比如在使用用於測量呼吸頻率的熱敏電阻式感測器時,把感測器的電阻安裝在一個夾子前端的外側,把夾子夾
在鼻翼上,當呼吸氣流從熱敏電阻表面流過時,就可以通過熱敏電阻來測量呼吸的頻率以及熱氣的狀態。

再比如最常見的體表溫度測量過程,雖然看起來很容易,但是卻有著復雜的測量機理。體表溫度是由局部的血
流量、下層組織的導熱情況和表皮的散熱情況等多種因素決定的,因此測量皮膚溫度要考慮到多方面的影響。熱電
偶式感測器被較多的應用到溫度的測量中,通常有桿狀熱電偶感測器和薄膜熱電偶感測器。由於熱電偶的尺寸非常
小,精度比較高的可做到微米的級別,所以能夠比較精確地測量出某一點處的溫度,加上後期的分析統計,能夠得
出比較全面的分析結果。這是傳統的水銀溫度計所不能比擬的,也展示了應用新的技術給科學發展帶來的廣闊前景。

從以上的介紹可以看出,僅僅在生物醫學方面,物理感測器就有著多種多樣的應用。感測器的發展方向是多功
能、有圖像的、有智能的感測器。感測器測量作為數據獲得的重要手段,是工業生產乃至家庭生活所必不可少的器
件,而物理感測器又是最普通的感測器家族,靈活運用物理感測器必然能夠創造出更多的產品,更好的效益。

⑶ 高中物理感測器是什麼

光敏感測器——視覺 聲敏感測器——聽覺 氣敏感測器——嗅覺 化學感測器——味覺 壓敏、溫敏、流體感測器——觸覺
通常據其基本感知功能可分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類
感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。

⑷ Sensor是一種什麼樣的元件

感測器(Sensor)是一種常見又很重要的器件,它是感受規定的被測量的各種量並按一定規律將其轉換為有用信號的器件或裝置。對於感測器來說,按照輸入的狀態,輸入可以分成靜態量和動態量。我們可以根據在各個值的穩定狀態下,輸出量和輸入量的關系得到感測器的靜態特性。感測器的靜態特性的主要指標有線性度、遲滯、重復性、靈敏度和准確度等。感測器的動態特性則指的是對於輸入量隨著時間變化的響應特性。動態特性通常採用傳遞函數等自動控制的模型來描述。

工作原理

物理感測器是檢測物理量的感測器。它是利用某些物理效應,把被測量的物理量轉化成為便於處理的能量形式的信號的裝置。其輸出的信號和輸入的信號有確定的關系。主要的物理感測器有光電式感測器、壓電感測器、壓阻式感測器、電磁式感測器、熱電式感測器、光導纖維感測器等。作為例子,讓我們看看比較常用的光電式感測器。這種感測器把光信號轉換成為電信號,它直接檢測來自物體的輻射信息,也可以轉換其他物理量成為光信號。其主要的原理是光電效應:當光照射到物質上的時候,物質上的電效應發生改變,這里的電效應包括電子發射、電導率和電位電流等。顯然,能夠容易產生這樣效應的器件成為光電式感測器的主要部件,比如說光敏電阻。這樣,我們知道了光電感測器的主要工作流程就是接受相應的光的照射,通過類似光敏電阻這樣的器件把光能轉化成為電能,然後通過放大和去雜訊的處理,就得到了所需要的輸出的電信號。這里的輸出電信號和原始的光信號有一定的關系,通常是接近線性的關系,這樣計算原始的光信號就不是很復雜了。其他的物理感測器的原理都可以類比於光電式感測器。

應用

下面簡單介紹一下常見的幾種sensor 的原理和作用以及一些簡單的例子。

1、 touch sensor 意是是接觸性sensor,當兩個物體接觸時產生的一種信號,將這個信號收集傳經計算機,可執行下一步的動作。這種sensor 主要用來感應兩個物體的關系。

2、感光sensor ,通過兩個簡單的電路來完成,一個電路有發光二極體或LED等發光元件,另一個電路則接有一個感光元件來感就發光體,當裝有sensor 的兩物體具有對就的關系時,感光元件就會接收到信號,將這個信號傳給計算機,通過計算機來完成其它的動作。這種sensor 主要用來感應是否到達預定的位置,或者用來確定兩物體的相對位置關系。

3、磁感sensor , 通過磁性感應物體,當兩運動部件運動到一定的區域內時,可以通過磁感來感就到物體的存在及位置。

在一些電子產品的機器中,sensor 可說是無處不在,每個sensor 有具體作用也不同,在遇到sensor時,先看看它到底有什麼作用,為什麼要一個sensor, 原理是什麼,然後再分析該如何處理。

物理感測器的應用范圍是非常廣泛的,我們僅僅就生物醫學的角度來看看物理感測器的應用情況,之後不難推測物理感測器在其他的方面也有重要的應用。

比如血壓測量是醫學測量中的最為常規的一種。我們通常的血壓測量都是間接測量,通過體表檢測出來的血流和壓力之間的關系,從而測出脈管里的血壓值。測量血壓所需要的感測器通常都包括一個彈性膜片,它將壓力信號轉變成為膜片的變形,然後再根據膜片的應變或位移轉換成為相應的電信號。在電信號的峰值處我們可以檢測出來收縮壓,在通過反相器和峰值檢測器後,我們可以得到舒張壓,通過積分器就可以得到平均壓。

讓我們再看看呼吸測量技術。呼吸測量是臨床診斷肺功能的重要依據,在外科手術和病人監護中都是必不可少的。比如在使用用於測量呼吸頻率的熱敏電阻式感測器時,把感測器的電阻安裝在一個夾子前端的外側,把夾子夾在鼻翼上,當呼吸氣流從熱敏電阻表面流過時,就可以通過熱敏電阻來測量呼吸的頻率以及熱氣的狀態。

再比如最常見的體表溫度測量過程,雖然看起來很容易,但是卻有著復雜的測量機理。體表溫度是由局部的血流量、下層組織的導熱情況和表皮的散熱情況等多種因素決定的,因此測量皮膚溫度要考慮到多方面的影響。熱電偶式感測器被較多的應用到溫度的測量中,通常有桿狀熱電偶感測器和薄膜熱電偶感測器。由於熱電偶的尺寸非常小,精度比較高的可做到微米的級別,所以能夠比較精確地測量出某一點處的溫度,加上後期的分析統計,能夠得出比較全面的分析結果。這是傳統的水銀溫度計所不能比擬的,也展示了應用新的技術給科學發展帶來的廣闊前景。

從以上的介紹可以看出,僅僅在生物醫學方面,物理感測器就有著多種多樣的應用。感測器的發展方向是多功能、有圖像的、有智能的感測器。感測器測量作為數據獲得的重要手段,是工業生產乃至家庭生活所必不可少的器件,而物理感測器又是最普通的感測器家族,靈活運用物理感測器必然能夠創造出更多的產品,更好的效益。

可以用不同的觀點對感測器進行分類:

它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。根據感測器工作原理,可分為物理感測器和化學感測器二大類:感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。常見感測器的應用領域和工作原理列於下表。

物理感測器按照其用途分類

壓力敏和力敏感測器 位置感測器 液面感測器 能耗感測器 速度感測器

加速度感測器 射線輻射感測器 熱敏感測器 24GHz雷達感測器

物理感測器按照其原理分類

振動感測器 濕敏感測器 磁敏感測器 氣敏感測器 真空度感測器 生物感測器等。

物理感測器按照其輸出信號分類

模擬感測器——將被測量的非電學量轉換成模擬電信號。 數字感測器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。膺數字感測器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。開關感測器——當一個被測量的信號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平信號。

物理感測器按照其材料分類

在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所應用的材料觀點出發可將感測器分成下列幾類:

(1)按照其所用材料的類別分: 金屬聚合物 陶瓷混合物

(2)按材料的物理性質分: 導體絕緣體 半導體磁性材料

(3)按材料的晶體結構分: 單晶 多晶非晶材料

與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向:

(1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。

(2)探索新的材料,應用那些已知的現象、效應和反應來改進感測器技術。

(3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。 現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的應用密切關聯的。

物理感測器按照其製造工藝分類

集成感測器,薄膜感測器,厚膜感測器,陶瓷感測器。集成感測器是用標準的生產硅基半導體集成電路的工藝技術製造的。通常還將用於初步處理被測信號的部分電路也集成在同一晶元上。

薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。

厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。

陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。

完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。

每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器參數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。 (空侶網暖通專家提供)

物理感測器根據測量目的分類

物理型感測器是利用被測量物質的某些物理性質發生明顯變化的特性製成的。

化學型感測器是利用能把化學物質的成分、濃度等化學量轉化成電學量的敏感元件製成的。

生物型感測器是利用各種生物或生物物質的特性做成的,用以檢測與識別生物體內化學成分的感測器

感測器靜態特性

感測器的靜態特性是指對靜態的輸入信號,感測器的輸出量與輸入量之間所具有相互關系。因為這時輸入量和輸出量都和時間無關,所以它們之間的關系,即感測器的靜態特性可用一個不含時間變數的代數方程,或以輸入量作橫坐標,把與其對應的輸出量作縱坐標而畫出的特性曲線來描述。表徵感測器靜態特性的主要參數有:線性度、靈敏度、遲滯、重復性、漂移等。

(1)線性度:指感測器輸出量與輸入量之間的實際關系曲線偏離擬合直線的程度。定義為在全量程范圍內實際特性曲線與擬合直線之間的最大偏差值與滿量程輸出值之比。

(2)靈敏度:靈敏度是感測器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。

(3)遲滯:感測器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對於同一大小的輸入信號,感測器的正反行程輸出信號大小不相等,這個差值稱為遲滯差值。

(4)重復性:重復性是指感測器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不一致的程度。

(5)漂移:感測器的漂移是指在輸入量不變的情況下,感測器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是感測器自身結構參數;二是周圍環境(如溫度、濕度等)。

物理感測器感測器動態特性

所謂動態特性,是指感測器在輸入變化時,它的輸出的特性。在實際工作中,感測器的動態特性常用它對某些標准輸入信號的響應來表示。這是因為感測器對標准輸入信號的響應容易用實驗方法求得,並且它對標准輸入信號的響應與它對任意輸入信號的響應之間存在一定的關系,往往知道了前者就能推定後者。最常用的標准輸入信號有階躍信號和正弦信號兩種,所以感測器的動態特性也常用階躍響應和頻率響應來表示。

物理感測器感測器的線性度

通常情況下,感測器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。 擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。

如何區分

感測器的分類有很多,同樣感測器可以通過不同方式進行分類。有一類是從測量目的進行區分感測器。這樣感測器可分為物理型感測器,化學型感測器等。下面就物理型感測器做一個簡單的分析介紹,物理型感測器又可以分為結構型感測器和物性型感測器。
結構型感測器是以結構(如形狀、尺寸等)為基礎,利用某些物理規律來感受(敏感)被測量,井將其轉換為電信號實現測量的。例如電容式壓力感測器,必須有按規定參數設計製成的電容式敏感元件,當被測壓力作用在電容式敏感元件的動極板上時,引起電容間隙的變化導致電容值的變化,從而實現對壓力的測量。又比如諧振式壓力感測器,必須設計製作一個合適的感受被測壓力的諧振敏感元件,當被測壓力變化時,改變諧振敏感結構的等效剛度,導致諧振敏感元件的固有頻率發生變化,從而實現對壓力的測量。
物性型感測器就是利用某些功能材料本身所具有的內在特性及效應感受(敏感)被測量,並轉換成可用電信號的感測器。例如利用具有壓電特性的石英晶體材料製成的壓電式感測器,就是利用石英晶體材料本身具有的正壓電效應而實現對壓力測量的;利用半導體材料在被測壓力作用下引起其內部應力變化導致其電阻值變化製成的壓阻式感測器,就是利用半導體材料的壓阻效應而實現對壓力測量的。
一般而言,物理型感測器對物理效應和敏感結構都有一定要求,但側重點不同。結構型感測器強調要依靠精密設計製作的結構才能保證其正常工作;而物性型感測器則主要依據材料本身的物理特性、物理效應來實現對被測量的感應。近年來,由於材料科學技術的飛速發展與進步,物理型感測器應用越來越廣泛。這與該類感測器便於批量生產、成本較低及易於小型化等持點密切相關。

以上非原創。來自網路詞條「Sensor」

⑸ 什麼是感測器

感測器下的定義是:能感受規定的被測量件並按照一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成」。
感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節
根據感測器工作原理,可分為物理感測器和化學感測器二大類:
感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。
化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。
有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。
化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。

⑹ 「sensor」是什麼意思

回答如下:

sensor是指感測器。一般指數碼成像的感測器,如數碼相機、可拍照手機、數碼單反相機都有一隻sensor配合鏡頭來進行數碼圖像採集成像。主流的一般有格科微(GC)、OV、美光(optina)等。

⑺ 感測器的定義是什麼 它們是如何分類的

一、感測器的定義

國標GB7665-87對感測器下的定義是:「能感受規定的被測量並按照一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成」。

感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。

二、感測器的分類

1、按感測器的物理量分類,可分為位移、力、速度、溫度、流量等感測器。

2、按感測器工作原理分類,可分為電阻、電容、電感、電壓、霍爾、光電、光柵、熱電偶等感測器。

3、按感測器輸出信號的性質分類,可分為:開關型感測器;模擬型感測器;脈沖或代碼的數字型感測器。

(7)什麼是物理感測器擴展閱讀

一、感測器的分辨力

分辨力是指感測器可能感受到的被測量的最小變化的能力。也就是說,如果輸入量從某一非零值緩慢地變化。當輸入變化值未超過某一數值時,感測器的輸出不會發生變化,即感測器對此輸入量的變化是分辨不出來的。只有當輸入量的變化超過分辨力時,其輸出才會發生變化。

通常感測器在滿量程范圍內各點的分辨力並不相同,因此常用滿量程中能使輸出量產生階躍變化的輸入量中的最大變化值作為衡量分辨力的指標。上述指標若用滿量程的百分比表示,則稱為解析度。

二、感測器的穩定性

感測器的穩定性指在一定的工作條件下,感測器能在規定的時間內保持不變的能力。通常包括短期漂移如點漂、零飄、量程飄移以及長期穩定性。零飄指率定零點隨時間的偏移,點漂、量程飄移含義類似。

漂移多由於元器件的老化、徐變等引起。長期穩定性,對於埋在水工建築物內部供長期觀測的感測器來說,是一個需要特別重視的事情。

⑻ 感測器的定義.分類.作用分別是什麼

一、定義:感測器(英文名稱:transcer/sensor)是一種檢測裝置,能感受到被測量的信息,並能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

二、分類依據:

1、按用途;

2、按原理;

3、按輸出信號;

4、按其製造工藝;

5、按測量目;

6、按其構成;

7、按作用形式。

三、作用:人們為了從外界獲取信息,必須藉助於感覺器官。而單靠人們自身的感覺器官,在研究自然現象和規律以及生產活動中它們的功能就遠遠不夠了。為適應這種情況,就需要感測器。因此可以說,感測器是人類五官的延長,又稱之為電五官。 新技術革命的到來,世界開始進入信息時代。在利用信息的過程中,首先要解決的就是要獲取准確可靠的信息,而感測器是獲取自然和生產領域中信息的主要途徑與手段。

⑼ 什麼是感測器

感測器是一種物理裝置或生物器官,能夠探測、感受外界的信號、物理條件(如光、熱、濕度)或化學組成(如煙霧),並將探知的信息傳遞給其他裝置或器官。 感測器的分類 可以用不同的觀點對感測器進行分類:它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。 根據感測器工作原理,可分為物理感測器和化學感測器二大類 : 感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。 化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。 有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。 常見感測器的應用領域和工作原理列於下表。 1.按照其用途,感測器可分類為: 壓力敏和力敏感測器 位置感測器 液面感測器 能耗感測器 速度感測器 加速度感測器 射線輻射感測器 熱敏感測器 24GHz雷達感測器 2.按照其原理,感測器可分類為: 振動感測器 濕敏感測器 磁敏感測器 氣敏感測器 真空度感測器 生物感測器等。 以其輸出信號為標准可將感測器分為: 模擬感測器——將被測量的非電學量轉換成模擬電信號。 數字感測器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。 膺數字感測器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。 開關感測器——當一個被測量的信號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平信號。 在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所應用的材料觀點出發可將感測器分成下列幾類: (1)按照其所用材料的類別分 金屬 聚合物 陶瓷 混合物 (2)按材料的物理性質分 導體 絕緣體 半導體 磁性材料 (3)按材料的晶體結構分 單晶 多晶 非晶材料 與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向: (1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。 (2)探索新的材料,應用那些已知的現象、效應和反應來改進感測器技術。 (3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。 現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的應用密切關聯的。表1.2中給出了一些可用於感測器技術的、能夠轉換能量形式的材料。 按照其製造工藝,可以將感測器區分為: 集成感測器 薄膜感測器 厚膜感測器 陶瓷感測器 集成感測器是用標準的生產硅基半導體集成電路的工藝技術製造的。通常還將用於初步處理被測信號的部分電路也集成在同一晶元上。 薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。 厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。 陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。 完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。 每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器參數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。

⑽ 感測器的定義和分類

一、感測器的定義

信息處理技術取得的進展以及微處理器和計算機技術的高速發展,都需要在感測器的開發方面有相應的進展。微處理器現在已經在測量和控制系統中得到了廣泛的應用。隨著這些系統能力的增強,作為信息採集系統的前端單元,感測器的作用越來越重要。感測器已成為自動化系統和機器人技術中的關鍵部件,作為系統中的一個結構組成,其重要性變得越來越明顯。

最廣義地來說,感測器是一種能把物理量或化學量轉變成便於利用的電信號的器件。國際電工委員會(IEC:International
Electrotechnical Committee)的定義為:「感測器是測量系統中的一種前置部件,它將輸入變數轉換成可供測量的信號」。按照Gopel等的說法是:「感測器是包括承載體和電路連接的敏感元件」,而「感測器系統則是組合有某種信息處理(模擬或數字)能力的感測器」。感測器是感測器系統的一個組成部分,它是被測量信號輸入的第一道關口。

感測器系統的原則框圖示於圖1-1,進入感測器的信號幅度是很小的,而且混雜有干擾信號和雜訊。為了方便隨後的處理過程,首先要將信號整形成具有最佳特性的波形,有時還需要將信號線性化,該工作是由放大器、濾波器以及其他一些模擬電路完成的。在某些情況下,這些電路的一部分是和感測器部件直接相鄰的。成形後的信號隨後轉換成數字信號,並輸入到微處理器。

德國和俄羅斯學者認為感測器應是由二部分組成的,即直接感知被測量信號的敏感元件部分和初始處理信號的電路部分。按這種理解,感測器還包含了信號成形器的電路部分。

感測器系統的性能主要取決於感測器,感測器把某種形式的能量轉換成另一種形式的能量。有兩類感測器:有源的和無源的。有源感測器能將一種能量形式直接轉變成另一種,不需要外接的能源或激勵源

有源(a)和無源(b)感測器的信號流程

無源感測器不能直接轉換能量形式,但它能控制從另一輸入端輸入的能量或激勵能感測器承擔將某個對象或過程的特定特性轉換成數量的工作。其「對象」可以是固體、液體或氣體,而它們的狀態可以是靜態的,也可以是動態(即過程)的。對象特性被轉換量化後可以通過多種方式檢測。對象的特性可以是物理性質的,也可以是化學性質的。按照其工作原理,感測器將對象特性或狀態參數轉換成可測定的電學量,然後將此電信號分離出來,送入感測器系統加以評測或標示。

各種物理效應和工作機理被用於製作不同功能的感測器。感測器可以直接接觸被測量對象,也可以不接觸。用於感測器的工作機制和效應類型不斷增加,其包含的處理過程日益完善。

常將感測器的功能與人類5大感覺器官相比擬:
光敏感測器——視覺� 聲敏感測器——聽覺
氣敏感測器——嗅覺 �化學感測器——味覺
壓敏、溫敏、流體感測器——觸覺

與當代的感測器相比,人類的感覺能力好得多,但也有一些感測器比人的感覺功能優越,例如人類沒有能力感知紫外或紅外線輻射,感覺不到電磁場、無色無味的氣體等。

對感測器設定了許多技術要求,有一些是對所有類型感測器都適用的,也有隻對特定類型感測器適用的特殊要求。針對感測器的工作原理和結構在不同場合均需要的基本要求是:

高靈敏度 抗干擾的穩定性(對雜訊不敏感) 線性 容易調節(校準簡易)

高精度 高可靠性 無遲滯性 工作壽命長(耐用性)

可重復性 抗老化 高響應速率 抗環境影響(熱、振動、酸、鹼、空氣、水、塵埃)的能力

選擇性 安全性(感測器應是無污染的) 互換性 低成本

寬測量范圍 小尺寸、重量輕和高強度 寬工作溫度范圍

二、感測器的分類

器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。

根據感測器工作原理,可分為物理感測器和化學感測器二大類:

感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。

化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。

有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。

按照其用途,感測器可分類為:

壓力敏和力敏感測器 �位置感測器

液面感測器 �能耗感測器

速度感測器 �熱敏感測器

加速度感測器 �射線輻射感測器

振動感測器� 濕敏感測器

磁敏感測器� 氣敏感測器

真空度感測器� 生物感測器等。�

以其輸出信號為標准可將感測器分為:

模擬感測器——將被測量的非電學量轉換成模擬電信號。�

數字感測器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。�

膺數字感測器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。�

開關感測器——當一個被測量的信號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平信號。

在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所應用的材料觀點出發可將感測器分成下列幾類:

(1)按照其所用材料的類別分�

金屬� 聚合物� 陶瓷� 混合物�

(2)按材料的物理性質分� � 導體� 絕緣體� 半導體� 磁性材料�

(3)按材料的晶體結構分�

單晶� 多晶� 非晶材料�

與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向:�

(1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。�

(2)探索新的材料,應用那些已知的現象、效應和反應來改進感測器技術。�

(3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。�

現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的應用密切關聯的。

按照其製造工藝,可以將感測器區分為:

集成感測器�薄膜感測器�厚膜感測器�陶瓷感測器

集成感測器是用標準的生產硅基半導體集成電路的工藝技術製造的。通常還將用於初步處理被測信號的部分電路也集成在同一晶元上。

薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。

厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。

陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。�

完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。�

每種工藝技術都有自已的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器參數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。

閱讀全文

與什麼是物理感測器相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059