Ⅰ 醇類醛類酚類酯類的物理性質(詳細)謝謝!!!
醇的物理性質(physical properities)低級飽和一元醇為無色透明的液體,往往有特殊氣味,能與水混溶。十二個碳原子以上的高級醇為蠟狀固體,難溶於水。飽和一元醇的比重都比分子量相近的烷烴大,但小於1,低級醇的熔點和沸點都比分子量相近的烷烴要高,含支鏈醇的沸點比同碳原子數的直鏈醇要低。這些性質由表10-1可看出。醇的沸點比烷烴高得多,是因醇分子間能形成氫鍵。羥基是極性很強的基團,在液體狀態,醇分子間可通過氫鍵締合在一起,而氣體狀態的醇是不締合的。要使液態醇變為蒸氣,必須提供斷氫鍵的能量,因此沸點升高。
直鏈飽和一元醇隨著分子量的增加,沸點呈有規律的上升,每增加一個系列差(CH)沸點約升高18~20℃。飽和一元醇隨著分子量的增加,與水形成氫鍵的能力和在水中的溶解度都迅速減小。多元醇分子中含有多個羥基,分子之間及與水分子都有機會形成氫鍵,因此它們的沸點更高。水溶性也會增大。
除此之外,低級醇還能與某些無機鹽像無水氯化鈣、無水氯化鎂、無水硫酸銅等形成結晶醇配合物,此配合物能溶於水而不溶於有機溶劑。因此,低級醇不能用上述無機鹽作為乾燥劑。
CaCl·4CHOH,MgCl·6CHOH,CaCl·4CHOH
Ⅱ 請你寫出乙醇的物理性質
乙醇物理性質:
乙醇液體密度是0.789g/cm3,乙醇氣體密度為1.59kg/m3,相對密度(d15.56)0.816,式量(相對分子質量)為46.07g/mol。沸點是78.2℃,14℃閉口閃點,熔點是-114.3℃。純乙醇是無色透明的液體,有特殊香味,易揮發。
乙醇的物理性質主要與其低碳直鏈醇的性質有關。分子中的羥基可以形成氫鍵,因此乙醇黏性大,也不及相近相對分子質量的有機化合物極性大。
20℃下,乙醇的折射率為1.3611。
溶解性
能與水以任意比互溶;可混溶於醚、氯仿、甲醇、丙酮、甘油等多數有機溶劑。
潮解性
由於存在氫鍵,乙醇具有較強的潮解性,可以很快從空氣中吸收水分。
羥基的極性也使得很多離子化合物可溶於乙醇中,如氫氧化鈉、氫氧化鉀、氯化鎂、氯化鈣、氯化銨、溴化銨和溴化鈉等;但氯化鈉和氯化鉀微溶於乙醇。此外,其非極性的烴基使得乙醇也可溶解一些非極性的物質,例如大多數香精油和很多增味劑、增色劑和醫葯試劑。
乙醇(ethanol),有機化合物,分子式C2H6O,結構簡式CH3CH2OH或C2H5OH,俗稱酒精。
乙醇在常溫常壓下是一種易燃、易揮發的無色透明液體,低毒性,純液體不可直接飲用;具有特殊香味,並略帶刺激;微甘,並伴有刺激的辛辣滋味。易燃,其蒸氣能與空氣形成爆炸性混合物,能與水以任意比互溶。能與氯仿、乙醚、甲醇、丙酮和其他多數有機溶劑混溶。
乙醇與甲醚互為同分異構體。
乙醇的用途很廣,可用乙醇製造醋酸、飲料、香精、染料、燃料等。醫療上也常用體積分數為70%~75%的乙醇作消毒劑等,在國防化工、醫療衛生、食品工業、工農業生產中都有廣泛的用途。
Ⅲ 醇的化學性質和物理性質有哪些
如可燃性、不穩定性、酸性、鹼性、氧化性、還原性、絡合性、跟某些物質起反應呈現的現象等。用使物質發生化學反應的方法可以得知物質的化學性質。
例如,碳在空氣中燃燒生成二氧化碳;鹽酸與氫氧化鈉反應生成氯化鈉和水;加熱
kclo3到熔化,可以使帶火星的木條復燃,表明kclo3受熱達較高溫度時,能夠放出o2。因此kclo3具有受熱分解產生o2的化學性質。
或者,通俗一點就是:實驗時有其他物質生成的變化叫做化學變化。
物理性質:物質不需要發生化學變化就能表現出來的性質。如指:顏色、狀態、氣味、密度、硬度、溶解性、揮發性、導電性、延展性等、熔點、沸點。
化學性質:物質在發生化學變化中才能表現出來的性質叫做化學性質。如:可燃性、穩定性、酸性、鹼性、氧化性、還原性等、腐蝕性。
Ⅳ 醇的系統命名法規則
1、飽和醇的命名
選擇含有羥基的最長碳鏈為主鏈,從離羥基最近的一端開始編號,按照主鏈所含的碳原子數目稱為"某醇"。
2、不飽和醇的命名
不飽和醇的命名是選擇含羥基及不飽和鍵的最長碳鏈作為主鏈,從離羥基最近的一端開始編號。根據主鏈上碳原子的數目稱為"某烯醇"或"某炔醇",羥基的位置用阿拉伯數字表示,放在醇字前面。
表示不飽和鍵位置的數字放在烯字或炔字的前面,這樣得到母體的名稱,再在母體名稱前面加取代基的名稱和位置。
3、多元醇的命名
選擇含-OH 盡可能多的碳鏈為主鏈,羥基的數目寫在醇字的前面,羥基的位次。
(4)醇的物理性質是什麼擴展閱讀:
一、醇的物理性質
醇類化合物受羥基的影響,存在分子間的氫鍵,在水中還有醇分子和水分子間的氫鍵。所以,它們的物理性質與相應的烴差異較大。主要表現在熔沸點比較高,在水中有一定的溶解度等。一般而言,低級的醇類水溶性較好,甲醇、乙醇和丙醇能與水以任意比例混溶。
4~11個碳原子的醇為油狀液體,部分溶於水,以後隨著碳原子數增加,烴基對分子的影響越來越大,使高級醇的物理性質更接近於相應的烴。另外,低級的醇具有特殊的氣味和辛辣的味道,而高級的醇則無嗅、無味。
二、重要的醇
1、甲醇(木醇),制備甲醇是用合成氣(CO 和H₂)在加熱、加壓和催化劑存 在下合成。
2、乙醇,俗稱酒精,應用最廣泛的一類醇。
3、乙二醇,是最簡單和重要的二元醇,為帶有甜味的黏稠狀無色液體。
4、丙三醇,俗稱甘油,是無色具有甜味的黏稠性液體,能與水 混合,不溶於有機溶劑,有強烈的吸水性。
Ⅳ 醇的物理化學性質
一、醇的物理性質
低級的一元飽和醇為無色中性液體,具有特殊的氣味和辛辣味道。水與醇均具有羥基,彼此可以形成氫鍵,根據相似相溶的原則,甲醇、乙醇和丙醇可與水以任意比例混溶,4~11個碳的醇為油狀液體,僅可部分地溶於水;高級醇為無臭、無味的固體,不溶於水。隨著相對分子質量的增大,烷基對整個分子的影響也越來越大,從而使高級醇的物理性質與烷烴近似。一元飽和醇的密度雖比相應的烷烴大,但仍比水輕。醇的沸點隨相對分子質量的增大而升高,在同系列中,少於10個碳原子的相鄰兩個醇的沸點差為18~20℃,高於10個碳原子者,沸點差較小。叉鏈醇的沸點總比相同碳原子數的直鏈醇低,如下表所示。
一些常見醇的名稱及物理常數
化合物
熔點/℃
沸點/℃
相對密度
甲醇
-97
64.7
0.792
乙醇
-115
78.4
0.789
正丙醇
-126
97.2
0.804
正丁醇
-90
117,8
0.810
正戊醇
-79
138.0
0.817
正己醇
-52
155.8
0.820
正庚醇
-34
176
—
異丙醇
-88.5
82.3
0.786
異丁醇
-108
107.9
0.802
異戊醇
-117
131.5
0.812
二級丁醇
-114
99.5
0.808
三級丁醇
26
82.5
0.789
環戊醇
—
140
0.949
環己醇
24
161.5
0.962
烯丙醇
-129
97
0.855
苯甲醇
-15
205
1.046
二苯甲醇
69
298
—
三苯甲醇
162.5
—
—
乙二醇
-16
197
1.113
1,3-丙二醇
—
215
1.060
1,2,3-丙三醇
18
290
1.261
低級醇的熔點和沸點比碳原子數相同的碳氫化合物的熔點和沸點高得多,這是由於醇分子間有氫鍵締合作用的結果。實驗結果顯示,氫鍵的斷裂約需要21~30KJ/mo1,這表明它比原子間弱得多(105~418KJ/mol)。醇在固態時,締合較為牢固;液態時,氫鍵斷開後,還會再形成;但在氣相或非極性溶劑的稀溶液中,醇分子彼此相距甚遠,各個醇分子可以單獨存在單獨存在。多元醇分子中有兩個以上位置可以形成氫鍵,因此沸點更高,如乙二醇沸點197℃。分子間的氫鍵隨著濃度增高而增加,分子內氫鍵卻不受濃度的影響。
二、醇的化學性質
醇的酸性和鹼性
醇羥基的氧上有兩對孤對電子,氧能利用孤對電子與質子結合。所以醇具有鹼性。在醇羥基中,由於氧的電負性大於氫的電負性,因此氧和氫共用的電子對偏向於氧,氫表現出一定的活性,所以醇也具有酸性。醇的酸性和鹼性與和氧相連的烴基的電子效應相關,烴基的吸電子能力越強,醇的鹼性越弱,酸性越強。相反,烴基的給電子能力越強,醇的鹼性越強,酸性越弱。烴基的空間位阻對醇的酸鹼性也有影響,因此分析烴基的電子效應和空間位阻影響是十分重要的。[2]
烴基的電子效應
在氣相下研究一系列醇的酸性次序,其排列情況如下:
(CH3)3CCH2OH > (CH3)3COH > (CH3)2CHOH > C2H5OH > CH3OH > H2O
這說明烷基是吸電子基團。醇在氣態時,分子處於隔離狀態。因此烷基吸電子反映了分子內在的本質。
烴基的空間效應
在液相中測定的醇的酸性次序與電子效應方面正好相反:
CH3OH > RCH2OH > R2CHOH > R3COH
這是因為在液相中有溶劑化作用,R3CO-由於R3C體積增大,溶劑化作用小,負電荷不易被分散,穩定性差,因此R3COH中的質子不易解離,酸性小。而RCH2O-體積小,溶劑化作用大。因此RCH2OH中的質子易於解離,酸性大。一般pKa值是在液相測定的,很多反應也是在液相中進行的。因此根據液相中各類醇的酸性的大小順序,認為烷基是給電子的。
各類醇的共軛酸在水中酸性的強弱,也由它們的共軛酸在水中的穩定性來決定,共軛酸的空間位阻小,與水形成氫鍵而溶劑化的程度愈大,酸性就愈低。如空間位阻大,溶劑化作用小,質子易離去,酸性強。[2]
醇羥基中氫的反應
由於醇羥基中的氫具有一定的活性,因此醇可以和金屬鈉反應,氫氧鍵斷裂,形成醇鈉(CH3CH2ONa)和放出氫氣。
由於在液相中,水的酸性比醇強,所以醇與金屬鈉的反應沒有水和金屬鈉的反應強烈。若將醇鈉放入水中,醇鈉會全部水解,生成醇和氫氧化鈉。雖然如此,在工業上制甲醇鈉或乙醇鈉還是用醇與氫氧化鈉反應,然後設法把水除去,使平衡有利於醇鈉一方。常用的方法是利用形成共沸混合物將水帶走轉移平衡。所沸共合物是指幾種沸點不同而又完全互溶的液體混合物,由於分子間的作用力,它們在蒸餾過程中因氣相和液相組成相同而不能分開,得到具最低沸點(比所有組分沸點都低)或晟高沸點(比所有組分沸點都高)的餾出物。這些餾出物的組成與溶液的組成相同,直到蒸完沸點一直恆定,如乙醇一苯一水組成三元共沸混合物,其沸點為64.9℃(乙醇18. 5%,苯74%,水7.5%),苯一乙醇組成二元共沸混合物,其沸點為68.3℃(乙醇32.4%,苯67. 6%)。由於乙醇一水形成共沸混合物,其沸點為78℃(乙醇95. 57%,水4. 43%),所以乙醇中含有少量的水不能通過蒸餾方法除去,可計算加入比形成乙醇苯一水三元共沸混合物稍過量的苯,先將水除去,然後過量苯與乙醇形成二元共沸混合物除去,剩下為無水乙醇。醇鈉的醇溶液,可通過上述去水方法得到。醇鈉及其類似物在有機合成中是一類重要的試劑,並常作為鹼使用。[2]
醇與含氧無機酸的反應
醇與含氧無機酸反應失去一分子水,生成無機酸酯。
醇與硝酸的反應過程如下:醇分子作為親核試劑進攻酸或其衍生物的帶正電荷部分,氮氧雙鍵打開,而後醇分子的氫氧鍵斷裂,硝酸部分失去一分子水重新形成氮氧雙鍵。
該類反應主要用於無機酸一級醇酯的制備。無機酸三級醇酯的制備不宜用此法,因為三級醇與無機酸反應時易發生消除反應。
醇與含氧無機酸的醯氯和酸酐反應,也能生成無機酸酯。
含氧無機酸酯有許多用途。乙二醇二硝酸酯和甘油三硝酸酯(俗稱硝化甘油)都是烈性炸葯。硝化甘油還能用於血管舒張、治療心絞痛和膽絞痛。科學家發現:硝化甘油能治療心臟病的原因是它能釋放出信使分子「NO」,並闡明了「NO」在生命活動中的作用機理。為此,他們榮獲了1998年諾貝爾生理學和醫學獎。
生命體的核苷酸中有磷酸酯,例如甘油磷酸酯與鈣離子的反應可用來控制體內鈣離子的濃度,如果這個反應失調,會導致佝僂病。[2]
醇羥基的取代反應
醇中,碳氧鍵是極性共價鍵,由於氧的電負性大於碳,所以其共用電子對偏向於氧,當親核試劑進攻正性碳時,碳氧鍵異裂,羥基被親核試劑取代。其中最重要的一個親核取代反應是羥基被鹵原子取代。常採用的方法如下:
1.與氫鹵酸的反應
(1)一般情況
氫鹵酸與醇反應生成鹵代烷,反應中醇羥基被鹵原子取代。
ROH+HX——>RX+H20
醇羥基不是一個好的離去基團,需要酸的幫助,使羥基質子化後以水的形式離去。各種醇的反應性為3°>2°>1°,三級醇易反應,只需濃鹽酸在室溫振盪即可反應,氫溴酸在低溫也能與三級醇進行反應。如用氯化氫、溴化氫氣體在0℃通過三級醇,反應在幾分鍾內就可完成,這是制三級鹵代烷的常用方法。
在氫鹵酸中,氫碘酸酸性最強,氫溴酸其次,濃鹽酸相對最弱,而鹵離子的親核能力又是I->Br->Cl-,故氫鹵酸的反應性為HI> HBr>HCl。若用一級醇分別與這三種氫鹵酸反應,氫碘酸可直接反應,氫溴酸需用硫酸來增強酸性,而濃鹽酸需與無水氯化鋅混合使用,才能發生反應。氯化鋅是強的路易斯酸,在反應中的作用與質子酸類似。
【用Lucas試劑鑒別一級醇、二級醇、三級醇】
濃鹽酸和無水氯化鋅的混合物稱為Lucas試劑。可用來鑒別六碳和六碳以下的一級、二級、三級醇別加入盛有Lucas試劑的試管中,經振盪後可發現,三級醇立刻反應,生成油狀氯代烷,它不溶於酸中,溶液呈混濁後分兩層,反應放熱;二級醇2~5min反應,放熱小明顯,溶液分兩層;一級醇經室溫放置1h仍無反應,必須加熱才能反應。
在使用Lucas試劑時須注意,有些一級醇如烯丙型醇(allylicalcohol)及苯甲型醇(benzylicalcohol),也可以很快地發生反應,這是因為p-π共軛,很容易形成碳正離子進行SN1反應。
各類醇與Lucas試劑的反應速率為
烯丙型醇,苯甲型醇,三級醇>;二級醇>;一級醇
氫鹵酸與大多數一級醇按SN2機理進行反應。
氫鹵酸與大多數二級、三級醇和空阻特別大的一級酵按SN1機理進行反應。
如果按SN機理反應,就有重排產物產生,如2-戊醇與氫溴酸反應有86% 2-溴戊烷與14% 3-溴戊烷;異丁醇在氫溴酸與硫酸中加熱反應,有80%異丁基溴與20%三級丁基溴,新戊醇由於β位位阻太大,得到的是重排產物2-甲基-2-溴丁烷。三級醇與氫鹵酸的反應一般不會發生重排,但三級醇易發生消除反應,所以取代反應需在低溫時進行。
2.與鹵化磷反應
醇與鹵化磷反應生成鹵代烷。
醇羥基是一個不好的離去基團,與三溴化磷作用形成CH3CH2OPBr2,Br進攻烷基的碳原子,-OPBr2作為離去基團離去。- OPBr2中還有兩個溴原子,可繼續與醇發生反應。
碘代烷可由三碘化磷與醇制備,但通常三碘化磷是用紅磷與碘代替,將醇、紅磷和碘放在一起加熱,先生成三碘化磷,再與醇進行反應。
氯代烷常用五氯化磷與醇反應制備。
上述方法中,最常用的是三溴化磷與一級醇、β位有支鏈的一級醇、二級醇生成相應溴代烷,在用二級醇及有些易發生重排反應的一級醇時溫度須低於0℃,以避免重排。紅磷與碘常用於一級醇制相應碘代烷。[2]3.與亞硫醯氯反應
若用亞硫醯氯和醇反應,可直接得到氯代烷,同時生成二氧化硫和氯化氫兩種氣體,在反應過程中這些氣體都離開了反應體系,這有利於反應向生成產物的方向進行,該反應不僅速率快,反應條件溫和,產率高,而且不生成其它副產物。一般用過量的亞硫醯氯並保持微沸,是一個很好的制氧代烷的方法。[2]4.經醇與磺醯氯反應為中間階段來制備鹵代烴
醇羥基必須在質子酸或路易斯酸催化下才可進行取代反應,而苯磺酸酯中酸根部分是很好的離去基團,因此這類酯比醇容易進行親核取代反應。
這樣將一級或二級醇通過與苯磺醯氯反應形成磺酸酯,再轉為鹵代烷,純度很好。磺醯氯可以由相應的磺酸與五氯化磷反應來制備。[2]
醇的氧化
一級醇及二級醇與醇羥基相連的碳原子上有氫,可以被氧化成醛、酮或酸;三級醇與醇羥基相連的碳原子上沒有氫,不易被氧化,如在酸性條件下,易脫水成烯,然後碳碳鍵氧化斷裂,形成小分子化合物。
1.用高錳酸鉀或二氧化錳氧化
醇不為冷、稀、中性的高錳酸鉀的水溶液所氧化,一級醇、二級醇在比較強烈的條件下(如加熱)可被氧化。一級醇生成羧酸鉀鹽,溶於水,並有二氧化錳沉澱析出,中和後可得羧酸。
二級醇可氧化為酮。但由於二級醇用高錳酸鉀氧化為酮時,易進一步氧化使碳碳鍵斷裂,故很少用於合成酮。
三級醇在中性、鹼性條件下不易為高錳酸鉀氧化,在酸性條件下,則能脫水成烯,再發生碳碳鍵斷裂,生成小分子化合物。
高錳酸鉀與硫酸錳在鹼性條件下可製得二氧化錳,新制的二氧化錳可將β碳上為不飽和鍵的一級醇、二級醇氧化為相應的醛和酮,不飽和鍵可不受影響。[2]2.用鉻酸氧化
鉻酸可作為氧化劑的形式有:Na2Cr2O7與40%~50%硫酸混合液、CrO3的冰醋酸溶液、CrO3與吡啶的絡合物等。
一級醇常用NaCr2O7與40%~50%硫酸混合液氧化,先得醛,醛進一步氧化為酸。如控制合適的氧化條件,在氧化成醛後立即將其從反應體系中蒸出,可避免醛進一步被氧化為酸,反應需在低於醇的沸點,高於醛的沸點溫度下進行將丙醇滴加到溫度為~75℃的NaCr2O7,H2SO4,H2O的溶液中,一旦生成丙醛,就被蒸餾出來。這種反應產率不高,因為總有一部分醛氧化為酸。醛的沸點低於100℃才能用此法,因此它的用途是非常有限的。
二級醇常用上述幾種鉻酸氧化劑氧化,酮在此條件下比較穩定。因此是比較有用的方法。
用鉻酐(CrO3)與吡啶反應形成的鉻酐一雙吡啶絡合物是吸潮性紅色結晶,稱Sarrett(沙瑞特)試劑,可使一級醇氧化為醛,二級醇氧化為酮,產率很高,因為吡啶是鹼性的,對在酸中不穩定的醇是一種很好的氧化劑,反應一般在二氯甲烷中於25℃左右進行。分子中如有雙鍵、三鍵,氧化時不受影響。
二級醇還可以被Jones(瓊斯)試劑氧化成相應的酮,若反應物是不飽和的二級醇,用Jones試劑氧化時生成相應的酮而雙鍵不受影響,該試劑是把鉻酐溶於稀硫酸中,然後滴加到要被氧化的醇的丙酮溶液中,反應在15~20℃進行,可得較高產率的酮。
如用過量鉻酸並反應條件強烈,雙鍵也被氧化成酮或酸。
【用鉻酐的硫酸水溶液鑒別一級醇、二級醇】
一級醇、二級醇可使清澈的鉻酐的硫酸水溶液由橙色變為不透明的藍綠色。三級醇無此反應。烯烴、炔烴也無此反應。上述反應的原因是一級醇與二級醇起了氧化作用。[2]3.用硝酸氧化
一級醇能在稀硝酸中氧化為酸。二級醇、三級醇需在較濃的硝酸中氧化,同時碳碳鍵斷裂,成為小分子的酸。環醇氧化,碳碳鍵斷裂成為二元酸。
4.Oppenauer氧化法
另一種有選擇性的氧化醇的方法叫做Oppenauer(歐芬腦爾)氧化法(oxidation methods),即在鹼如三級丁醇鋁或異丙醇鋁的存在下,二級醇和丙酮(或甲乙酮、環己酮)一起反應(有時需加入苯或甲苯做溶劑),醇把兩個氫原子轉移給丙酮,醇變成酮,丙酮被還原成異丙醇。該反應的特點是,只在醇和酮之間發生氫原子的轉移,而不涉及分子的其它部分。所以在分子中含有碳碳雙鍵或其它對酸不穩定的基團時,利用此法較為適宜。因此該法也是由一個不飽和二級醇制備不飽和酮的有效方法。[2]5.用Pfitzner—Moffatt試劑氧化
一級醇在Pfitzner(費茲納)- Moffatt(莫發特)試劑的作用下,可以得到產率非常高的醛。這個試劑是由二甲亞碸和二環己基碳二亞胺組成。二環己基碳二亞胺英文名叫dicyclohexylcarbodiimide,簡稱為DCC,是二取代脲的失水產物。這是一個非常重要的失水劑(dehydrating agent)。如對硝基苯甲醇在磷酸和這個試劑的作用下,得到92%產率的對硝基苯甲醛。
在這個反應中,環己基碳二亞胺接受一分子水,變為脲的衍生物,而二甲亞碸變為二甲硫醚。這個氧化劑也可用於氧化二級醇。
在進行氧化反應時必須注意:許多有機物與強氧化劑接觸會發生強烈的爆炸,岡此在使用高錳酸鉀、高氯酸以及類似氧化劑時,一定要在溶劑中進行反應,因為溶劑可使放出的大量熱消散,減緩反應速率。[2]
醇的脫氫
一級醇、二級醇可以在脫氫試劑(dehydrogenating agent)的作用下,失去氫形成羰基化合物,醇的脫氫一般用於工業生產,常用銅或銅鉻氧化物等作脫氫劑,在300℃下使醇蒸氣通過催化劑即可生成醛或酮。此外Pd等也可作脫氫試劑。
Ⅵ 醇的化學性質和物理性質有哪些
醇的化學性質
一般的可以和酸反應生成酯類
還可以和電解出氫離子的物質脫羧反應
通常鹼性物質的有機物的化學性質
醇是比較典型
物理性質一般的表現為鹼性
一般的可以溶於有機物
Ⅶ 乙醇的性質和應用
一、乙醇的物理性質
1、乙醇液體密度是0.789g/cm³,乙醇氣體密度為1.59kg/m³,相對密度(d15.56)0.816,式量(相對分子質量)為46.07g/mol。沸點是78.4℃,熔點是-114.3℃。純乙醇是無色透明的液體,有特殊香味,易揮發。乙醇的物理性質主要與其低碳直鏈醇的性質有關。分子中的羥基可以形成氫鍵,因此乙醇黏性大,也不及相近相對分子質量的有機化合物極性大。
2、溶解性、能與水以任意比互溶;可混溶於醚、氯仿、甲醇、丙酮、甘油等多數有機溶劑。乙醇是一種很好的溶劑,能溶解許多物質,所以常用乙醇來溶解植物色素或其中的葯用成分;也常用乙醇作為反應的溶劑,使參加反應的有機物和無機物均能溶解,增大接觸面積,提高反應速率。例如,在油脂的皂化反應中,加入乙醇既能溶解NaOH,又能溶解油脂,讓它們在均相(同一溶劑的溶液)中充分接觸,加快反應速率。
3、潮解性。由於存在氫鍵,乙醇具有較強的潮解性,可以很快從空氣中吸收水分。羥基的極性也使得很多離子化合物可溶於乙醇中,如氫氧化鈉、氫氧化鉀、氯化鎂、氯化鈣、氯化銨、溴化銨和溴化鈉等;但氯化鈉和氯化鉀微溶於乙醇。此外,其非極性的烴基使得乙醇也可溶解一些非極性的物質,例如大多數香精油和很多增味劑、增色劑和醫葯試劑。
二、乙醇的化學性質
1、還原性
乙醇具有還原性,可以被氧化(催化氧化)成為乙醛甚至進一步被氧化為乙酸。酒精中毒的罪魁禍首通常被認為是有一定毒性的乙醛(乙醇在體內也可以被氧化,但較緩慢,因為沒有催化劑),而並非喝下去的乙醇。
2、酸鹼性
乙醇不是酸(一般意義上的酸,它不能使酸鹼指示劑變色,也不具有酸的通性),乙醇溶液中含有極化的氧氫鍵,電離時生成烷氧基負離子和質子(氫離子)。
三、乙醇應用領域
乙醇的用途很廣,可以用於:溶劑;有機合成;各種化合物的結晶;洗滌劑;萃取劑;食用酒精可以勾兌白酒;用作粘合劑;硝基噴漆;清漆、化妝品、油墨、脫漆劑等的溶劑以及農葯、醫葯、橡膠、塑料、人造纖維、洗滌劑等的製造原料、還可以做防凍劑、燃料、消毒劑等。75%的乙醇溶液常用於醫療消毒。
(7)醇的物理性質是什麼擴展閱讀:
乙醇的幾種分類
1、按生產使用的原料可分為澱粉質原料發酵酒精、糖蜜原料發酵酒精、亞硫酸鹽紙漿廢液發酵生產酒精。
2、按生產的方法來分,可分為發酵法、合成法兩大類。
3、按產品質量或性質來分,又分為高純度酒精、無水酒精、普通酒精和變性酒精。
4、按產品系列(BG384-81)分為優級、一級、二級、三級和四級。
Ⅷ 醇的性質是什麼
物理性質
狀態
C1-C4是低級一元醇,是無色流動液體,比水輕,C1-C3能與水以任意比例混合。C5-C11為油狀液體,C12以上高級一元醇是無色的蠟狀固體,可以部分溶於水。甲醇、乙醇、丙醇都帶有酒味,丁醇開始到十一醇有不愉快的氣味,二元醇和多元醇都具有甜味,故乙二醇有時稱為甘醇(Glycol)。 甲醇有毒,飲用10毫升就能使眼睛失明,再多用就有使人死亡的危險,故需注意。
沸點
醇的沸點比含同數碳原子的烷烴、鹵代烷高。CH3CH2OH 78.5℃, CH3CH2Cl 12℃.這是因為液態時水分子和醇分子一樣,在它們的分子間有締合現象存在。由於氫鍵締合的結果,使它具有較高的沸點。
在同系列中醇的沸點也是隨著碳原子數的增加而有規律地上升。如直鏈飽和一元醇中,每增加一個碳原子,它的沸點大約升高15-20℃。此外在同數碳原子的一元飽和醇中,沸點也是隨支鏈的增加而降低。在相同碳數的一元飽和醇中,伯醇的沸點最高,仲醇次之,叔醇最低。
溶解度
低級的醇能溶於水,分子量增加溶解度就降低。含有三個以下碳原子的一元醇,可以和水混溶。正丁醇在水中的溶解度就很低,只有8%,正戊醇就更小了,只有2%。高級醇和烷烴一樣,幾乎不溶於水。低級醇之所以能溶於水主要是由於它的分子中有和水分子相似的部分-羥基。醇和水分子之間能形成氫鍵。所以促使醇分子易溶於水。當醇的碳鏈增長時,羥基在整個分子中的影響減弱,在水中的溶解度也就降低,以至於不溶於水。相反的,當醇中的羥基增多時,分子中和水相似的部分增加,同時能和水分子形成氫鍵的部位也增加了,因此二元醇的水溶性要比一元醇大。甘油富有吸濕性,故純甘油不能直接用來滋潤皮膚,一定要摻一些水,不然它要從皮膚中吸取水分,使人感到刺痛。醇也能溶於強酸(H2SO4,HCl),這是由於它能和酸中質子結合成釒羊鹽的緣故。正因為醇能和質子形成鹽(Oxoninm salt,含有正氧離子oxonium的鹽),故醇在強酸水溶液中溶解度要比在純粹水中大。如正丁醇,它在水中溶解度只有8%,但是它能和濃鹽酸混溶。醇能溶於濃硫酸,這個性質在有機分析上很重要,它常被用來區別醇和烷烴,因為後者不溶於強酸。
結晶
低級醇能和一些無機鹽類(MgCl2,CaCl2,CuSO4等)形成結晶狀的分子化合物,稱為結晶醇。如:MgCl2.6CH3OH,CaCl2.4C2H5OH等。結晶醇不溶於有機溶劑而溶於水。利用這一 性質可使醇與其他有機物分開或從反應物中除去醇類。如:乙醚中的少量乙醇,加入 CaCl2便可除去少量乙醇。
化學性質
不穩定結構
①同一碳上連有多個羥基的化合物不穩定,這類物質通常是生成醛(酮)的中間反應
HO-CH2-OH——→HCHO+H2O
②雙鍵後直連羥基的化合物不穩定
H2C=C(OH)CH3←——→H3CCOCH3
在特殊情況下,這些化合物可能存在[1]。
醇與金屬反應(該反應為置換反應)
儀器的組裝
醇與金屬的反應是隨著分子量的加大而變慢。
2R-OH+2Na——→2R-ONa+H2↑
反應現象
①鈉塊沉入容器底部
②鈉塊產生氣泡
③反應結束後,有無色晶體析出(此為R-OH)
醇與HX鹵代
反應活性
HI>HBr>HCl
叔醇>仲醇>伯醇
(CH3)3C-OH+HCl——→(CH3)3-Cl+H2O(立刻混濁)
CH3CH2(OH)CH3+HCl——→CH3CH2(Cl)CH3+H2O(10min內開始混濁)
CH3CH2CH2OH+HCl-△→CH3CH2CH2Cl+H2O(常溫不反應)
由於伯醇、仲醇、叔醇反應時現象不同,可以用此方法進行鑒別,專門用於鑒別的試劑叫盧卡斯(Lucas)試劑,是無水氯化鋅的濃鹽酸溶液(無水氯化鋅起催化作用)
醇的酯化與醇解反應
①與羧酸酯化
CH3OH+CH3COOH-△濃硫酸→CH3COOCH3+H2O
②與硝酸和亞硝酸酯化
CH3CH2CH2OH+HO-NO——→CH3CH2CH2ONO+H2O
③與硫酸酯化
醇與硫酸在不太高的溫度下作用得到硫酸氫酯
RCH2OH+HO-SO3H——→RCH2OSO3H+H2O
叔醇和硫酸反應往往脫水生成烯烴
醇和硫酸的反應雖然產物比較復雜,但是在工業生產上依然是個很有用的反應
C12H25OH+H2SO4--→C12H25OSO3H+H2OC12H25OSO3H+NaOH--→C12H25OSO3Na+H2O
C12H25OSO3Na-減壓→(CH3)2SO4+H2O
(CH3)2SO4為硫酸二甲酯,是常用的甲基化試劑。
醇的消去反應
脫水難易程度:叔醇>仲醇>伯醇
①分子內脫水
分子內脫水依照查依采夫規則,從氫原子數較少的β-碳上脫去氫原子
CH3CH2CH(OH)CH3-△濃硫酸→CH3CH=CHCH3
CH3CH2OH-170℃濃硫酸→CH2=CH2↑+H2O②分子間脫水濃硫酸做脫水劑,催化劑
醇分子間脫水生成醚
CH3OH+CH3OH-△濃硫酸→H3C-O-CH3↑+H2O(140°C時)③有的醇消去時會發生分子重排
(CH3)3CCH(OH)CH3-濃磷酸→(CH3)2C=C(CH3)2(80%產物)+H2C=C(CH(CH3)2)CH3(20%產物)某些醇不能發生消去反應
醇的氧化反應
①伯醇的氧化
伯醇氧化先生成醛,後生成羧酸
2CH3CH2OH+O2-Cu△→2CH3CHO+2H2O
2CH3CHO+O2-Cu△→2CH3COOH
②仲醇的氧化
仲醇氧化生成酮
2CH3CH(OH)CH3+O2-Cu△→2H3CCOCH3+2H2O
③叔醇的氧化
叔醇一般不發生氧化反應,但叔醇和重鉻酸鉀的濃硫酸溶液混合時,會先脫水生成烯烴再被氧化,反應十分復雜[1]。
註:醇可被CuO\KMnO4(H+)\O2等氧化
多元醇的鑒別
多元醇能和Cu(OH)2發生顯色反應,生成絳藍色清亮透明溶液
醇的製取
工業制備低級醇,常用澱粉發酵法和乙烯水化法(詳見乙醇、甲醇)
實驗室常用鹵代烴的鹼性水解法
CH3CH2-Cl+NaOH-△→CH3CH2OH+NaCl
另外醛、酮、羧酸都可還原得到醇
CH3CHO+H2-Pt→CH3CH2OH
H3CCOCH3+H2-Pt→CH3CH(OH)CH3
CH3COOH-LiAlH4→CH3CH2OH
Ⅸ 乙醇物理性質與化學性質
物理性質:
乙醇的物理性質主要與其低碳直鏈醇的性質有關。分子中的羥基可以形成氫鍵,因此乙醇黏度很大,也不及相近相對分子質量的有機化合物極性大。室溫下,乙醇是無色,且有特殊味道的揮發性液體。
乙醇具有潮解性,可以很快從空氣中吸收水分。羥基的極性也使得很多離子化合物可溶於乙醇中,如氫氧化鈉、氫氧化鉀、氯化鎂、氯化鈣、氯化銨、溴化銨和溴化鈉等。鹽(氯化鈉)和氯化鉀則微溶於乙醇。
化學性質:
乙醇是一種伯醇,連接羥基的碳原子連接二個氫原子。許多乙醇的反應都和羥基有關。
乙醇可以與乙酸在濃硫酸的催化下發生酯化作用,生成乙酸乙酯和水。乙醇可以在有酸的催化下和其它羧酸發生酯化作用,生成相應的酯類和水。
乙醇具有還原性,可以被氧化成為乙醛。酒精中毒的罪魁禍首通常被認為是有一定毒性的乙醛,而並非喝下去的乙醇。
乙醇可以與空氣中氧氣發生劇烈的氧化反應產生燃燒現象,生成水和二氧化碳。乙醇也可與濃硫酸跟高錳酸鉀的混合物發生非常激烈的氧化反應,燃燒起來。
乙醇可以在濃硫酸和高溫的催化發生脫水反應,隨著溫度的不同生成物也不同。如果溫度在140℃左右生成物是乙醚,如果溫度在170℃左右,生成物為乙烯。
運用
殺菌消毒:
乙醇可使蛋白質變性,但是由於純乙醇無法滲透到細胞壁內層,故純乙醇的殺菌效果不好。體積濃度75%的乙醇用於醫用消毒,同樣,碘酊(俗稱碘酒)的溶劑也是乙醇。
高純乙醇(~95%)會使細菌細胞脫水,但無法完全殺死在細菌細胞膜內的細菌細胞,原因是高純度乙醇不能完全溶解由磷脂組成的細胞膜,而無法使細胞內的細胞質流出以殺死細菌。
酒精的濃度太高,反而馬上使細菌表面的蛋白質凝固,形成一層硬膜,這層硬膜對細菌反而起到保護作用,防止酒精進一步滲入,所以高濃度酒精(95%)消毒殺菌效果,反而不及稀酒精(70~75%濃度最佳)
Ⅹ 醇的物理性質遞變規律
醇隨著分子量增加水溶性變差、熔沸點升高、密度增大、由液體變為固體