Ⅰ 量子物理主要講的是什麼
量子物理學是研究微觀粒子的性質和運動規律的物理學分支學科,依據原理是量子力學規律,微觀世界的物質的性質和運動規律與宏觀物體遵循的運動規律有很大的不同,除了一些最基本的普適性的物理定律(如能量、動量和角動量守恆定律等)之外,微觀粒子的運動不服從經典物理學定律(如牛頓力學、宏觀電磁場理論等),而是服從量子力學規律(如薛定諤方程、不確定性原理等);量子物理學的基本內容包括早期量子論(又稱舊量子論,例如玻爾氫原子理論)、(非相對論)量子力學、相對論量子力學、量子場論(量子電動力學、量子引力理論等),普通物理學中的原子物理學(或量子理論初步)主要是以早期量子論和量子力學最基本和最簡單的內容為基礎來研究原子和原子核的性質,量子場論研究物理場(如電磁場、引力場等)的量子化(例如理論物理中比較流行的「超弦理論」),量子理論和相對論是現代科學技術兩大理論基礎.
Ⅱ 量子力學的三級學科
中華人民共和國國家標准學科分類與代碼表錄 (GB/T 3745-92)
一級學科 140 物理學
二級學科 140.15 理論物理學
三級學科 140.1550 量子力學
此外還有量子聲學和量子光學,分別是二級學科聲學、光學下面的三級學科。
Ⅲ 量子學是學什麼的是不是很高深的學科
量子力學
量子力學是研究微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是近代物理學的基礎理論之一,而且在化學等有關學科和許多近代技術中也得到了廣泛的應用。
量子力學的發展簡史
量子力學是在舊量子論的基礎上發展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。
1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。
1905年,愛因斯坦引進光量子(光子)的概念,並給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其後,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。
1913年,玻爾在盧瑟福有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,原子具有確定的能量,它所處的這種狀態叫「定態」,而且原子只有從一個定態到另一個定態,才能吸收或輻射能量。這個理論雖然有許多成功之處,但對於進一步解釋實驗現象還有許多困難。
在人們認識到光具有波動和微粒的二象性之後,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意於1923年提出微觀粒子具有波粒二象性的假說。德布羅意認為:正如光具有波粒二象性一樣,實體的微粒(如電子、原子等)也具有這種性質,即既具有粒子性也具有波動性。這一假說不久就為實驗所證實。
由於微觀粒子具有波粒二象性,微觀粒子所遵循的運動規律就不同於宏觀物體的運動規律,描述微觀粒子運動規律的量子力學也就不同於描述宏觀物體運動規律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規律也由量子力學過渡到經典力學。
量子力學與經典力學的差別首先表現在對粒子的狀態和力學量的描述及其變化規律上。在量子力學中,粒子的狀態用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態隨時間變化的規律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。
當微觀粒子處於某一狀態時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了並協原理,對量子力學給出了進一步的闡釋。
量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯和泡利等人的工作發展了量子電動力學。20世紀30年代以後形成了描述各種粒子場的量子化理論——量子場論,它構成了描述基本粒子現象的理論基礎。
量子力學是在舊量子論建立之後發展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由於舊量子論不能令人滿意,人們在尋找微觀領域的規律時,從兩條不同的道路建立了量子力學。
1925年,海森堡基於物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,並從可觀察的輻射頻率及其強度出發,和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基於量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其後不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。
量子力學的基本內容
量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。
在量子力學中,一個物理體系的狀態由波函數表示,波函數的任意線性疊加仍然代表體系的一種可能狀態。狀態隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處於某一狀態的物理體系的某一物理量的操作,對應於代表該量的算符對其波函數的作用;測量的可能取值由該算符的本徵方程決定,測量的期待值由一個包含該算符的積分方程計算。
波函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理並附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
關於量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
但在量子力學中,體系的狀態有兩種變化,一種是體系的狀態按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態的不可逆變化。因此,量子力學對決定狀態的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性——幾率因果性。量子力學中代表量子態的波函數是在整個空間定義的,態的任何變化是同時在整個空間實現的。
20世紀70年代以來,關於遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關於客體之間只能以不大於光速的速度傳遞物理相互作用的觀點相矛盾的。於是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同於建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態的概念表徵微觀體系狀態,深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態。真實狀態分解為隱態和顯態,是由於測量所造成的,在這里只有顯態才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關於遠隔粒子關聯實驗的結論,也定量地支持了量子態不可分離性的觀點。
選自:《物理學簡史》
Ⅳ 量子力學的應用學科
在許多現代技術裝備中,量子物理學的效應起了重要的作用。從激光、電子顯微鏡、原子鍾到核磁共振的醫學圖像顯示裝置,都關鍵地依靠了量子力學的原理和效應。對半導體的研究導致了二極體和三極體的發明,最後為現代的電子工業鋪平了道路。在核武器的發明過程中,量子力學的概念也起了一個關鍵的作用。
在上述這些發明創造中,量子力學的概念和數學描述,往往很少直接起了一個作用,而是固體物理學、化學、材料科學或者核物理學的概念和規則,起了主要作用,在所有這些學科中,量子力學均是其基礎,這些學科的基本理論,全部是建立在量子力學之上的。以下僅能列舉出一些最顯著的量子力學的應用,而且,這些列出的例子,肯定也非常不完全。 原子物理和化學
任何物質的化學特性,均是由其原子和分子的電子結構所決定的。通過解析包括了所有相關的原子核和電子的多粒子薛定諤方程,可以計算出該原子或分子的電子結構。在實踐中,人們認識到,要計算這樣的方程實在太復雜,而且在許多情況下,只要使用簡化的模型和規則,就足以確定物質的化學特性了。在建立這樣的簡化的模型中,量子力學起了一個非常重要的作用。
一個在化學中非常常用的模型是原子軌道。在這個模型中,分子的電子的多粒子狀態,通過將每個原子的電子單粒子狀態加到一起形成。這個模型包含著許多不同的近似(比如忽略電子之間的排斥力、電子運動與原子核運動脫離等等),它可以近似地、准確地描寫原子的能級。除比較簡單的計算過程外,這個模型還可以直覺地給出電子排布以及軌道的圖像描述。
通過原子軌道,人們可以使用非常簡單的原則(洪德定則)來區分電子排布。化學穩定性的規則(八隅律、幻數)也很容易從這個量子力學模型中推導出來。
通過將數個原子軌道加在一起,可以將這個模型擴展為分子軌道。由於分子一般不是球對稱的,因此這個計算要比原子軌道要復雜得多。理論化學中的分支,量子化學和計算機化學,專門使用近似的薛定諤方程,來計算復雜的分子的結構及其化學特性的學科。
原子核物理學
原子核物理學是研究原子核性質的物理學分支。它主要有三大領域:研究各類次原子粒子與它們之間的關系、分類與分析原子核的結構、帶動相應的核子技術進展。 為什麼金剛石硬、脆和透明,而同樣由碳組成的石墨卻軟而不透明?為什麼金屬導熱、導電,有金屬光澤?發光二極體、二極體和三極體的工作原理是什麼?鐵為什麼有鐵磁性?超導的原理是什麼?
以上這些例子,可以使人想像到固體物理學的多樣性。事實上,凝聚態物理學是物理學中最大的分支,而所有凝聚態物理學中的現象,從微觀角度上,都只有通過量子力學,才能正確地被解釋。使用經典物理,頂多隻能從表面上和現象上,提出一部分的解釋。
以下列出了一些量子效應特別強的現象: 晶格現象 音子、熱傳導 靜電現象 壓電效應 電導 絕緣體、導體 磁性 鐵磁性 低溫態 玻色- 維效應 量子線、量子點 關於量子力學的解釋涉及許多哲學問題,其核心是因果律和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
量子力學可以算作是被驗證的最嚴密的物理理論之一了。至今為止,所有的實驗數據均無法推翻量子力學。大多數物理學家認為,它「幾乎」在所有情況下,正確地描寫能量和物質的物理性質。雖然如此,量子力學中,依然存在著概念上的弱點和缺陷,除上述的萬有引力的量子理論的缺乏外,至今為止對量子力學的解釋存在著爭議。 假如,量子力學的數學模型,它的適用范圍內的完整的物理現象的描寫的話,我們發現測量過程中,每次測量結果的機率性的意義,與經典統計理論中的機率,意義不同。即使完全相同的系統的測量值,也會是隨機的。這與經典的統計力學中的機率結果不一樣。在經典的統計力學中,測量結果的不同,它是由於實驗者無法完全復制一個系統,而不是因為測量儀器無法精確地進行測量。在量子力學的標准解釋中,測量的隨機性是基本性的,它是由量子力學的理論基礎獲得的。由於量子力學盡管無法預言單一實驗的結果,依然是一個完整的自然的描寫,使得人們不得不得出以下結論:世界上不存在通過單一測量可以獲得的客觀的系統特性。一個量子力學狀態的客觀特性,只有在描寫其整組實驗所體現出的統計分布中,才能獲得。愛因斯坦(「量子力學不完整」,「上帝不擲骰子」)與尼爾斯·玻爾是最早對這個問題進行爭論的。玻爾維護不確定原理和互補原理。在多年的、激烈的討論中,愛因斯坦不得不接受不確定原理,而玻爾則削弱了他的互補原理,這最後導致了今天的哥本哈根詮釋。
今天,大多數物理學家,接受了量子力學描述所有一個系統可知的特性,以及測量過程無法改善,不是因為我們的技術問題所導致的的見解。這個解釋的一個結果是,測量過程打擾薛定諤方程,使得一個系統塌縮到它的本徵態。除哥本哈根詮釋外,還有人提出過一些其它解釋方式。包括:
1.戴維·玻姆提出了一個不局部的,帶有隱變數的理論(隱變數理論)。在這個解釋中,波函數被理解為粒子的一個引波。從結果上,這個理論預言的實驗結果,與非相對論哥本哈根詮釋的預言完全一樣,因此,使用實驗手段無法鑒別這兩個解釋。雖然,這個理論的預言是決定性的,但是,由於不確定原理無法推測出隱變數的精確狀態。其結果是與哥本哈根詮釋一樣,使用這來解釋實驗的結果,也是一個概率性的結果。至今為止,還不能確定這個解釋,是否能夠擴展到相對論量子力學上去。路易斯·德布羅意和其他人也提出過類似的隱藏系數解釋。
2.休·艾弗雷特三世提出的多世界詮釋認為,所有量子理論所做出的可能性的預言,全部同時實現,這些現實成為互相之間一般無關的平行宇宙。在這個詮釋中,總的波函數不塌縮,它的發展是決定性的。但是由於我們作為觀察者,無法同時在所有的平行宇宙中存在,因此,我們只觀察到在我們的宇宙中的測量值,而在其它宇宙中的平行,我們則觀察到他們的宇宙中的測量值。這個詮釋不需要對測量的特殊的對待。薛定諤方程在這個理論中所描寫的也是所有平行宇宙的總和。
3.微觀作用原理認為 (詳見《量子筆跡》),微觀粒子之間存在微觀作用力(微觀作用力既可以演化到宏觀力學也可以演化到微觀力學),微觀作用是量子力學背後更深層次的理論,微觀粒子之所以表現出波動性是對微觀作用力的間接客觀反映,在微觀作用原理之下量子力學面臨的難題和困惑得到理解和解釋。
4.另一個解釋方向是將經典邏輯改成一個量子邏輯來排除解釋的困難。
以下列舉了對量子力學的解釋,最重要的實驗和思想實驗:
1.愛因斯坦-波多斯基-羅森悖論以及相關的貝爾不等式,明顯地顯示了,量子力學理論無法使用「局部」隱變數來解釋;不排除非局部隱藏系數的可能性。
2.雙縫實驗是一個非常重要的量子力學試驗,從這個試驗中,也可以看到量子力學的測量問題和解釋的困難性,這是最簡單而明顯地顯示波粒二象性的試驗了。
3.薛定諤的貓 量子力學的許多解釋,涉及到一般的哲學問題,這些問題又涉及到本體論、認識論和科學哲學的基本概念和理論。以下為一些這些問題:
1.決定論:自然界偶然性與必然性辯證關系,自然規律是嚴格決定性的?
2.局部性/可分離性:所有的相互作用都是局部性的還是有遠程相互作用?
3.因果律
4.現實(宏觀與微觀差異)
5.完全性:存在一個萬有理論嗎,如超弦理論?
Ⅳ 量子力學到底是一個什麼學科
量子力學
量子力學是研究微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是近代物理學的基礎理論之一,而且在化學等有關學科和許多近代技術中也得到了廣泛的應用。
量子力學的發展簡史
量子力學是在舊量子論的基礎上發展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。
1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。
1905年,愛因斯坦引進光量子(光子)的概念,並給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其後,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。
1913年,玻爾在盧瑟福有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,原子具有確定的能量,它所處的這種狀態叫「定態」,而且原子只有從一個定態到另一個定態,才能吸收或輻射能量。這個理論雖然有許多成功之處,但對於進一步解釋實驗現象還有許多困難。
在人們認識到光具有波動和微粒的二象性之後,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意於1923年提出微觀粒子具有波粒二象性的假說。德布羅意認為:正如光具有波粒二象性一樣,實體的微粒(如電子、原子等)也具有這種性質,即既具有粒子性也具有波動性。這一假說不久就為實驗所證實。
由於微觀粒子具有波粒二象性,微觀粒子所遵循的運動規律就不同於宏觀物體的運動規律,描述微觀粒子運動規律的量子力學也就不同於描述宏觀物體運動規律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規律也由量子力學過渡到經典力學。
量子力學與經典力學的差別首先表現在對粒子的狀態和力學量的描述及其變化規律上。在量子力學中,粒子的狀態用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態隨時間變化的規律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。
當微觀粒子處於某一狀態時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了並協原理,對量子力學給出了進一步的闡釋。
量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯和泡利等人的工作發展了量子電動力學。20世紀30年代以後形成了描述各種粒子場的量子化理論——量子場論,它構成了描述基本粒子現象的理論基礎。
量子力學是在舊量子論建立之後發展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由於舊量子論不能令人滿意,人們在尋找微觀領域的規律時,從兩條不同的道路建立了量子力學。
1925年,海森堡基於物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,並從可觀察的輻射頻率及其強度出發,和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基於量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其後不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。
量子力學的基本內容
量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。
在量子力學中,一個物理體系的狀態由波函數表示,波函數的任意線性疊加仍然代表體系的一種可能狀態。狀態隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處於某一狀態的物理體系的某一物理量的操作,對應於代表該量的算符對其波函數的作用;測量的可能取值由該算符的本徵方程決定,測量的期待值由一個包含該算符的積分方程計算。
波函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理並附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
關於量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
但在量子力學中,體系的狀態有兩種變化,一種是體系的狀態按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態的不可逆變化。因此,量子力學對決定狀態的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性——幾率因果性。量子力學中代表量子態的波函數是在整個空間定義的,態的任何變化是同時在整個空間實現的。
20世紀70年代以來,關於遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關於客體之間只能以不大於光速的速度傳遞物理相互作用的觀點相矛盾的。於是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同於建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態的概念表徵微觀體系狀態,深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態。真實狀態分解為隱態和顯態,是由於測量所造成的,在這里只有顯態才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關於遠隔粒子關聯實驗的結論,也定量地支持了量子態不可分離性的觀點。
選自:《物理學簡史》
Ⅵ 量子物理和量子力學的區別是什麼
量子力學是量子物理的一個方面。
量子物理實際上包含兩個方面。一個是原子層次的物質理論:量子力學;正是它我們才能理解和操縱物質世界。另一個是量子場論,它在科學中起到一個完全不同的作用。
量子力學是研究物質世界微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是現代物理學的基礎理論之一,而且在化學等有關學科和許多近代技術中也得到了廣泛的應用。
量子場論是量子力學和經典場論相結合的物理理論,已被廣泛的應用於粒子物理學和凝聚態物理學中。量子場論為描述多粒子系統,尤其是包含粒子產生和湮滅過程的系統,提供了有效的描述框架。量子場論的實效理論應用也是與2013年的諾貝爾物理學獎的「希格斯粒子場」的微觀量子粒子的關聯,作為量子場粒子的中介子的媒介粒子「希格斯玻色子」存在和發現。量子場論包含著黑格斯機制(希格斯粒子場)理論。非相對論性的量子場論主要被應用於凝聚態物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界目前人類所知的有四種基本相互作用:強作用,電磁相互作用,弱作用,引力。
Ⅶ 量子通訊屬於物理學中一級學科中的什麼學科
量子物理是純物理的分支學科之一
量子通訊應該是利用量子力學的相關知識進行通訊
所以我認為他應該是量子力學的分支學科或者說應用
Ⅷ 經典物理學包括什麼與之相對應都是什麼本質上的區別是什麼拒絕復制粘貼
您好。
經典物理,與之相對的是「量子物理」。
經典物理是以牛頓等為代表的經典物理學,涵蓋了 力學、光學、電學、聲學等宏觀物理。其特點是可以解釋絕大部分生活中常見的物理現象。
在二十世紀初,光是波還是粒子的問題引發了當時物理界的廣泛討論。其中,雙縫實驗,給當時的物理界帶來了巨大沖擊。隨後,量子物理被提出,其代表人為普朗克。
量子物理,對應「量子」(也稱「能量子」),是微觀物理。在觀測尺度足夠小時,一切宏觀物理現象開始失去作用,需要一個新的規律法則來解釋它;因此,量子物理這門學科開始發展,成為二十世紀後 物理界的主要研究方向。
====== ======
p.s. 個人記憶力有限,如有不妥之處,還望各位指正。
這里推薦《上帝擲骰子嗎——物理學史話漫談》這本書。該書為作者(以初中生的認知能力)撰寫的科普物理讀本,語言通俗易懂、生動有趣,對文科生或畢業很久的成年人來說,也能看懂。
Ⅸ 學量子力學之前需要學哪些學科
量子力學中對微積分有一定的要求,主要是偏微分,特別是偏微分方程。(在數學物理方程的書裡面有。主要是學會解常系數的二階偏微分方程,其中的分離變數法及邊值問題在解薛定諤方程的時候要用到。)
對數學的要求還有:復變函數,一些特殊的函數,如球貝塞爾函數、拉普拉斯函數、傅里葉變換等。(在《數學物理方法》的書裡面都有)
但是最重要的還是要學好線性代數中的矩陣。對於矩陣的意義以及計算之類要理解透徹。(線性代數的課本裡面都有的,最好是看理科的線性代數,因為理科和工科的要求是不同的。)
此外,還要學一下大學基礎物理學,特別是裡面的力學和電磁場的一些理論。其中力學中的角動量那一部分尤為重要。(推薦程守洙的《普通物理學》)
此外,還要學一下矢量與張量分析。
有了上面的那些就差不多了,也不一定要先學完上面的那些,一邊看一邊學咯,帶著目的來學習的效率高很多。
量子力學,很有趣的一門學科。樓主慢慢去研習吧。
最後,引用我們老師的一句話:「當你認為你學會了量子力學的時候,其實你是沒有了解量子力學。」
加油吧,樓主!
Ⅹ 什麼是量子物理
量子物理(量子力學 Quantum Physics),是研究物質世界微觀粒子運動規律的物理學分支,主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論它與相對論一起構成現代物理學的理論基礎。量子力學不僅是現代物理學的基礎理論之一,而且在化學等學科和許多近代技術中得到廣泛應用[1]。
20世紀,量子力學給我們提供了一個物質和場的理論,它改變了我們的世界;展望21世紀,量子力學將繼續為所有的科學提供基本的觀念和重要的工具。
量子的概念如此的令人困惑以至於在引入它以後的20年中幾乎沒有什麼根本性的進展,後來一小撮物理學家花了三年時間創立了量子力學。這些科學家為自己所做的事情所困擾,甚至有時對自己的所作所為感到失望。或許用下面的一段觀察資料能最好地描述這個至關重要但又難以捉摸的理論的獨特地位:量子理論是科學史上能最精確地被實驗檢驗的理論,是科學史上最成功的理論。量子力學深深地困擾了它的創立者,然而,直到它本質上被表述成通用形式75年後的今天,一些科學界的精英們盡管承認它強大的威力,卻仍然對它的基礎和基本闡釋不滿意。