1. 高中物理公式定理及常用常數
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑�0�3:米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N�6�1m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F�0�7{負號表示方向相反,F、F�0�7各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N�6�1s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』�0�7也可以是m1v1+m2v2=m1v1�0�7+m2v2�0�7
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1�0�7=(m1-m2)v1/(m1+m2) v2�0�7=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N�6�1m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω�6�1m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
常數符號最佳實驗值供計算用值真空中光速c299792458±1.2m·s-13.00×108 m·s-1萬有引力常數G0(6.6720±0.0041)×10-11m3·s-26.67×10-11 m3·s-2阿伏加德羅(Avogadro)常數N0(6.022045±0.000031) ×1023mol-16.02×1023 mol-1普適氣體常數R(8.31441±0.00026)J·mol-1·K-18.31 J·mol-1·K-1玻爾茲曼(Boltzmann)常數 k(1.380662±0.000041) ×10-23J·K-11.38×10-23 J·K-1理想氣體摩爾體積Vm(22.41383±0.00070) ×10-322.4×10-3 m3·mol-1基本電荷(元電荷)e(1.6021892±0.0000046) ×10-19 C1.602×10-19 C原子質量單位u(1.6605655±0.0000086)×10-27 kg1.66×10-27 kg電子靜止質量me(9.109534±0.000047)×10-31kg9.11×10-31kg電子荷質比e/me(1.7588047±0.0000049)×10-11 C· kg-21.76×10-11 C· kg-2質子靜止質量mp(1.6726485±0.0000086)×10-27 kg1.673×10-27 kg中子靜止質量mn(1.6749543±0.0000086)×10-27 kg1.675×10-27 kg法拉第常數F(9.648456±0.000027 )C·mol-196500 C·mol-1真空電容率ε0(8.854187818±0.000000071)×10-12F·m-28.85×10-12F·m-2真空磁導率μ012.5663706144±10-7H·m-14πH·m-1電子磁矩μe(9.284832±0.000036)×10-24 J·T-19.28×10-24 J·T-1質子磁矩μp(1.4106171±0.0000055)×10-23 J·T-11.41×10-23 J·T-1玻爾(Bohr)半徑α0(5.2917706±0.0000044)×10-11 m5.29×10-11 m玻爾(Bohr)磁子μB(9.274078±0.000036)×10-24 J·T-19.27×10-24 J·T-1核磁子μN(5.059824±0.000020)×10-27 J·T-15.05×10-27 J·T-1普朗克( Planck)常數h(6.626176±0.000036)×10-34 J·s6.63×10-34 J·s精細結構常數a 7.2973506(60)×10-3里德伯(Rydberg)常數R 1.097373177(83)×107m-1電子康普頓(Compton)波長2.4263089(40)×10-12m質子康普頓(Compton)波長1.3214099(22)×10-15m質子電子質量比mp/me1836.1515
2. 物理世界的7個常量有普朗克常量h,電子電量e還有什麼啊
是七個基本單位吧
長度單位:米 M
質量單位:千克 KG
時間單位:秒 S
物質的量:摩爾 MOL
電流單位:安培
熱力學溫度:開爾文 K
發光強度:坎德拉 CD
如果是常量的話:
真空中光速 c= 2.99792458×10^8 m/s
萬有引力常量 G=6.67259×10^-11 m^3/(kg·s^2)
基本電荷 e0=1.610217733×10^-19 C
普朗克常量 h= 6.6260755×10^-34 J·s
阿伏加德羅常量 NA= 6.0221367×10^23 mol-1
摩爾氣體常量 R=8.314510 J/(mol·K)
玻爾茲曼常量 k,kB=R/NA=1.380658×10^-23 J/K
3. 葯物中的物理常數都有哪些
物理常數包括相對密度、餾程、熔點、凝點、比旋度、折光率、黏度、吸收系數、碘值、皂化值和酸值等;測定結果不僅對葯品具有鑒別意義,也反映葯品的純度,是檢定葯品質量的主要指標之一。
4. 常用物理常數有哪些
真空中光速: c=299792458 米·秒-1
真空中磁導率: μ0= 4π×10-7 牛頓·安培-2
真空中介電常數: ε0= 8.854187817×10-12法拉·米-1
引力牛頓常數: G = 6.67259×10-11米3千克-1秒-2 普朗克常數: h=6.6260755×10-34焦耳·秒 ===電磁常數===
基本電荷量: e =1.60217733×10-19庫侖
量子磁通量: Φ0 =2.06783461×10-19韋伯
波爾磁子: μE=9.2740154×10-24焦耳·特斯拉-1
核磁子: μN=5.0507866×10-27焦耳·特斯拉-1
=== 物理化學常數 ===
阿伏加德羅常數: NA=6.021367×1023摩爾-1
原子質量常數: AMU=1.6605402×10-27千克
法拉第常數: 96485.309庫侖·摩爾-1
普適氣體常數: 8.314510焦耳·摩爾-1K-1
玻爾茲曼常數 : kE=1.380658×10-23焦耳·K-1
理想氣體摩爾體積:22.41410升·摩爾-1
斯特凡玻耳茲曼常數:σ=5.67051×10-8瓦特·米-2·K-4
第一輻射常數: 3.7417749×10-16瓦特·米2
第二輻射常數: 0.01438769米·K
===原子常數===
精細結構常數: α=7.29735308×10-3
里德伯常數: R=10973731.534 米-1
波爾半徑: a0=0.529177249×10-10米
哈特里能量: Eh=4.3597482×10-18焦耳
繞行量子: 3.63694807×10-4米2秒-1 ===電子常數, μ介子===
電子靜止質量: me=9.1093897×10-31千克
電子荷質比: e/me= -1.75881962×1011庫侖·千克-1
電子康普頓波長: 2.42631058×10-12米
經典電子半徑: re=2.81794092×10-15米
電子磁矩: μe=928.47701×10-26 焦耳·特斯拉-1
μ子靜止質量: μm=1.8835327×10-28千克
=== 質子常數 ===
質子靜止質量: mP=1.6726231×10-27千克
質子電子質量比: mP/me=1836.152701
質子康普頓波長: 1.32141002×10-15米
質子磁矩: μP=1.41060761×10-26 焦耳·特斯拉-1
質子回轉磁半徑: 26751.5255×104 弧度·秒-1特斯拉-1
=== 中子常數 ===
中子靜止質量: mn=1.6749286×10-27千克
中子康普頓波長: 1.31959110×10-15米
5. 有關化學物質的物理常數
那是1,1』聯萘酚……
6. 科技實驗中的物理常數主要有哪些
這個數量太大了,只能給出比較常用的一部分。如下,
真空中光速c 299792458±1.2m·s-1
引力常數G0 (6.6720±0.0041)×10-11m3·s-2
阿伏加德羅(Avogadro)常數N0 (6.022045±0.000031) ×1023mol-1
普適氣體常數R (8.31441±0.00026)J·mol-1·K-1
玻爾茲曼(Boltzmann)常數k (1.380662±0.000041) ×10-23J·K-1
理想氣體摩爾體積Vm (22.41383±0.00070) ×10-3
基本電荷(元電荷)e (1.6021892±0.0000046) ×10-19 C
原子質量單位u (1.6605655±0.0000086)×10-27 kg
電子靜止質量me (9.109534±0.000047)×10-31kg
電子荷質比e/me (1.7588047±0.0000049)×10-11 C· kg-2
7. 葯物分析物理常數有哪些
物理常數包括相對密度、餾程、熔點、凝點、比旋度、折光率、黏度、吸收系數、碘值、皂化值和酸值等;測定結果不僅對葯品具有鑒別意義,也反映葯品的純度,是檢定葯品質量的主要指標之一。
8. 除了光速外,神奇的自然規則中還有哪些物理常數
玻爾茲曼常數k其實是由其他常數定義而來的,即理想氣體常數R與阿伏加德羅常數NA的比值,所以這個常數並不能算作一個基本常數。盡管如此,正如題主所言,玻爾茲曼常數有著重要的物理意義。
萬有引力常數G是另一個十分重要的基本常數,這是用牛頓的萬有引力定律來計算引力大小的關鍵常數。此外,它也出現在愛因斯坦的引力場方程中。由於引力很弱,很難精確測出這個常數的大小,目前測得的大小約為6.67410^-11 m^3/kg/s^2。
此外,自然科學中的基本常數還包括基本電荷e,除了誇克之外,其他帶電物體物體的電荷量都是這個常數的整數倍,比如質子帶一個正電荷。根據測量,基本電荷的大小約為1.60210^-19 C。
9. 請問以下幾樣物品的物理常數是什麼
鎂
鎂:具有密排六方結構。 強度不高,室溫塑性較低,耐蝕性較差,易氧化銀白色的金屬,密度1.738克/厘米3,熔點648.9℃。沸點1090℃。化合價+2,電離能7.646電子伏特,是輕金屬之一,具有展性,金屬鎂無磁性,且有良好的熱消散性。
乙醇
無水乙醇
英文名:absolute alcohol;anhydrous ethanol
分子式:C2H6O
結構簡式:CH3CH2OH或C2H5OH
官能團:—OH(羥基)
1、無水乙醇的物理性質
(1)色、味、態:無色透明,具有特殊香味的液體。
(2)揮發性:易揮發
(3)溶解性:能與水以任意比互溶。
(4)沸點:78.5℃.
(5)密度:0.7893
(6)折射率:1.3611
溴苯
分子式: C6H5Br
分子量: 157.02
理化特性
主要成分: 純品
外觀與性狀: 無色油狀液體,具有苯的氣味。
熔點(℃): -30.7
沸點(℃): 156.2
相對密度(水=1): 1.50
相對蒸氣密度(空氣=1): 5.41
飽和蒸氣壓(kPa): 1.33(40℃)
燃燒熱(kJ/mol): 3124.6
臨界溫度(℃): 397
臨界壓力(MPa): 4.52
閃點(℃): 51
引燃溫度(℃): 565
爆炸上限%(V/V): 2.8
爆炸下限%(V/V): 0.5
苯甲酸甲脂
分子式 C8H8O2;C6H5COOCH3 外觀與性狀 無色液體
分子量 136.15 蒸汽壓 0.13/39℃ 閃點:82℃
熔 點 -12.3℃ 沸點:198℃ 溶解性 不溶於水,可混溶於甲醇、乙醇、乙醚
密 度 相對密度(水=1)1.09;相對密度(空氣=1)4.68 穩定性 穩定
危險標記 15(有害品) 主要用途 用於香料工業及用作溶劑
氯化鈣
分子量111. 化學式CaCl2·2H20白色晶體或塊狀物。熔點782℃,沸點1600℃,密度2.15克/厘米3( 25℃)。氯化鈣在水中的溶解度很大,0℃時100克水能溶解59.5克氯化鈣,100℃時溶解159克。能形成含1、2、4、6個結晶水的水合物,它們存在的溫度范圍是:CaCl2·6H2O低於29℃;CaCl2·4H2O,29~45℃;CaCl2·2H2O,45~175℃;CaCl2·H2O,200℃以上。它也溶於乙醇,生成CaCl2·4C2H5OH,與氨作用,形成CaCl2·8NH3。無水氯化鈣是工業和實驗室常用乾燥劑,但不能用來乾燥乙醇和氨。氯化鈣易潮解,可用於澆灑道路以消塵。CaCl2·6H2O與冰的混合物的溫度可達-54.9℃,用作製冷劑。還用於水泥防凍。