Ⅰ 半導體的性質 作用 具有什麼性
性質 光敏性,熱敏性,摻雜性
作用 半導體最基本的是二極體和MOS管,原理都是基於N型和P型半導體構成的PN結。二極體是單向導電器件,可以實現整流控制等。MOS管是柵控器件,是目前集成電路中最基本的單元。半導體是微電子產業的基礎。控制是它的核心。
回答的簡潔,具體知識參見http://ke..com/view/19928.htm
Ⅱ 半導體的特性
1、熱敏特性
半導體的電阻率隨溫度變化會發生明顯地改變。例如純鍺,濕度每升高10度,它的電阻率就要減小到原來的1/2。溫度的細微變化,能從半導體電阻率的明顯變化上反映出來。利用半導體的熱敏特性,可以製作感溫元件——熱敏電阻,用於溫度測量和控制系統中。值得注意的是,各種半導體器件都因存在著熱敏特性,在環境溫度變化時影響其工作的穩定性。
2、光敏特性
半導體的電阻率對光的變化十分敏感。有光照時、電阻率很小;無光照時,電阻率很大。例如,常用的硫化鎘光敏電阻,在沒有光照時,電阻高達幾十兆歐姆,受到光照時.電阻一下子降到幾十千歐姆,電阻值改變了上千倍。利用半導體的光敏特性,製作出多種類型的光電器件,如光電二極體、光電三極體及硅光電池等.廣泛應用在自動控制和無線電技術中。
3、摻雜特性
在純凈的半導體中,摻人極微量的雜質元素,就會使它的電阻率發生極大的變化。例如.在純硅中摻人。百萬分之—的硼元素,其電阻率就會從214000Ω·cm一下於減小到0.4Ω·cm.也就是硅的導電能為提高了50多萬倍。人們正是通過摻入某些特定的雜質元素,人為地精確地控制半導體的導電能力,製造成不同類型的半導體器件。可以毫不誇張地說,幾乎所有的半導體器件,都是用摻有特定雜質的半導體材料製成的。
半導體的用途
1、集成電路
它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
2、微波器件
半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
3、光電子器件
半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
Ⅲ 半導體主要有哪些特性
半導體主要有三個特性,即光敏特性.熱敏特性和摻雜特性。所謂光敏特性是指某些半導體受到強烈光芒照射時,其導電性能大大增強;光芒移開後,其導電性能大大減弱。所謂熱敏特性是指外界環境溫度升高時,半導體的導電性能也隨著溫度的升高而增強。所謂摻雜特性是指在純凈的半導體中,如果摻入極微量的雜質可使其導電性能劇增。
Ⅳ 半導體有哪些性質
導電性能介於導體與絕緣體(insulator)之間的材料,叫做半導體(semiconctor).
物質存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性和導電導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與金屬和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。
半導體的發現實際上可以追溯到很久以前,
1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。不久,
1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。
半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
半導體於室溫時電導率約在10ˉ10~10000/ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括ⅲ-ⅴ 族化合物(砷化鎵、磷化鎵等)、ⅱ-ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由ⅲ-ⅴ族化合物和ⅱ-ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的有機物半導體等。
本徵半導體(intrinsic semiconctor) 沒有摻雜且無晶格缺陷的純凈半導體稱為本徵半導體。在絕對零度溫度下,半導體的價帶(valence band)是滿帶(見能帶理論),受到光電注入或熱激發後,價帶中的部分電子會越過禁帶(forbidden band/band gap)進入能量較高的空帶,空帶中存在電子後成為導帶(conction band),價帶中缺少一個電子後形成一個帶正電的空位,稱為空穴(hole),導帶中的電子和價帶中的空穴合稱為電子 - 空穴對。上述產生的電子和空穴均能自由移動,成為自由載流子(free carrier),它們在外電場作用下產生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由於電子-空穴對的產生而形成的混合型導電稱為本徵導電。導帶中的電子會落入空穴,使電子-空穴對消失,稱為復合(recombination)。復合時產生的能量以電磁輻射(發射光子photon)或晶格熱振動(發射聲子phonon)的形式釋放。在一定溫度下,電子 - 空穴對的產生和復合同時存在並達到動態平衡,此時本徵半導體具有一定的載流子濃度,從而具有一定的電導率。加熱或光照會使半導體發生熱激發或光激發,從而產生更多的電子 - 空穴對,這時載流子濃度增加,電導率增加。半導體熱敏電阻和光敏電阻等半導體器件就是根據此原理製成的。常溫下本徵半導體的電導率較小,載流子濃度對溫度變化敏感,所以很難對半導體特性進行控制,因此實際應用不多。
雜質半導體(extrinsic semiconctor) 半導體中的雜質對電導率的影響非常大,本徵半導體經過摻雜就形成雜質半導體,一般可分為n型半導體和p型半導體。半導體中摻入微量雜質時,雜質原子附近的周期勢場受到干擾並形成附加的束縛狀態,在禁帶中產生附加的雜質能級。能提供電子載流子的雜質稱為施主(donor)雜質,相應能級稱為施主能級,位於禁帶上方靠近導帶底附近。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質原子時,雜質原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價鍵,多餘的一個電子被束縛於雜質原子附近,產生類氫淺能級-施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發到導帶所需能量小得多,很易激發到導帶成為電子載流子,因此對於摻入施主雜質的半導體,導電載流子主要是被激發到導帶中的電子,屬電子導電型,稱為n型半導體。由於半導體中總是存在本徵激發的電子空穴對,所以在n型半導體中電子是多數載流子,空穴是少數載流子。相應地,能提供空穴載流子的雜質稱為受主(acceptor)雜質,相應能級稱為受主能級,位於禁帶下方靠近價帶頂附近。例如在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質原子時,雜質原子與周圍四個鍺(或硅)原子形成共價結合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態就是受主能級。由於受主能級靠近價帶頂,價帶中的電子很容易激發到受主能級上填補這個空位,使受主雜質原子成為負電中心。同時價帶中由於電離出一個電子而留下一個空位,形成自由的空穴載流子,這一過程所需電離能比本徵半導體情形下產生電子空穴對要小得多。因此這時空穴是多數載流子,雜質半導體主要靠空穴導電,即空穴導電型,稱為p型半導體。在p型半導體中空穴是多數載流子,電子是少數載流子。在半導體器件的各種效應中,少數載流子常扮演重要角色。
Ⅳ 半導體是什麼什麼
鍺、硅、硒、砷化鎵及許多金屬氧化物和金屬硫化物等物體,它們的導電能力介於導體和絕緣體之間,叫做半導體。
半導體具有一些特殊性質。如利用半導體的電阻率與溫度的關系可製成自動控制用的熱敏元件(熱敏電阻);利用它的光敏特性可製成自動控制用的光敏元件,像光電池、光電管和光敏電阻等。
半導體還有一個最重要的性質,如果在純凈的半導體物質中適當地摻入微量雜質測其導電能力將會成百萬倍地增加。利用這一特性可製造各種不同用途的半導體器件,如半導體二極體、三極體等。
把一塊半導體的一邊製成P型區,另一邊製成N型區,則在交界處附近形成一個具有特殊性能的薄層,一般稱此薄層為PN結。圖中上部分為P型半導體和N型半導體界面兩邊載流子的擴散作用(用黑色箭頭表示)。中間部分為PN結的形成過程,示意載流子的擴散作用大於漂移作用(用藍色箭頭表示,紅色箭頭表示內建電場的方向)。下邊部分為PN結的形成。表示擴散作用和漂移作用的動態平衡。
Ⅵ 半導體有些什麼性質(效應)
上面答案是對摻雜半導體做的介紹。摻雜半導體是目前半導體工業的主要原料,在信息時代有無可替代的作用。摻雜半導體是在本徵半導體中摻入不同性質的雜質,使得其以不同的載流子來導電。本徵半導體很簡單,就是價帶和導帶之間的能隙不為零,但又不像絕緣體那樣寬。摻雜半導體在帶隙之間存在雜質能級,因而具有許多不同的電磁學性質。
Ⅶ 半導體有什麼性質
導電能力在絕緣與導體之間,且具有單向導電性,