Ⅰ 物理思想方法有哪些
物理思想方法
§1.圖形/圖象圖解法
圖形/圖象圖解法就是將物理現象或過程用圖形/圖象表徵出後,再據圖形表徵的特點或圖象斜率、截距、面積所表述的物理意義來求解的方法。尤其是圖象法對於一些定性問題的求解獨到好處。
§2 極限思維方法
極限思維方法是將問題推向極端狀態的過程中,著眼一些物理量在連續變化過程中的變化趨勢及一般規律在極限值下的表現或者說極限值下一般規律的表現,從而對問題進行分析和推理的一種思維辦法。
§3 平均思想方法
物理學中,有些物理量是某個物理量對另一物理量的積累,若某個物理量是變化的,則在求解積累量時,可把變化的這個物理量在整個積累過程看作是恆定的一個值---------平均值,從而通過求積的方法來求積累量。這種方法叫平均思想方法。
物理學中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均電流等。對於線性變化情況,平均值=(初值+終值)/2。由於平均值只與初值和終值有關,不涉及中間過程,所以在求解問題時有很大的妙用.
§4 等效轉換(化)法
等效法,就是在保證效果相同的前提下,將一個復雜的物理問題轉換成較簡單問題的思維方法。其基本特徵為等效替代。
物理學中等效法的應用較多。合力與分力;合運動與分運動;總電阻與分電阻;交流電的有效值等。除這些等效等效概念之外,還有等效電路、等效電源、等效模型、等效過程等。
§5 猜想與假設法
猜想與假設法,是在研究對象的物理過程不明了或物理狀態不清楚的情況下,根據猜想,假設出一種過程或一種狀態,再據題設所給條件通過分析計算結果與實際情況比較作出判斷的一種方法,或是人為地改變原題所給條件,產生出與原題相悖的結論,從而使原題得以更清晰方便地求解的一種方法。
§6 整體法和隔離法
整體法是在確定研究對象或研究過程時,把多個物體看作為一個整體或多個過程看作整個過程的方法;隔離法是把單個物體作為研究對象或只研究一個孤立過程的方法.
整體法與隔離法,二者認識問題的觸角截然不同.整體法,是大的方面或者是從整的方面來認識問題,宏觀上來揭示事物的本質和規律.而隔離法則是從小的方面來認識問題,然後再通過各個問題的關系來聯系,從而揭示出事物的本質和規律。因而在解題方面,整體法不需事無巨細地去分析研究,顯的簡捷巧妙,但在初涉者來說在理解上有一定難度;隔離法逐個過程、逐個物體來研究,雖在求解上繁點,但對初涉者來說,在理解上較容易。熟知隔離法者應提升到整體法上。最佳狀態是能對二者應用自如。
§7 臨界問題分析法
臨界問題,是指一種物理過程轉變為另一種物理過程,或一種物理狀態轉變為另一種物理狀態時,處於兩種過程或兩種狀態的分界處的問題,叫臨界問題。處於臨界狀的物理量的值叫臨界值。
物理量處於臨界值時:
①物理現象的變化面臨突變性。
②對於連續變化問題,物理量的變化出現拐點,呈現出兩性,即能同時反映出兩種過程和兩種現象的特點。
解決臨界問題,關鍵是找出臨界條件。一般有兩種基本方法:①以定理、定律為依據,首先求出所研究問題的一般規律和一般解,然後分析、討論其特殊規律和特殊解②直接分析、討論臨界狀態和相應的臨界值,求解出研究問題的規律和解。
§8 對稱法
物理問題中有一些物理過程或是物理圖形是具有對稱性的。利用物理問題的這一特點求解,可使問題簡單化。要認識到一個物理過程,一旦對稱,則相當一部分物理量(如時間、速度、位移、加速度等)是對稱的。
§9 尋找守恆量法
守恆,說穿意思是研究數量時總量不變的一種現象。物理學中的守恆,是指在物理變化過程或物質的轉化遷移過程中一些物理量的總量不變的現象或事實。
守恆,已是物理學中最基本的規律(有動量守恆、能量守恆、電荷守恆、質量守恆),也是一種解決物理問題的基本思想方法。並且應用起來簡練、快捷。
從運算角度來說,守恆是加減法運算,總和不變。
從物理角度來講,那就與所述量表徵的意義有關,重在理解了。理解所述量及所述量守恆事實的內在實質和外在表現。
如動量,描述的是物體的運動量,大小為mV,方向為速度的方向。動量守恆,就是物體作用前總的運動量是動的時,且方向是向某一方向的,那作用後,總的運動量還是動的,方向還是向著這一方向。
§10 構建物理模型法
物理學很大程度上,可以說是一門模型課.無論是所研究的實際物體,還是物理過程或是物理情境,大都是理想化模型.
如 實體模型有:質點、點電荷、點光源、輕繩輕桿、彈簧振子、平行玻璃磚、……
物理過程有:勻速運動、勻變速、簡諧運動、共振、彈性碰撞、圓周運動……
物理情境有:人船模型、子彈打木塊、平拋、臨界問題……
求解物理問題,很重要的一點就是迅速把所研究的問題歸宿到學過的物理模型上來,即所謂的建模。尤其是對新情境問題,這一點就顯得更突出。
Ⅱ 物理學思想有那些
要想學好物理,應當能夠做到不僅是能把物理學好,其它課程如數學、化學、語文、歷史等都能夠學好,也就是說學什麼,就能學好什麼。實際上在學校里,我們見到的學習好的學生,哪科都學得好,學習差的學生哪科都學得差,基本如此,除了概率很小的先天因素外,這里確實存在一個學習方法問題。
誰不想做一個學習好的學生呢,但是要想成為一名真正學習好的學生,第一條就要好好學習,就是要敢於吃苦,就是要珍惜時間,就是要不屈不撓地去學習。樹立信心,堅信自己能夠學好任何課程,堅信"能量的轉化和守恆定律",堅信有幾份付出,就應當有幾份收獲。關於這一條,請看以下三條語錄:
我決不相信,任何先天的或後天的才能,可以無需堅定的長期苦乾的品質而得到成功的。--狄更斯(英國文學家)
有的人能夠遠遠超過其他人,其主要原因與其說是天才,不如說他有專心致志堅持學習和不達目的決不罷休的頑強精神。
--道爾頓(英國化學家)
世界上最快而又最��畛ざ�腫疃蹋�釔椒捕�腫鈁涔螅�釗菀妝緩鍪佣�盍釗撕蠡詰木褪鞘奔洹?
--高爾基(蘇聯文學家)
以上談到的第一條應當說是學習態度,思想方法問題。第二條就是要了解作為一名學生在學習上存在如下八個環節:制定計劃→課前預習→專心上課→及時復習→獨立作業→解決疑難→系統總結→課外學習。這里最重要的是:專心上課→及時復習→獨立作業→解決疑難→系統總結,這五個環節。在以上八個環節中,存在著不少的學習方法,下面就針對物理的特點,針對就"如何學好物理",這一問題提出幾點具體的學習方法。
(一)三個基本。基本概念要清楚,基本規律要熟悉,基本方法要熟練。關於基本概念,舉一個例子。比如說速度是位移與時間的比值(指在勻速直線運動中)。關於基本規律,比如說平均速度的計算公式有兩個經常用到V=s/t、V=(vo+vt)/2。前者是定義式,適用於任何情況,後者是導出式,只適用於做勻變速直線運動的情況。再說一下基本方法,比如說研究中學問題是常採用的整體法和隔離法,就是一個典型的相輔形成的方法。最後再談一個問題,屬於三個基本之外的問題。就是我們在學習物理的過程中,總結出一些簡練易記實用的推論或論斷,對幫助解題和學好物理是非常有用的。
(二)獨立做題。要獨立地(指不依賴他人),保質保量地做一些題。題目要有一定的數量,不能太少,更要有一定的質量,就是說要有一定的難度。任何人學習數理化不經過這一關是學不好的。獨立解題,可能有時慢一些,有時要走彎路,有時甚至解不出來,但這些都是正常的,是任何一個初學者走向成功的必由之路。
(三)物理過程。要對物理過程一清二楚,物理過程弄不清必然存在解題的隱患。題目不論難易都要盡量畫圖,有的畫草圖就可以了,有的要畫精確圖,要動用圓規、三角板、量角器等,以顯示幾何關系。畫圖能夠變抽象思維為形象思維,更精確地掌握物理過程。有了圖就能作狀態分析和動態分析,狀態分析是固定的、死的、間斷的,而動態分析是活的、連續的。
(四)上課。上課要認真聽講,不走思或盡量少走思。不要自以為是,要虛心向老師學習。不要以為老師講得簡單而放棄聽講,如果真出現這種情況可以當成是復習、鞏固。盡量與老師保持一致、同步,不能自搞一套,否則就等於是完全自學了。入門以後,有了一定的基礎,則允許有自己一定的活動空間,也就是說允許有一些自己的東西,學得越多,自己的東西越多。
(五)筆記本。上課以聽講為主,還要有一個筆記本,有些東西要記下來。知識結構,好的解題方法,好的例題,聽不太懂的地方等等都要記下來。課後還要整理筆記,一方面是為了"消化好",另一方面還要對筆記作好補充。筆記本不只是記上課老師講的,還要作一些讀書摘記,自己在作業中發現的好題、好的解法也要記在筆記本上,就是同學們常說的"好題本"。辛辛苦苦建立起來的筆記本要進行編號,以後要經學看,要能做到愛不釋手,終生保存。
(六)學習資料。學習資料要保存好,作好分類工作,還要作好記號。學習資料的分類包括練習題、試卷、實驗報告等等。作記號是指,比方說對練習題吧,一般題不作記號,好題、有價值的題、易錯的題,分別作不同的記號,以備今後閱讀,作記號可以節省不少時間。
(七)時間。時間是寶貴的,沒有了時間就什麼也來不及做了,所以要注意充分利用時間,而利用時間是一門非常高超的藝術。比方說,可以利用"回憶"的學習方法以節省時間,睡覺前、等車時、走在路上等這些時間,我們可以把當天講的課一節一節地回憶,這樣重復地再學一次,能達到強化的目的。物理題有的比較難,有的題可能是在散步時想到它的解法的。學習物理的人腦子里會經常有幾道做不出來的題貯存著,念念不忘,不知何時會有所突破,找到問題的答案。
(八)向別人學習。要虛心向別人學習,向同學們學習,向周圍的人學習,看人家是怎樣學習的,經常與他們進行"學術上"的交流,互教互學,共同提高,千萬不能自以為是。也不能保守,有了好方法要告訴別人,這樣別人有了好方法也會告訴你。在學習方面要有幾個好朋友。
(九)知識結構。要重視知識結構,要系統地掌握好知識結構,這樣才能把零散的知識系統起來。大到整個物理的知識結構,小到力學的知識結構,甚至具體到章,如靜力學的知識結構等等。
(十)數學。物理的計算要依靠數學,對學物理來說數學太重要了。沒有數學這個計算工具物理學是步難行的。大學里物理系的數學課與物理課是並重的。要學好數學,利用好數學這個強有力的工具。
(十一)體育活動。健康的身體是學習好的保證,旺盛的精力是學習高效率的保證。要經常參加體育活動,要會一種、二種鍛煉身體的方法,要終生參加體育活動,不能間斷,僅由興趣出發三天打魚兩天曬網地搞體育活動,對身體不會有太大好處。要自覺地有意識地去鍛煉身體。要保證充足的睡眠,不能以減少睡覺的時間去增加學習的時間,這種辦法不可取。不能以透支健康為代價去換取一點好成績,不能動不動就講所謂"沖刺"、"拼搏",學習也要講究規律性,也就是說總是努力,不搞突擊。
以上粗淺地談了一些學習方法,更具體地、更有效的學習方法需要自己在學習過程中不斷摸索、總結,別人的方法也要通過自己去檢驗才能變為自己的東西。
控制變數思想
等量代換思想
類比思想
多次求平均(歸納總結)
實驗思想
是的,未來無限好
Ⅲ 物理思想是什麼
意思是學物理常用的思維方法,思維其活動的結果,屬於認識。
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟。
從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑。
意識運動的引起是為思,思是意識的順向運動。
生命體在生命活動中,在意識的形態作用下,在原本意識里的事物形態與新出現的事物的形態出現了形態里的差異時,生命體的意識在差異中達成意識運動形式的引起,這引起的意識的運動就是思的本身,意識的運動的引起的內容就是問題的實質,實質的問題就是問題的主體。
意識的順向是以意識的主體的意識為參照來說明的,意識的參照是事物慣性的參照,也就是慣性行為在意識里的表現的形式表達。事物的發展變化已經超出了意識的印象時,意識在印象里的留戀是意識的慣性,以意識來講是意識的順向,在意識慣性的順向運動行為里,思進行著變化的考量。
Ⅳ 現代物理學的思想理論
物理與形而上學的關系
在不斷反思形而上學而產生的非經驗主義的客觀原理的基礎上,物理學理論可以用它自身的科學術語來判斷。而不用依賴於它們可能從屬於哲學學派的主張。在著手描述的物理性質中選擇簡單的性質,其它性質則是群聚的想像和組合。通過恰當的測量方法和數學技巧從而進一步認知事物的本來性質。實驗選擇後的數量存在某種對應關系。一種關系可以有多數實驗與其對應,但一個實驗不能對應多種關系。也就是說,一個規律可以體現在多個實驗中,但多個實驗不一定只反映一個規律。
對於物理學來說理論預言與現實一致與否是真理的唯一判斷標准。
摘要: 回顧了物理學發展的歷史,討論了二十一世紀物理學發展的方向。可能應該從兩方面去探尋現代物理學革命的突破口:(1)發現客觀世界中已知的四種力以外的其他力;(2)通過審思相對論和量子力學的理論基礎的不完善性,重新定義時間、空間,建立新的理論。
二十世紀即將結,二十一世紀即將來臨,二十世紀是光輝燦爛的一個世紀,是個令社會發展最迅速的一個世紀,是科學技術發展最迅速的一個世紀,也是物理學發展最迅速的一個世紀。在 這一百年中發生了物理學革命,建立了相對性質和量子力學,完成了從經典物理學到現代物理學的轉變。在二十世紀二、三十年代以後,現代物理學在深度和廣度上有了進一步的蓬勃發展,產生了一系列的新學科的交叉學科、邊緣學科,人類對物質世界的規律有了更深刻的認識,物理學理論達到了一個新高度,現代物理學達到了成熟的階段。
在此世紀之交的時候,人們自然想展望一下二十一世紀物理學的發展前景,探索今後物理學發展的方向。我想談一談我對這個問題的一些看法和觀點。首先,我們來回顧一下上一個世紀之交物理學發展的情況,把當前的情況與一百年前的情況作比較對於探索二十一世紀物理學發展的方向是很有幫助的。
一、歷史的回顧
十九世紀末二十世紀初,經典物理學的各個分支學科均發展到了完善、成熟的階段,隨著熱力學和統計力學的建立以及麥克斯韋電磁場理論的建立,經典物理學達到了它的頂峰,當時人們以系統的形式描繪出一幅物理世界的清晰、完整的圖畫,幾乎能完美地解釋所有已經觀察到的物理現象。由於經典物理學的巨大成就,當時不少物理學家產生了這樣一種思想:認為物理學的大廈已經建成,物理學的發展基本上已經完成,人們對物理世界的解釋已經達 到了終點。物理學的一些基本的、原則的問題都已經解決,剩下來的只是進一步精確化的問題,即在一些細節上作一些補充和修正,使已知公式中的各個常數測得更精確一些。
然而,在十九世紀末二十世紀初,正當物理學家在慶賀物理學大廈落成之際,科學實驗卻發現了許多經典物理學無法解釋的事實。首先是世紀之交物理學的三大發現:電子、X射線和放射性現象的發現。其次是經典物理學的萬里晴空中出現了兩朵「烏雲」:「以太漂移」的「零結果」和黑體輻射的「紫外災難」。[1]這些實驗結果與經典物理學的基本概念及基本理論有尖銳的矛盾,經典物理學的傳統觀念受到巨大的沖擊,經典物理發生了「嚴重的危機」。由此引起了物理學的一場偉大的革命。愛因斯坦創立了相對論;海森堡、薛定諤等一群科學家創立了量子力學。現代物理學誕生了!
把物理學發展的現狀與上一個世紀之交的情況作比較,可以看到兩者之間有相似之 外,也有不同之處。
在相對論和量子力學建立起來以後,現代物理學經過七十多年的發展,已經達到了成熟的階段。人類對物質世界規律的認識達到了空前的高度,理論幾乎能夠很好地解釋已知的一切物理現象。可以說,現代物理學的大廈已經建成。在這一點上,目前有情況與上一個世紀之交的情況很相似。因此,有少數物理學家認為今後物理學不會有革命性的進展了,物理學的根本性的問題、原則問題都已經解決了,今後能做到的只是在現有理論的基礎上在深度和廣度兩方面發展現代物理學,對現有的理論作一些補充和修正。然而,由於有了一百年前的歷史經驗,多數物理學家並不贊成這種觀點,他們相信物理學遲早會有突破性的發展。 另一方面,雖然在微觀世界和宇宙學領域中有一些物理現象是現代物理學的理論不能很好地解釋的,但是這些矛盾並不是嚴重到了非要徹底改造現有理論認可的程度。在這方面,經典物理學發生了「嚴重的危機」;而在本世紀之交,現代物理學並無「危機」。因此,我認為發生現代物理學革命的條件似乎尚不成熟。
客觀物質世界是分層次的。一般說來,每個層次中的體系都由大量的小體系(屬於下一個層次)構成。從一定意義上說,宏觀與微觀是相對的,宏觀體系由大量的微觀系統構成。物質世界從微觀到宏觀分成很多層次。物理學研究的目的包括:探索各層次的運動規律和探索各層次間的聯系。
回顧二十世紀物理學的發展,是在三個方向上前進的。在二十一世紀,物理學也將在這三個方向上繼續向前發展。
1) 在微觀方向上深入下去。 在這個方向上,我們已經了解了原子核的結構,發現了大量的基本粒子及其運規律,建立了核物理學和粒子物理學,認識到強子是由誇克構成的。今後可能會有新的進展。但如果要探索更深層次的現象,必須有更強大得多的加速器,而這是非常艱巨的任務,所以我認為在這個方向上難以有突破性的進展。
2) 在宏觀方向上拓展開去。 1948年美國的伽莫夫提出「大爆炸」理論,當時並未引起重視。1965年美國的彭齊亞斯和威爾遜觀測到宇宙背景輻射,再加上其他的觀測結果,為「大爆炸」理論提供了有力的證據,從此「大爆炸」理論得到廣泛的支持,1981年日本的佐藤勝彥和美國的古斯同時提出暴脹理論。八十年代以後,英國的霍金[2,3] 等人開始論述宇宙的創生,認為宇宙從「無」誕生,今後在這個方向上將會繼續有所發展。從根本上來說 ,現代宇宙學的繼續發展有賴於向廣漠的宇宙更遙遠處觀測的新結果,這需要人類製造出比哈勃望遠鏡性能更優越得多的、各個波段的太空天文望遠鏡,這是很艱巨的任務。
我個人對於宇宙創生學說是不太信的,並且認為「大爆炸」理論只是對宇宙的一個近似的描述。因為宇宙學研究的只是我們能觀測到的范圍以內的「宇宙」,而我相信宇宙是無限的,在我們這個「宇宙」以外還有無數個「宇宙」,這些宇宙不是互不相干、各自孤立的,而是互相有影響、有作用的。現代宇宙學只研究我們這個「宇宙」,當然只能得到近似的結果,把他們的延伸到「宇宙」創生了初及遙遠的未來,則失誤更大。
3)深入探索各層次間的聯系。
這正是統計物理學研究的主要內容。二十世紀在這方面取得了巨大的成就,先是非平衡態統計物理學有了得大的發展,然後建立了「耗散結構」理論、協同論和突變論,接著混沌論和分形論相繼發展起來了。把這些分支學科都納入非線性科學的范疇。相信在二十一世紀非線性科學的發展有廣闊的前景。
上述的物理學的發展依然 現代物理學現有的基本理論的框架內。在下個世紀,物理學的基本理論應該怎樣發展呢?有一些物理學家在追求「超統一理論」。在這方面,起初是愛因斯坦、海森堡等天才科學家努力探索「統一場論」;直到1967、1968年,美國的溫伯格和巴基斯坦的薩拉姆提出統一電磁力和弱力的「電弱理論」;目前有一些物理學家正在探索加上強力的「大統一理論」以及再加上引力把四種力都統一起來的「超統一理論」,他們的探索能否成功尚未定論。
愛因斯坦當初探索「統一場論」是基於他的「物理世界統一性」的思想[4] ,但是他努力探索了三十年,最終沒有成功。我對此有不同的觀點,根據辯證唯物主義的基本原理,我認為「物質世界是既統一,又多樣化的」。且莫論追求「超統一理論」能否成功,即便此理論完成了,它也不是物理學發展的終點。因為「在絕對的總的宇宙發展過程中,各個具體過程的發展都是相對的,因而在絕對真理的長河中,人們對於在各個一定發展階段上的具體過程的認識只具有相對的真理性。無數相對的真理之總和,就是絕對的真理。」「人們在實踐中對於真理的認識也就永遠沒有完結。」[5]
現代物理學的革命將怎樣發生呢?我認為可能有兩個方面值得考試:
1) 客觀世界可能不是只有四種力。第五、第六……種力究竟何在呢?我們不知道。我的直覺是:將來最早發現的第五種力可能存在於生命現象中。物質構成了生命體之後,其運動和變化實在太奧妙了,我們沒有認識的問題實在太多了,我們今天對於生命科學的認識猶如亞里斯多德時代的人們對於物理學的認識,因此在這方面取得突破性的進展是很可能的。我認為,物理學業與生命科學的交叉點是二十一世紀物理學發展的方向之一,與此有關的最關於復雜性研究的非線性科學的發展。
2) 現代物理學理論也只是相對真理,而不是絕對真理。應該通過審思現代物理學理論基礎的不完善性來探尋現代物理學革命的突破口,在下一節中將介紹我的觀點。
三、現代物理學的理論基礎是完美的嗎?
相對論和量子力學是現代物理學的兩大支柱,這兩大支柱的理論基礎是否十全十美的
呢?我們來審思一下這個問題。
1) 對相對論的審思
當年愛因斯坦就是從關於光速和關於時間要領的思考開始,創立了狹義相對論[1]。我們今天探尋現代物理學革命的突破口,也應該從重新審思時空的概念入手。愛因斯坦創立狹義相對論是從講座慣性系中不同地點的兩個「事件」的同時性開始的[4],他規定用光信號校正不同地點的兩個時鍾來定義「同時」,這樣就很自然地導出了洛侖茲變換,進一步導致一個四維時空(x,y,z,ict)(c是光速)。為什麼愛因斯坦提出用光信號來校正時鍾,而不用別的信號呢?在他的論文中沒有說明這個問題,其實這是有深刻含意的。
時間、空間是物質運動的表現形式,不能脫離物理質運動談論時間、空間,在定義時空時應該說明是關於什麼運動的時空。現代物理學認為超距作用是不存在的,A處發生的「事件」影響B處的「事件」必須通過一定的場傳遞過去,傳遞需要一定的時間,時間、空間的定義與這個傳遞速度是密切相關的。如果這種場是電磁場,則電磁相互作用傳遞的速度就是光速。因此,愛因斯坦定義的時空實際上是關於由電磁相互作用引起的物質運動的時空,適用於描述這種運動。
愛因斯坦把他定義的時間應用於所有的物質運動,實際上就暗含了這樣的假設:引力相互作用的傳遞速度也是光速c.但是引力相互作用是否也是以光速傳遞的呢?令引力相互作用的傳遞速度為c』。至今為止,並無實驗事實證明c』等於c。愛因斯坦因他的「物質世界統一性」的世界觀而在實際上假定了c=c』。我持有「物質世界既統一,又多樣化的」以觀點,再加之電磁力和引力的強度在數量級上相差太多,因此我相信c』可能不等於c。工樣,關於由電磁力引起的物質運動的四維時空(x,y,z,ict)和關於由引力引起的運動的時空(x』,y』,z』,ic』t』)是不同的。如果研究的問題只涉及一種相互作用,則按照理論建立起來的運動方程的形式不變。例如,愛因斯坦引力場方程的形式不變,只需把常數c改為c』。如果研究的問題涉及兩種相互作用,則需要建立新的理論。不過,首要的事情是由實驗事實來判斷c』和c是否相等;如果不相等,需要導出c』的數值。
我在二十多年前開始形成上述觀點,當時測量引力波是眾所矚目的一個熱點,我曾對那些實驗寄予厚望,希望能從實驗結果推算出c』是否等於c。令人遺憾的是,經過長斯的努力引引力波實驗沒有獲得肯定的結果,隨後這項工作冷下去了。根據愛因斯坦理論預言的引力波是微弱的,如果在現代實驗技術能夠達到的測量靈敏度和准確度之下,這樣弱的引力波應該能夠探測到的話,長期的實驗得不到肯定的結果似乎暗示了害因斯坦理論的缺點。應該從c』可能不等於c這個角度來考慮問題,如果c』和c有較大的差異,則可能導出引力波的強度比根據愛因勞動保護坦理論預言的強度弱得多的結果。
弱力、強力與引力、電磁力有本質的不同,前兩者是短程力,後兩者是長程力。不同的相互作用是通過傳遞不同的媒介粒子而實現的。引力相互作用的傳遞者是引力子;電磁相互作用的傳遞者是光子;弱相互 作用的傳遞者是規范粒子(光子除外);強相互作 用的傳遞者是介子。引力子和光子的靜質量為零,按照愛因斯坦的理論,引力相互作用和電磁相互作用的傳遞速度都是光速。並且與傳遞粒子的靜質量和能量有關,因而其傳遞速度是多種多樣的。
在研究由弱或強相互作用引起的物質運動時,定義慣性系中不同的地點的兩個「事件」的「同時」,是否應該用弱力或強力信號取代光信號呢?我對核物理學和粒子物理學是外行,不想貿然回答這個問題。如果應該用弱力或強力信號取代光信號,那麼關於由弱力或強力引起的物質運動的時空和關於由電磁力引起的運動的時空(x,y,z,ict)及關於由引力引起的運動的時空(x』,y』,z』,ic』t』)
有很大的不同。設弱或強相互作用的傳遞速度為c』』,c』』不是常數,而是可變的,則關於由弱或強力引起的運動的時空為(x』』,y』』,z』』,Ic』』t』』),時間 t』』和空間(x』』,y』』,z』』)將是c』的函數。然而,很可能應該這樣來考慮問題:關於由弱力引起的運動的時空,在定義中應該以規范粒子的靜質量取作零時的速度c1取代光速c。由於「電弱理論」把弱力和電磁力統一起來了,因此有可能c1=c,則關於由弱力引起的運動的時空和關於由電磁力引起的運動的時空是相同的,同為(x,y,z,ict)。關於由強力引起的運動的時空,在定義中應該以介子的靜質量取作零(在理論上取作零,在實際上沒有靜質量為零的介子)時的速度c』』取代光速c,c』』可能不等於c。則關於由強力引起的運動的時空(x』』,y』』,z』』,Ic』』t』』)不同於(x,y,z,ict)或(x』,y』,z』,ic』t』)。無論上述兩種考慮中哪一種是對的,整個物質世界的時空將是高於四維的多維時空。對於由短程力(或只是強力)引起的物質運動,如果時空有了新的一義,就需要建立新的理論,也就是說需要建立新的量子場論、新的核物理學和新的粒子物理學等。如果研究的問題既清及長程力,又涉及短程力(尤其是強力),則更需要建立新的理論。
1)對量子力學的審思
從量子力學發展到量子場論的時候,遇到了「發散困難」[6]。1946——1949年間,日本的朝永振一郎、美國的費曼和施溫格提出「重整化」方法,克服了「發散困難」。但是「重整化」理論仍然存在著邏輯上的缺陷,並沒有徹底克服這一困難。「發散困難」的一個基本原因是粒子的「固有」能量(靜止能量)與運動能量、相互作用能量合在一起計算[6],這與德布羅意波在υ=0時的異性。
我陷入一個兩難的處境:如果採用傳統的德布羅意關系,就只得接受不合理的德布羅意波奇異性;如果採納修正的德布羅意關系,就必須面對使新的理論滿足相對論協變性的難題。是否有解決問題的其他途徑呢?我認為這個問題或許還與時間、空間的定義有關。量子力學理論中時寬人的定義實質上依然是決定論的定義,而不確定原理是微觀世界的一條基本規律,所以時間、空間都不是嚴格確定的,決定論的時空要領不再適用。在時間或空間的間隔非常小的時候,描寫事情順序的「前」、「後」概念將失去意義。此外,在重新定義時空時還應考慮相關的物質運動的類別。模糊數學已經發展得相當成熟了,把這個數學工具用到微觀世界時空的定義中去可能是很值得一試的。
Ⅳ 牛頓的物理學思想有哪些
動力學三大定律:1.牛頓第一定律
內容:任何物體都保持靜止或勻速直線運動的狀態,直到受到其它物體的作用力迫使它改變這種狀態為止。
說明:物體都有維持靜止和作勻速直線運動的趨勢,因此物體的運動狀態是由它的運動速度決定的,沒有外力,它的運動狀態是不會改變的。物體的這種性質稱為慣性。所以牛頓第一定律也稱為慣性定律。第一定律也闡明了力的概念。明確了力是物體間的相互作用,指出了是力改變了物體的運動狀態。因為加速度是描寫物體運動狀態的變化,所以力是和加速度相聯系的,而不是和速度相聯系的。在日常生活中不注意這點,往往容易產生錯覺。
注意:牛頓第一定律並不是在所有的參照系裡都成立,實際上它只在慣性參照系裡才成立。因此常常把牛頓第一定律是否成立,作為一個參照系是否慣性參照系的判據。
2.牛頓第二定律
內容:物體在受到合外力的作用會產生加速度,加速度的方向和合外力的方向相同,加速度的大小正比於合外力的大小與物體的慣性質量成反比。
第二定律定量描述了力作用的效果,定量地量度了物體的慣性大小。它是矢量式,並且是瞬時關系。
要強調的是:物體受到的合外力,會產生加速度,可能使物體的運動狀態或速度發生改變,但是這種改變是和物體本身的運動狀態有關的。
真空中,由於沒有空氣阻力,各種物體因為只受到重力,則無論它們的質量如何,都具有的相同的加速度。因此在作自由落體時,在相同的時間間隔中,它們的速度改變是相同的。(1)同體性:F合、m、a對應於同一物體。 (2)矢量性:力和加速度都是矢量,物體加速度方向由物體所受合外力的方向決定。牛頓第二定律數學表達式∑F = ma中,等號不僅表示左右兩邊數值相等,也表示方向一致,即物體加速度方向與所受合外力方向相同。 (3)瞬時性:當物體(質量一定)所受外力發生突然變化時,作為由力決定的加速度的大小和方向也要同時發生突變;當合外力為零時,加速度同時為零,加速度與合外力保持一一對應關系。牛頓第二定律是一個瞬時對應的規律,表明了力的瞬間效應。 (4)相對性:自然界中存在著一種坐標系,在這種坐標系中,當物體不受力時將保持勻速直線運動或靜止狀態,這樣的坐標系叫慣性參照系。地面和相對於地面靜止或作勻速直線運動的物體可以看作是慣性參照系,牛頓定律只在慣性參照系中才成立。 (5)獨立性:作用在物體上的各個力,都能各自獨立產生一個加速度,各個力產生的加速度的失量和等於合外力產生的加速度。
3.牛頓第三定律
內容:兩個物體之間的作用力和反作用力,在同一條直線上,大小相等,方向相反。
說明:要改變一個物體的運動狀態,必須有其它物體和它相互作用。物體之間的相互作用是通過力體現的。並且指出力的作用是相互的,有作用必有反作用力。它們是作用在同一條直線上,大小相等,方向相反。
Ⅵ 高中物理教學理念
高中物理教學方法與原則 《高中物理課程標准》指出教師要引導學生在物理學習過程中體驗學習的快樂,提高探究能力,獲取物理知識。基於此,教師要樹立正確的教學思想和教學理念,用科學的方法和教學策略來引導學生,使學生融入到學習過程中,積極思考,主動探究,善於質疑,在潛移默化中提高能力,掌握知識。教師用科學的理念來組織課堂,會增加學生學習物理知識的主動性,使學生在快樂中體驗知識,分析知識,進而實現學生對知識的掌握和綜合素質的提高。 一、物理核心素養的內涵 核心素養是學生接受知識過程中逐步形成的適應個人終身發展的品格和能力。在物理學科中主要表現為物理觀念、科學思維、實驗探究和科學態度和責任。教師要引導學生使學生掌握一定的物理知識,提高學習能力,提高自己學習物理的主動性和積極性,形成積極的情感和態度。用核心素養來指導學生會使教師明確教學方向,清楚教學目標,主動地探究有效的教學方法,優化課堂教學結構,進而實現高效課堂,提高物理教學質量。核心素養關注的是學生在學習過程中的參與,注重學生的可持續發展和潛能的挖掘,促進學生在探究中逐步地適應社會,實現全面發展。 二、培養物理核心素養的意義 用核心素養來指導學生進行物理知識的探究會促進學生在知識、技能和態度等方面的綜合提高,使學生可以實現全面發展。教師用科學的理念來指導學生會促進學生學習主動性的產生,在課堂上積極參與,通過自己的探究收獲知識,提高能力。學生親歷了學習過程,體驗了學習步驟,會從感性認識上升為理性認識,理解物理知識的內涵和本質,進而實現學生綜合素質的提高。學生主動地進行發散思維和邏輯判斷,會學會分析問題,實現解決問題。學生的思維活躍了會促進學生形成嚴謹認真的學習態度,在探究中實現對知識的掌握,能力的提高和科學學習態度的形成。學生形成了端正的學習態度,就會在課堂上充分地發揮自己的主觀能動性,認真分析知識規律,探究有效的學習方法,進而實現學生對知識的理解和學習能力的提高,促進學生的可持續發展。 三、高中物理教學方法 1.創設情景,激發學生興趣 為了使學生可以形成物理觀念,養成嚴謹認真的科學思維,教師可以通過給學生創設情景的方式來激發學生的學習興趣,引導學生參與課堂探究中。教師用物理現象或者是物理常識帶領學生走進物理世界,會使學生產生探究的慾望,進而積極思考,理解知識。例如在學習《感應電流》的時候,教師可以給學生講授楞次的故事,向學生介紹他是德國科學家,通過自己不斷地努力和反復地實驗,發表了確定感應電流方向的楞次定律。在學習《力的分解》時,教師就可以用一根細繩系住一個鐵塊,之後再分別用一根線和兩根線去提起這個鐵塊,鼓勵學生思考一根線和兩根線去提取鐵塊有什麼不同?動手的操作情景會點燃學生的學習慾望,促進學生積極思考。故事和操作的形式是學生喜聞樂見的,學生通過聽故事、動手操作的方式來產生物理學習的好奇心,同時也會對物理學家對知識探究的執著之情所感動,進而提高學生主動探究和積極思考的慾望。 2.聯系實際,實現學以致用 美國著名心理學家布魯納認為:原理和態度的遷移是教育過程的核心。在高中物理學習過程中,教師要積極地通過生活中的實際物理現象和物理知識來引導學生進行知識的遷移,達到對知識的內化和理解。生活中物理知識的靈活應用,會啟迪學生運用物理知識進行遷移,抓住知識間的聯系,悟出物理本質和規律。例如在學習《力學知識》的時候,教師就可以引導學生思考:磨菜刀的時候,為什麼要不斷澆水?通過對知識的分析,學生會認識到磨刀石和菜刀摩擦會產生熱,使刀的內能增加,溫度升高,導致刀口硬度變小,這樣對刀是不利的。澆水利用了熱傳遞使菜刀內能減小,溫度降低。在學習《熱學知識》時,教師就可以鼓勵學生思考炒瘦肉的時候,為什麼要在肉片的外面裹一層澱粉,這樣做的目的是什麼?學生通過對熱學知識分析後,會認識到將肉片直接放入油鍋中爆炒,會導致瘦肉中的水分蒸發,影響口感,吃起來比較硬。而裹上了一層澱粉則會保護肉內的水分,使它不會蒸發,從而使肉吃起來軟嫩、可口。學生將物理知識與生活中的現象或者是實際聯系起來,會促進學生體驗知識和實踐意義,進而使學生渴望更深入地探求,發展學生的能力。 3.自主探究,體驗內化知識 新課改倡導教師要鼓勵學生自主探究,關注學習過程,引導學生通過親身經歷、主動探索的方式來獲得知識,充分發揮學生的自主性、能動性和創造性,提高學生的理解能力和思維能力,從多方面來提高學生的核心素養。教師在高中物理教學中,要關注學生的需要,從學生的實際出發,多給學生創設一些可以激發學生學習慾望和學習主動性的探究機會,使學生在思考中獲得知識,在體驗中感悟知識,實現學習能力的提高。例如在學習《磁場》的時候,為了使學生可以明確物體運動方向的判斷方法,教師就可以鼓勵學生進行自主探究,分析安培力作用下通電導體運動方向的判斷方法和策略有哪些?通過學生的自主探究和分析學生會認識到可以採用電流元法,也就是把整段電流等效為多段直線電流元,先用左手定則判斷出每小段電流元所受安培力的方向,從而判斷出整段電流所受合力方向,最後確定運動方向。還可以採用特殊位置法、等效法或者是利用結論法等不同的方法進行分析和判斷。學生在探究中會不斷地進行總結和歸納,形成自己的認識和理解,將知識進行內化,實現靈活應用。學生自己的探究才能夠真正地理解知識,明確知識,進而在應用的時候實現對知識的靈活遷移和應用。 4.實驗探究,積極參與動手 實驗是激發學生學習主動性,促進學生參與課堂的一種有效方法。教師組織學生參與實驗,鼓勵學生自主設計實驗步驟和實驗方法,嘗試探索,會促進學生成為課堂的主人和學習的主體,在實踐中鍛煉自己的能力,實現學生綜合素質的提高。例如在學習《串聯和並聯電路》的時候,教師要給學生提供一個學生自主動手實驗的舞台,使學生可以通過自己的動手操作來理解物理知識,探究物理現象,進而通過自己的實踐和參與來理解知識,提高動手能力。只有學生從頭到尾經歷實驗過程,學生的創造性才能夠得到開發。學生在實驗中首先會通過繪制電路圖的方式來探究串聯電路和並聯電路的連接方式,之後會准備實驗需要的器材,通過自己思考的方式來探究實驗步驟和操作方法,實現學生動手能力的提高。當連接好電路後,學生通過實際測量和觀察會發現,串聯電路中的各處電流都是相等的,總電壓等於各部分電路的電壓之和,總電阻等於各個電阻之和,電壓的分配與電阻成正比,功率的分配與電阻成正比。而相比之下,學生也會發現並聯電路的各支路兩端電壓相等,幹路電流等於各支路電流之和,總電阻的倒數等於各分電阻的倒數之和,電流的分配與電阻成反比,功率的分配與電阻成反比。學生得到這樣的結論是通過自己動手實踐觀察到,總結到的,會使學生從深遠意義上理解知識,明確知識的來龍去脈,進而使學生可以理解知識的本質,體會到知識的內涵,實現綜合素質的提高。教師要多給學生提供參與課堂和動手實踐的機會,使學生可以在探究中提高能力,在實驗中進步,實現學習能力的提高。 總之,教師採用先進的教學理念和教學思想來指導教學,會促進學生思維的發散和能力的提高,促進學生融入到課堂學習過程中,實現綜合素質的提高。教師的指導恰到好處會使成為學生主動學習和自主探究的誘因,激發學生物理學習的積極性和主動性,產生強烈的學習動機,在思考和探究中掌握知識,提高能力,實現學生的可持續發展。
Ⅶ 在物理學計算中,常用的思想和方法有哪些
你真的沒有找到學習物理的竅門,物理的學習不強調死記硬背,要注重理解概念規律的內涵與外延,注重把握基本的物理模型,更特別注重掌握常用的物理思想方法,主要有:
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟.從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑.
三、圖象法
圖象能直觀地描述物理過程,能形象地表達物理規律,能鮮明地表示物理量之間的關系,一直是物理學中常用的工具,圖象問題也是每年高考必考的一個知識點.運用物理圖象處理物理問題是識圖能力和作圖能力的綜合體現.它通常以定性作圖為基礎(有時也需要定量作出圖線),當某些物理問題分析難度太大時,用圖象法處理常有化繁為簡、化難為易的功效. 四、假設法
假設法是先假定某些條件,再進行推理,若結果與題設現象一致,則假設成立,反之,則假設不成立.求解物理試題常用的假設有假設物理情景,假設物理過程,假設物理量等,利用假設法處理某些物理問題,往往能突破思維障礙,找出新的解題途徑.在分析彈力或摩擦力的有無及方向時,常利用該法.
五、整體、隔離法
物理習題中,所涉及的往往不只是一個單獨的物體、一個孤立的過程或一個單一的題給條件.這時,可以把所涉及到的多個物體、多個過程、多個未知量作為一個整體來考慮,這種以整體為研究對象的解題方法稱為整體法;而把整體的某一部分(如其中的一個物體或者是一個過程)單獨從整體中抽取出來進行分析研究的方法,則稱為隔離法.
六、圖解法
圖解法是依據題意作出圖形來確定正確答案的方法.它既簡單明了、又形象直觀,用於定性分析某些物理問題時,可得到事半功倍的效果.特別是在解決物體受三個力(其中一個力大小、方向不變,另一個力方向不變)的平衡問題時,常應用此法.
七、轉換法
有些物理問題,由於運動過程復雜或難以進行受力分析,造成解答困難.此種情況應根據運動的相對性或牛頓第三定律轉換參考系或研究對象,即所謂的轉換法.應用此法,可使問題化難為易、化繁為簡,使解答過程一目瞭然. 八、程序法
所謂程序法,是按時間的先後順序對題目給出的物理過程進行分析,正確劃分出不同的過程,對每一過程,具體分析出其速度、位移、時間的關系,然後利用各過程的具體特點列方程解題.利用程序法解題,關鍵是正確選擇研究對象和物理過程,還要注意兩點:一是注意速度關系,即第1個過程的末速度是第二個過程的初速度;二是位移關系,即各段位移之和等於總位移.
九、極端法
有些物理問題,由於物理現象涉及的因素較多,過程變化復雜,同學們往往難以洞察其變化規律並做出迅速判斷.但如果把問題推到極端狀態下或特殊狀態下進行分析,問題會立刻變得明朗直觀,這種解題方法我們稱之為極限思維法,也稱為極端法.
運用極限思維思想解決物理問題,關鍵是考慮將問題推向什麼極端,即應選擇好變數,所選擇的變數要在變化過程中存在極值或臨界值,然後從極端狀態出發分析問題的變化規律,從而解決問題.
有些問題直接計算時可能非常繁瑣,若取一個符合物理規律的特殊值代入,會快速准確而靈活地做出判斷,這種方法尤其適用於選擇題.如果選擇題各選項具有可參考性或相互排斥性,運用極端法更容易選出正確答案,這更加突出了極端法的優勢.加強這方面的訓練,有利於同學們發散性思維和創造性思維的培養.
十、極值法
常見的極值問題有兩類:一類是直接指明某物理量有極值而要求其極值;另一類則是通過求出某物理量的極值,進而以此作為依據解出與之相關的問題. 物理極值問題的兩種典型解法.
(1) 解法一是根據問題所給的物理現象涉及的物理概念和規律進行分析,明確題中的物理量是在什麼條件下取極值,或在出現極值時有何物理特徵,然後根據這些條件或特徵去尋找極值,這種方法更為突出了問題的物理本質,這種解法稱之為解極值問題的物理方法. (2)解法二是由物理問題所遵循的物理規律建立方程,然後根據這些方程進行數學推演,在推演中利用數學中已有的有關極值求法的結論而得到所求的極值,這種方法較側重於數學的推演,這種方法稱之為解極值問題的物理—數學方法.
此類極值問題可用多種方法求解:
①算術—幾何平均數法,即
a.如果兩變數之和為一定值,則當這兩個數相等時,它們的乘積取極大值. b.如果兩變數的積為一定值,則當這兩個數相等時,它們的和取極小值.
②利用二次函數判別式求極值 一元二次方程ax2+bx+c=0(a≠0)的根的判別式,具有以下性質:
Δ=b2- 4ac>0——方程有兩實數解; Δ=b2-4ac=0——方程有一實數解; Δ=b2-4ac<0——方程無實數解.
利用上述性質,就可以求出能化為ax2+bx+c=0形式的函數的極值. 十一、估演算法
物理估算,一般是指依據一定的物理概念和規律,運用物理方法和近似計算方法,對物理量的數量級或物理量的取值范圍,進行大致的推算.物理估算是一種重要的方法.有的物理問題,在符合精確度的前提下可以用近似的方法簡捷處理;有的物理問題,由於本身條件的特殊性,不需要也不可能進行精確的計算.在這些情況下,估算就成為一種科學而又有實用價值的特殊方法.
十二、守恆思想
能量守恆、機械能守恆、質量守恆、電荷守恆等守恆定律都集中地反映了自然界所存在的一種本質性的規律——「恆」.學習物理知識是為了探索自然界的物理規律,那麼什麼是自然界的物理規律?在千變萬化的物理現象中,那個保持不變的「東西」才是決定事物變化發展的本質因素.
從另一個角度看,正是由於物質世界存在著大量的守恆現象和守恆規律,才為我們處理物理問題提供了守恆的思想和方法.能量守恆、機械能守恆等守恆定律就是我們處理高中物理問題的主要工具,分析物理現象中能量、機械能的轉移和轉換是解決物理問題的主要思路.在變化復雜的物理過程中,把握住不變的因素,才是解決問題的關鍵所在.